Boundary Green's function, Minkowski content, and bubble measure for $SLE_{\kappa}(\rho)$

Dapeng Zhan

Michigan State University

Random Conformal Geometry and Related Fields Jeju Island, Korea, June 5 - 9, 2023,

BACKGROUND

- Schramm-Loewner evolution (SLE) is a one parameter family $(\kappa \in (0, \infty))$ of random fractal curves in plane domains, which is characterized by conformal invariance and domain Markov property (DMP).
- There are several types of SLE, among which we focus on chordal SLE and its close relative: chordal $SLE_{\kappa}(\rho)$.
- Chordal SLE are first defined in the upper half plane $\mathbb{H} = \{z \in \mathbb{C} : \text{Im } z > 0\}$ using the chordal Loewner equation.

CHORDAL LOEWNER EQUATIONS

• The chordal Loewner maps g_t driven by $W \in C([0,T), \mathbb{R})$, $T \in (0, \infty]$, are the solution of

$$\partial_t g_t(z) = \frac{2}{g_t(z) - W_t}, \quad 0 \le t < T, \quad g_0(z) = z.$$

- For each $z \in \mathbb{C}$, the solution $t \mapsto g_t(z)$ has a maximal interval $[0, \tau_z)$. The chordal Loewner hulls driven by W are the sets $K_t = \{z \in \mathbb{H} : \tau_z \leq t\}, 0 \leq t < T.$
- For each t, g_t maps $\mathbb{H} \setminus K_t$ conformally onto \mathbb{H} .
- If g_t⁻¹ extends continuously from ℍ to ℍ, and η(t) := g_t⁻¹(W_t), 0 ≤ t < T, is a continuous curve, then η is called the chordal Loewner curve driven by W.

CHORDAL SLE

- When $W_t := \sqrt{\kappa}B_t$, where $\kappa > 0$ and B_t is a standard Brownian motion, the Loewner curve η is known to exist and is called a chordal SLE_{κ} curve in \mathbb{H} from 0 to ∞ ([Rohde-Schramm]).
- If f maps \mathbb{H} conformally onto D, then $f \circ \eta$ modulo time parametrization is called a chordal SLE_{κ} curve in D from f(0) to $f(\infty)$ (as prime ends).
- A chordal SLE_{κ} curve η in D from a to b satisfies the following DMP. If τ is a stopping time, then conditional on $\eta|_{[0,\tau]}$ and the event that η is incomplete at τ , the rest of η is a chordal SLE_{κ} from $\eta(\tau)$ to b in a connected component of $D \setminus \eta[0,\tau]$.

$SLE_{\kappa}(\rho)$ CURVES

- $SLE_{\kappa}(\rho)$ was introduced by Lawler, Schramm and Werner.
- To define $SLE_{\kappa}(\rho)$, one solves a system of SDE/ODE to find the driving process and the force point process(es).
- Let $\kappa > 0$ and $\rho \in \mathbb{R}$. Let $w \in \mathbb{R}$ and $v \in (\mathbb{R} \setminus \{w\}) \cup \{w^+, w^-\}$. Let W_t and V_t be the solution of

$$dW_t = \sqrt{\kappa} dB_t + \mathbb{1}_{\{W_t \neq V_t\}} \frac{\rho dt}{W_t - V_t}, \quad dV_t = \mathbb{1}_{\{W_t \neq V_t\}} \frac{2dt}{V_t - W_t}$$

with initial values $W_0 = w$ and $V_0 = v$.

- The chordal Loewner curve driven by W exists ([Miller-Sheffield]), and is called an $\text{SLE}_{\kappa}(\rho)$ curve in \mathbb{H} , started from w, with the force point v, and aimed at ∞ .
- The definition extends to general simply connected domains via conformal maps.

DMP for $SLE_{\kappa}(\rho)$

The DMP for $\text{SLE}_{\kappa}(\rho)$ involves the force point. Suppose η is an $\text{SLE}_{\kappa}(\rho)$ in D from w_0 to w_{∞} with the force point v lying on the ccw (resp. cw) arc from w_0 to w_{∞} . Let τ be a stopping time for η . Conditionally on the part of η before τ and the event that η is incomplete at τ , the rest of η is an $\text{SLE}_{\kappa}(\rho)$ curve

- in the component of $D \setminus \eta[0, \tau]$ whose boundary contains w_{∞}
- started from $\eta(\tau)$ and aimed at w_{∞} ,
- with the force point located at v_{τ} , which equals
 - v, if $\eta[0,\tau]$ does not disconnect v from w_{∞} ;
 - the ccw (resp. cw)-most prime end visited by η by $\tau,$ if otherwise.

BOUNDARY INTERSECTION

Let η be an $\text{SLE}_{\kappa}(\rho)$ in \mathbb{H} started from w with force point $v \ge w^+$. We assume $\rho > -2$ so that η approaches ∞ . There are three cases.

- (Boundary-avoiding) If $\rho \geq \frac{\kappa}{2} 2$, then $\eta \cap (v, \infty) = \emptyset$.
- (Boundary-filling) If $\rho \leq \frac{\kappa}{2} 4$, then $\eta \cap (v, \infty) = (v, \infty)$.
- (Boundary-touching) If $\rho \in (\frac{\kappa}{2} 4, \frac{\kappa}{2} 2)$, then $\eta \cap (v, \infty)$ is unbounded and has no interior points.

In the third case, $\dim_{\mathcal{H}}(\eta \cap (v, \infty)) = \frac{(\rho+4)(\kappa-4-2\rho)}{2\kappa}$ by Miller and Wu. We focus on the Minkowski content of the intersection.

MINKOWSKI CONTENT

• Given a set $S \subset \mathbb{R}^n$, $n \in \mathbb{N}$, $d \in (0, n)$, and r > 0, we define

$$\operatorname{Cont}_d(S,r) = r^{d-n} \operatorname{m}^n(S^r),$$

where $S^r = \{x \in \mathbb{R}^n : \operatorname{dist}(x, S) < r\}$ and m^n is the Lebesgue measure. Then $\operatorname{Cont}_d(S) := \lim_{r \to 0^+} \operatorname{Cont}_d(S, r)$ is called the *d*-dim Minkowski content of *S*, if the limit exists.

Minkowski Content

Some examples:

- If B_t is an *n*-dim Brownian motion, $n \ge 3$, then for some constant $C_n \in (0, \infty)$, $\operatorname{Cont}_2(B[0, t]) = C_n t$ for all $t \ge 0$.
- If B_t is a 1-dim BM with the local time process L_t , then for some $C_1 \in (0, \infty)$, $\operatorname{Cont}_{1/2}([0, t] \cap B^{-1}(0)) = C_1 L_t$ for all $t \ge 0$.
- Let η be an SLE_{κ} curve, $\kappa \in (0, 8)$, in \mathbb{H} from 0 to ∞ , then for any $t_2 > t_1 \ge 0$, $\operatorname{Cont}_d(\eta([t_1, t_2]))$ exists with $d = 1 + \frac{\kappa}{8}$ ([Lawler-Rezaei]). When $\kappa \in (4, 8)$, for any compact real interval I, $\operatorname{Cont}_d(\eta \cap I)$ exists with $d = 2 \frac{8}{\kappa}$ ([Lawler]).
- For n = 2, 3, let S be the set of cut points of an n-dim BM. Then for nice compact set $V \subset \mathbb{R}^n$, $\operatorname{Cont}_d(S \cap V)$ exists, where $d = \dim_{\mathcal{H}}(S)$ ([Holden-Lawler-Li-Sun]).

Minkowski content is not a measure. In order to refer to Minkowski content as a measure, a rigorous definition is needed. For this purpose, we introduce the "Minkowski content measure".

Minkowski content is not a measure. In order to refer to Minkowski content as a measure, a rigorous definition is needed. For this purpose, we introduce the "Minkowski content measure".

DEFINITION

Let S denote the family of subsets of \mathbb{R}^d , which are intersection of a closed set and an open set. For $S \in S$, a measure μ on S is called a *d*-dimensional Minkowski content measure (MCM) on S if for any compact set $K \subset S$,

(I) $\mu(K) < \infty$; and

(II) if
$$\mu(\partial_S K) = 0$$
, then $\operatorname{Cont}_d(K) = \mu(K)$.

The examples in the previous slide are all MCM.

The definition implies the following facts.

• Uniqueness. Any $S \in S$ has at most one *d*-dim MCM.

- Uniqueness. Any $S \in S$ has at most one *d*-dim MCM.
- Restriction. Let $S_1 \subset S_2 \in S$. If μ is the *d*-dim MCM on S_2 , and $\mu(\partial_{S_2}S_1) = 0$, then $\mu|_{S_1}$ is the *d*-dim MCM on S_1 .

- Uniqueness. Any $S \in S$ has at most one *d*-dim MCM.
- Restriction. Let $S_1 \subset S_2 \in S$. If μ is the *d*-dim MCM on S_2 , and $\mu(\partial_{S_2}S_1) = 0$, then $\mu|_{S_1}$ is the *d*-dim MCM on S_1 .
- Weak limit. If S is compact, then μ is the d-dim MCM on S iff it is the weak limit of $r^{d-n} \mathbb{1}_{S^r} \cdot \mathbf{m}^n$ as $r \to 0^+$.

- Uniqueness. Any $S \in S$ has at most one *d*-dim MCM.
- Restriction. Let $S_1 \subset S_2 \in S$. If μ is the *d*-dim MCM on S_2 , and $\mu(\partial_{S_2}S_1) = 0$, then $\mu|_{S_1}$ is the *d*-dim MCM on S_1 .
- Weak limit. If S is compact, then μ is the d-dim MCM on S iff it is the weak limit of $r^{d-n}\mathbb{1}_{S^r} \cdot \mathbf{m}^n$ as $r \to 0^+$.
- Conformal covariance. If $S \in S$ has d-dim MCM μ and is contained in an open set U, and if $\phi : U \to \mathbb{R}^n$ is an injective conformal map, then $\phi_*(|\phi'|^d \cdot \mu)$ is the d-dim MCM on $\phi(S)$.

THEOREM

Let η be an $SLE_{\kappa}(\rho)$ curve in \mathbb{H} started from w with force point $v \geq w^+$. Suppose ρ is in the boundary-touching region. Let $d = \dim_{\mathcal{H}}(\eta \cap (v, \infty))$. Then the d-dim MCM on $\eta \cap (v, \infty)$ exists and is atomless.

Alberts and Sheffield constructed a conformal covariant measure on the intersection of SLE_{κ} in \mathbb{H} with \mathbb{R} , and conjectured that it is related to Minkowski content. This theorem confirms their conjecture.

GREEN'S FUNCTION

• The proof follows the Green's function approach introduced by Lawler and Rezaei. Let $\alpha = 1 - d$. We need to prove the existence of the 1-point and 2-point Green's function at $x \neq y \in (v, \infty)$:

$$\begin{split} G(x) &= \lim_{r \to 0^+} r^{-\alpha} \mathbb{P}[\operatorname{dist}(x,\eta) < r], \\ G(x,y) &= \lim_{r,s \to 0^+} r^{-\alpha} s^{-\alpha} \mathbb{P}[\operatorname{dist}(x,\eta) < r, \operatorname{dist}(y,\eta) < s]. \end{split}$$

• In addition, we need some sharp estimates of the probabilities:

$$\begin{split} \mathbb{P}[\operatorname{dist}(x,\eta) < r] &= G(x)r^{\alpha}(1+O(r)),\\ \mathbb{P}[\operatorname{dist}(x,\eta) < r, \operatorname{dist}(y,\eta) < s] &= G(x,y)r^{\alpha}s^{\alpha}(1+O(r+s)). \end{split}$$

RADIAL BESSEL PROCESSES

The work on the Green's functions relies on radial Bessel processes.

• Let $\delta \in \mathbb{R}$. A diffusion process $\Theta_t \in [0, \pi]$ satisfying the SDE

$$d\Theta_t = dB_t + \frac{\delta - 1}{2}\cot(\Theta_t)dt$$

is called a radial Bessel process of dim δ (RBES^{δ})

- The name comes from the fact that (i) it appears naturally from radial $SLE_{\kappa}(\rho)$ processes, and (ii) Θ behaves like a BES^{δ} when it is near 0 or π .
- When $\delta = n \in \mathbb{N}$, RBESⁿ is related to Brownian motion on sphere S^n in the same way as BESⁿ is related to Brownian motion on \mathbb{R}^n .
- The process $Z_t := \cos(\Theta_t) \in [-1, 1]$ is called a cosined radial Bessel process of dim δ (CRBES^{δ}), which satisfies the SDE

$$dZ_t = \sqrt{1 - Z_t^2} dB_t - \frac{\delta}{2} Z_t dt.$$

RADIAL BESSEL PROCESSES

• A diffusion process $\Theta_t \in [0, \pi]$ satisfying the SDE

$$d\Theta_t = dB_t + \frac{\delta_+ - 1}{4}\cot(\frac{\Theta_t}{2})dt + \frac{\delta_- - 1}{4}\tan(\frac{\Theta_t}{2})dt$$

is called a RBES^{(δ_+, δ_-)}. It behaves like a Bessel process of dim δ_+ near 0 and of dim δ_- near π .

• The CRBES^{(δ_+, δ_-)} process $Z_t := \cos(\Theta_t)$ satisfies the SDE

$$dZ_t = \sqrt{1 - Z_t^2} dB_t - \frac{\delta_+}{4} (Z_t + 1) dt - \frac{\delta_-}{4} (Z_t - 1) dt.$$

- The transition density of Z is known, and is expressed as an infinite series involving Jacobi polynomials.
- When $\delta_+, \delta_- > 0$, the lifetime of Z is ∞ , and has a unique stationary measure, which has a density that is proportional to $(1-x)^{\frac{\delta_+}{2}-1}(1+x)^{\frac{\delta_-}{2}-1}$.

RADIAL BESSEL PROCESSES AND $SLE_{\kappa}(\rho)$

LEMMA

Consider an $SLE_{\kappa}(\rho_v, \rho_u)$ curve η in \mathbb{H} started from w with force points $v < u \in [w^+, \infty)$. Define

$$Z_t = \frac{W_t + U_t - 2V_t}{U_t - W_t}, p(t) = -\frac{\kappa}{2} \log\left(\frac{U_t - V_t}{g'_t(u)(u - v)}\right), \widehat{Z}_s = Z_{p^{-1}(s)}.$$

Then $(\widehat{Z}_s)_{s\geq 0}$ is a CRBES^{(δ_+,δ_-)} with $\delta_+ = \frac{4}{\kappa}(\rho_v+2)$ and $\delta_- = \frac{4}{\kappa}(\kappa - 4 - \rho_v - \rho_u)$. We may recover W from $(\widehat{Z}_s)_{s\in\mathbb{R}}$ and w, v, u.

We use this lemma to study $\text{SLE}_{\kappa}(\rho)$ with $\rho > (\frac{\kappa}{2} - 4) \lor (-2)$ by setting $\rho_v = \rho$ and $\rho_u = 0$. From $\rho > \frac{\kappa}{2} - 4$ we know that η a.s. does not hit u. The \widehat{Z} a.s. hits -1 because $\delta_+ > 0$ and $\delta_- < 2$.

ONE-POINT GREEN'S FUNCTION

- Applying the lemma to $\rho_v = \rho$ and $\rho_u^* = \kappa 8 2\rho$, we get \widehat{Z}^* with dim (δ_+, δ_-^*) , where $\delta_-^* = \frac{4}{\kappa}(\rho + 4) = 4 \delta_- > 2$.
- Note that δ^{*}_⊥ is the dual dimension of δ_⊥. The *Z*^{*} could be understood as the *Z* conditioned to not hit −1, and the SLE_κ(ρ, κ − 8 − 2ρ) curve could be understood as the SLE_κ(ρ) curve conditioned to pass through u.
- The above facts could be used to derive the 1-pt Green's function for the $\text{SLE}_{\kappa}(\rho)$. In fact, the Green's function is closely related to the RN process between $\text{SLE}_{\kappa}(\rho, \kappa - 8 - 2\rho)$ and $\text{SLE}_{\kappa}(\rho)$.

TWO-POINT GREEN'S FUNCTION

For the 2-point Green's function, we use following philosophy introduced by Lawler and Werness. Assume that $u_2 > u_1 > v$.

- In order for η to reach two discs $D_1 = D(u_1, r_1)$ and $D_2 = D(u_2, r_2)$, it is very likely that η visits D_1 before D_2 .
- The probability that η reaches D_1 is approximated by 1-pt Green's function.
- Then we could use DMP of $SLE_{\kappa}(\rho)$, Koebe's distortion theorem and 1-pt Green's function to estimate the conditional probability that the rest of η reaches D_2 .
- We need to show that, with a high probability, η is not close to u_2 when it reaches D_1 . This requires the most technical work.

DECOMPOSITION FORMULA

- Let $\mu_{(w,v)\to\infty}^{\mathbb{H}}$ denote the law of the above $SLE_{\kappa}(\rho)$ curve.
- For u ∈ I = (v,∞), let μ^H_{(w,v)→u→∞} denote the law of a random curve with two arms: the first arm from w to u is an SLE_κ(ρ, κ − 8 − 2ρ) curve with force points (v, u), and the second arm conditioned on the first is an SLE_κ(ρ) curve from u to ∞.
- We understand $\mu_{(w,v)\to u\to\infty}^{\mathbb{H}}$ as the $\text{SLE}_{\kappa}(\rho)$ conditioned to hit u.
- Let $\mathcal{M}_{\eta \cap I}$ denote the *d*-dim MCM on $\eta \cap I$.
- Let G(w, v; u) be the 1-pt Green's function for $\mu_{(w,v)\to\infty}^{\mathbb{H}}$ at u.
- Then we have the following decomposition formula:

$$\mu^{\mathbb{H}}_{(w,v)\to\infty}(d\eta) \overrightarrow{\otimes} \mathcal{M}_{\eta\cap I}(du) = \mu^{\mathbb{H}}_{(w,v)\to u\to\infty}(d\eta) \overleftarrow{\otimes} G(w,v;u) \cdot \mathrm{m}(du).$$

SLE LOOP MEASURES

We now discuss $\text{SLE}_{\kappa}(\rho)$ bubble measures, which resemble SLE loop measures.

- SLE loop measures are **single**-loop measures, which may be rooted or unrooted.
- Werner constructed (2008) unrooted $\text{SLE}_{8/3}$ loop measures in $\widehat{\mathbb{C}}$.
- Sheffield and Werner constructed (2012) rooted SLE_{κ} bubbles for $\kappa \in (\frac{8}{3}, 4]$ in the exploration of CLE_{κ} (multi-loop measures).
- Miller and Sheffield constructed (2012) space-filling SLE_{κ} for $\kappa > 4$ from ∞ to ∞ .
- Benoist and Dubédat constructed (2016) unrooted SLE₂ loops.

SLE LOOP MEASURES

- Several types of SLE_{κ} loop measures for $\kappa \in (0, 8)$ were systematically constructed (Z. 2021), which include
 - Rooted SLE_{κ} loops in $\widehat{\mathbb{C}}$.
 - Unrooted SLE_{κ} loops in $\widehat{\mathbb{C}}$.
 - Boundary-avoiding unrooted ${\rm SLE}_\kappa$ loops in arbitrary domains.
 - Rooted ${\rm SLE}_\kappa$ bubbles in simply connected domains.
 - Unrooted SLE_{κ} bubbles for $\kappa \in (4, 8)$.
- For $\kappa \in (\frac{8}{3}, 4]$, the unrooted SLE_{κ} loop measure in $\widehat{\mathbb{C}}$ is some constant times the intensity measure of whole-plane CLE_{κ} ([Kemppainen-Werner, 15], [Ang-Sun, 22]).

Domain Markov Property

An $\operatorname{SLE}_{\kappa}$ loop η in $\widehat{\mathbb{C}}$ rooted at w satisfy DMP as follows. Let τ be a positive stopping time. Then conditionally on the part of η before τ , and the event that η is incomplete at τ , the rest of η is an $\operatorname{SLE}_{\kappa}$

- in the connected component of $D \setminus \eta[0,\tau]$ whose boundary contains both $\eta(\tau)$ and w
- from (the prime end) $\eta(\tau)$ to (the prime end) w.

The rooted SLE_{κ} loop measures are infinite measures, and we have to use some symbols to make the above statement rigorous.

Domain Markov Property

- Let μ^D_{a→b} denote the law of a chordal SLE_κ in D from a to b.
 Let Σ = U_{T∈(0,∞]} C([0, T), Ĉ).
- For any stopping time τ , let $\Sigma_{\tau} = \{f \in \Sigma : \tau(f) < \widehat{T}_f\}.$
- The SLE_{κ} loop measure in $\widehat{\mathbb{C}}$ rooted at w is a sigma-finite measure μ_w on Σ , which satisfies that, for any stopping time $\tau > 0$,

$$\mathbb{1}_{\Sigma_{\tau}}\mu_w = \mathbb{1}_{\Sigma_{\tau}}\mu_w(d\eta) \oplus_{\tau} \mu_{\eta(\tau) \to w}^{\widehat{\mathbb{C}}(\eta[0,\tau];w)},$$

where $\widehat{\mathbb{C}}(\eta[0,\tau];w)$ is the unique connected component of $\widehat{\mathbb{C}} \setminus \eta[0,\tau]$ whose boundary contains w, and $\eta(\tau)$ and w are identified with two prime ends of $\widehat{\mathbb{C}} \setminus \eta[0,\tau]$.

DMP FOR $SLE_{\kappa}(\rho)$ BUBBLES

 $\operatorname{SLE}_{\kappa}(\rho)$ bubbles are closely related to $\operatorname{SLE}_{\kappa}$ bubbles. There are ccw and cw bubbles. A ccw $\operatorname{SLE}_{\kappa}(\rho)$ bubble η in D rooted at $w \in \partial D$ satisfies the following DMP. Let τ be a positive stopping time. Then conditional on the part of η before τ and the event that η is incomplete at τ , the rest of η is an $\operatorname{SLE}_{\kappa}(\rho)$ curve

- in the connected component of $D \setminus \eta[0, \tau]$ which shares with D a prime end arc lying immediately to the left of w
- from (the prime end) $\eta(\tau)$ to (the prime end) w^-
- with the force point $[w^+]^{\eta}_{\tau}$ being the ccw-most prime end visited by η by time τ .

The above statement could be easily made rigorous using symbols.

DMP FOR $SLE_{\kappa}(\rho)$ BUBBLES

The above three figures respectively represent the boundary-filling, boundary-touching and boundary-avoiding cases.

Construction of the $SLE_{\kappa}(\rho)$ Bubbles

- It suffices to construct ccw $SLE_{\kappa}(\rho)$ bubble in \mathbb{H} rooted at 0, which could be intuitively understood as an $SLE_{\kappa}(\rho)$ in \mathbb{H} from 0 to 0^{-} with the force point 0^{+} .
- Before the construction, we make the following observation. Let $x < 0 < 0^+ \le v$, and η is an $\text{SLE}_{\kappa}(\rho)$ curve in \mathbb{H} started from 0, aimed at x, and with the force point v.
- Let σ be the hitting time at $\{\infty\} \cup (-\infty, x]$. Then by SLE coordinate changes ([Schramm-Wilson]), the part of η before σ is a two-force-point $\text{SLE}_{\kappa}(\rho, \kappa 6 \rho)$ curve in \mathbb{H} started from 0, with the force points (v, x), and stopped when it swallows x.

Construction of $SLE_{\kappa}(\rho)$ Bubbles

- We first consider the easy case: $\rho \in (-2, \frac{\kappa}{2} 4]$. Then $\kappa 6 \rho \geq \frac{\kappa}{2} 2 > -2$. Thus, we may define an $\text{SLE}_{\kappa}(\rho, \kappa 6 \rho)$ curve γ in \mathbb{H} started from 0 with the force points $(0^+, 0^-)$.
- The γ ends at ∞ and does not intersect \mathbb{R}_{-} as $\kappa 6 \rho \geq \frac{\kappa}{2} 2$.
- To complete the construction of the bubble, we simply continue it with an $\text{SLE}_{\kappa}(\rho)$ curve in the remaining domain from ∞ to 0 with the force point being ∞^+ .

RADIAL BESSEL PROCESSES AND $SLE_{\kappa}(\rho)$

For the case $\rho > (\frac{\kappa}{2} - 4) \lor (-2)$, we will use the following lemmas

LEMMA

Let η be an $SLE_{\kappa}(\rho_+, \rho_-)$ curve started from 0 with force points $v^+ \in [0^+, \infty)$ and $v^- \in (-\infty, 0)$. Define

$$Z_t = \frac{2W_t - V_t^+ - V_t^-}{V_t^+ - V_t^-}, \quad p(t) = \frac{\kappa}{2} \log\left(\frac{V_t^+ - V_t^-}{v^+ - v^-}\right), \quad \widehat{Z}_s = Z_{p^{-1}(s)}.$$

Then $(\widehat{Z}_s)_{s\geq 0}$ is a CRBES^(δ_+, δ_-), where $\delta_{\pm} = \frac{4}{\kappa}(\rho_{\pm} + 2)$. We may recover W using \widehat{Z} and w, v^+, v^- .

This lemma will be applied to the case $\rho_+ = \rho$ and $\rho_- = \kappa - 6 - \rho$. In that case, we have $\delta_+ > 0$ and $\delta_- < 2$.

RADIAL BESSEL PROCESSES AND $SLE_{\kappa}(\rho)$

Another lemma we need is the following.

Theorem

Let η be an $SLE_{\kappa}(\rho_{+}, \rho_{-}^{*})$ curve η in \mathbb{H} started from 0 with force points $0^{+}, 0^{-}$, where $\rho_{+}, \rho_{-}^{*} > -2$. Define

$$Z_t = \frac{2W_t - V_t^+ - V_t^-}{V_t^+ - V_t^-}, \quad p(t) = \frac{\kappa}{2}\log(V_t^+ - V_t^-), \quad \widehat{Z}_s = Z_{p^{-1}(s)}.$$

Then $(\widehat{Z}_s)_{s\in\mathbb{R}}$ is a stationary CRBES^(δ_+, δ_-^*), where $\delta_+ = \frac{4}{\kappa}(\rho_+ + 2)$ and $\delta_-^* = \frac{4}{\kappa}(\rho_-^* + 2)$. We may recover W using \widehat{Z} .

This lemma will be applied to the case $\rho_+ = \rho$ and $\rho_-^* = \rho + 2$. In that case, $\delta_+ > 0$ and $\delta_-^* = 4 - \delta_-$ is dual to δ_- .

RADIAL BESSEL PROCESSES

Using the dual relation between $\text{CRBES}^{(\delta_+,\delta_-)}$ and $\text{CRBES}^{(\delta_+,\delta_-^*)}$, we may construct an **infinite** measure $\mu_{\delta_+,\delta_-}^{\mathbb{R}}$ on

 $\Sigma^{\mathbb{R}} := \bigcup_{T \in \mathbb{R}} C((-\infty, T), \mathbb{R})$ such that a process X with the "law" $\mu^{\mathbb{R}}_{\delta_+, \delta_-}$ satisfies the following Markov property:

• If τ is a finite stopping time, then conditionally on the part of X before τ and the event that X is not complete by τ , the rest part of X is a CRBES^(δ_+, δ_-).

Such $\mu_{\delta_+,\delta_-}^{\mathbb{R}}$ is locally absolutely continuous w.r.t. the law $\mu_{\delta_+,\delta_-}^{\mathbb{R}}$ of the stationary CRBES^(δ_+,δ_-^*) defined on \mathbb{R} .

Construction of $SLE_{\kappa}(\rho)$ Bubbles

- The last lemma gives an injective map $\Phi: W \mapsto \widehat{Z}$ such that the law $\mu_{\kappa;(\rho_+,\rho_-^*)}^{0;(0^+,0^-)}$ of the driving function of an $\operatorname{SLE}_{\kappa}(\rho_+,\rho_-)$ curve started from 0 with force points $(0^+,0^-)$ under the pushforward Φ is $\mu_{\delta_+,\delta_-^*}^{\mathbb{R}}$, i.e., $\Phi_*(\mu_{\kappa;(\rho_+,\rho_-^*)}^{0;(0^+,0^-)}) = \mu_{\delta_+,\delta_-^*}^{\mathbb{R}}$.
- Now we define $\mu_{\kappa;(\rho_+,\rho_-)}^{0;(0^+,0^-)} = \Phi_*^{-1}(\mu_{\delta_+,\delta_-}^{\mathbb{R}})$. Then $\mu_{\kappa;(\rho_+,\rho_-)}^{0;(0^+,0^-)}$ is an infinite measure on driving processes. The pushforward measure of $\mu_{\kappa;(\rho_+,\rho_-)}^{0;(0^+,0^-)}$ on curves under the Loewner map satisfies the $SLE_{\kappa}(\rho)$ -bubble-DMP up to the hitting time on $(-\infty, 0]$.
- If $\rho \geq \frac{\kappa}{2} 2$, then η a.s. avoids $(-\infty, 0)$ and ends at 0. Then we already get the $\text{SLE}_{\kappa}(\rho)$ bubble measure.
- If $\rho < \frac{\kappa}{2} 2$, then curve a.s. ends at some point $x \in (-\infty, 0)$. To complete the construction, we continue the curve with an $\text{SLE}_{\kappa}(\rho)$ curve from x to 0 with the force point x^+ .

WEAK CONVERGENCE AND REVERSIBILITY

- In the case $\rho \leq \frac{\kappa}{2} 4$, the $\text{SLE}_{\kappa}(\rho)$ law $\mu_{(r;r^+)\to -r}^{\mathbb{H}}$ converges weakly to the law $\mu_{0\circlearrowright}^{\mathbb{H}}$ of the ccw $\text{SLE}_{\kappa}(\rho)$ bubble in \mathbb{H} rooted at 0 as $r \to 0^+$.
- In the case $\rho > \frac{\kappa}{2} 4$, $(2r)^{-\alpha} \mu_{(r;r^+) \to -r}^{\mathbb{H}}$ converges weakly to $\mu_{0\circlearrowright}^{\mathbb{H}}$, where $(\rho + 2)(2\rho + 8 - \kappa)$

$$\alpha = \frac{(\rho+2)(2\rho+8-\kappa)}{2\kappa}$$

• The above weak convergence implies that, if $\text{SLE}_{\kappa}(\rho)$ satisfies reversibility, say $\kappa \in (0, 8)$ and $\rho \geq \frac{\kappa}{2} - 4$, then the time-reversal of the ccw bubble measure $\mu_{0\mathbb{C}}^{\mathbb{H}}$ is the cw bubble measure $\mu_{0\mathbb{C}}^{\mathbb{H}}$.

Minkowski Content

- In the case that $\kappa \in (0, 8)$ and ρ is in the boundary touching region, a curve η following the "law" $\mu_{0\circlearrowright}^{\mathbb{H}}$ intersects \mathbb{R} at a compact fractal set.
- Using the existence of boundary MCM for $SLE_{\kappa}(\rho)$ we could prove that $\eta \cap \mathbb{R}$ possesses MCM.
- Moreover, we get a decomposition equality for $\mu_{w \circlearrowright}^{\mathbb{H}}$, $w \in \mathbb{R}$:

$$\mu^{\mathbb{H}}_{w \circlearrowright}(d\eta) \overrightarrow{\otimes} \mathcal{M}^{d}_{\eta \cap \mathbb{R}}(du) = \mu^{\mathbb{H}}_{w \leftrightarrows u}(d\eta) \overleftarrow{\otimes} C_{\kappa,\rho} |w-u|^{-2\alpha} \cdot \mathrm{m}(du),$$

where $C_{\kappa,\rho} \in (0,\infty)$ is a constant depending only on κ, ρ , and $\mu_{w \rightarrowtail u}^{\mathbb{H}}$ could be understood as an $\mathrm{SLE}_{\kappa}(\rho)$ bubble rooted at w conditioned to pass through u.

UNROOTED SLE_{κ}(ρ) BUBBLES

• Looking at the marginal measures in the decomposition equality for $\mu_{w\odot}^{\mathbb{H}}$, we find that

$$\operatorname{Cont}_{d}(\eta \cap \mathbb{R}) \cdot \mu_{w \circlearrowright}^{\mathbb{H}}(d\eta) = C_{\kappa,\rho} \int_{\mathbb{R} \setminus \{w\}} \mu_{w \leftrightarrows u}^{\mathbb{H}} |u|^{-2\alpha} \operatorname{m}(du).$$

Thus, $\mu_{w \circlearrowright}^{\mathbb{H}}$ may be expressed by

$$\mu_{w \circlearrowright}^{\mathbb{H}} = \operatorname{Cont}_{d}(\cdot \cap \mathbb{R})^{-1} \cdot C_{\kappa,\rho} \int_{\mathbb{R} \setminus \{w\}} \mu_{w \leftrightarrows u}^{\mathbb{H}} |w - u|^{-2\alpha} \operatorname{m}(du).$$

• This equality motivates us to define the unrooted ccw $\text{SLE}_{\kappa}(\rho)$ bubble measure $\mu_{\bigcirc}^{\mathbb{H}}$ by

$$\mu_{\circlearrowright}^{\mathbb{H}} = \operatorname{Cont}_{d}(\cdot \cap \mathbb{R})^{-1} \cdot \int_{\mathbb{R}} \mu_{w\circlearrowright}^{\mathbb{H}} \operatorname{m}(dw)$$
$$= \operatorname{Cont}_{d}(\cdot \cap \mathbb{R})^{-2} \int_{\mathbb{R}^{2}} \mu_{w \leftrightarrows u}^{\mathbb{H}} C_{\kappa,\rho} |w - u|^{-2\alpha} \operatorname{m}^{2}(dw \otimes du).$$

Decomposition of Unrooted $SLE_{\kappa}(\rho)$ Bubble

We get two decomposition formulas for the unrooted bubble measure:

$$\mu^{\mathbb{H}}_{\circlearrowright}(d\eta) \overrightarrow{\otimes} \mathcal{M}^{d}_{\eta \cap \mathbb{R}}(dw) = \mu^{\mathbb{H}}_{w\circlearrowright}(d\eta) \overleftarrow{\otimes} \operatorname{m}(dw).$$
$$\mu^{\mathbb{H}}_{\circlearrowright}(d\eta) \overrightarrow{\otimes} (\mathcal{M}^{d}_{\eta \cap \mathbb{R}})^{2}(dw \otimes du) = \mu^{\mathbb{H}}_{w \leftrightarrows u}(d\eta) \overleftarrow{\otimes} C_{\kappa,\rho} |w - u|^{-2\alpha} \cdot \operatorname{m}^{2}(dw \otimes du).$$

Conformal Invariance/Covariance

• If $\rho \leq \frac{\kappa}{2} - 4$, the rooted $\text{SLE}_{\kappa}(\rho)$ bubble measures satisfy conformal invariance. Suppose f is a Möbius automorphism of \mathbb{H} that fixes $w \in \mathbb{R}$. Then

$$f_*(\mu_{w\circlearrowleft}^{\mathbb{H}}) = \mu_{w\circlearrowright}^{\mathbb{H}}.$$

• If $\rho > (-2) \lor (\frac{\kappa}{2} - 4)$, then we have conformal covariance:

$$f_*(\mu_{w\circlearrowleft}^{\mathbb{H}}) = f'(w)^{\alpha} \mu_{w\circlearrowright}^{\mathbb{H}}.$$

• The unrooted $\text{SLE}_{\kappa}(\rho)$ bubble measure $\mu_{\bigcirc}^{\mathbb{H}}$ satisfies conformal invariance:

$$f_*(\mu^{\mathbb{H}}_{\circlearrowright}) = \mu^{\mathbb{H}}_{\circlearrowright}$$

if f is any Möbius automorphism of \mathbb{H} .

Thank you for your attention!