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Background

Schramm-Loewner evolution (SLE) is a one parameter family
(κ ∈ (0,∞)) of random fractal curves in plane domains, which is
characterized by conformal invariance and domain Markov
property (DMP).

There are several types of SLE, among which we focus on chordal
SLE and its close relative: chordal SLEκ(ρ).

Chordal SLE are first defined in the upper half plane
H = {z ∈ C : Im z > 0} using the chordal Loewner equation.
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Chordal Loewner Equations

The chordal Loewner maps gt driven by W ∈ C([0, T ),R),
T ∈ (0,∞], are the solution of

∂tgt(z) =
2

gt(z)−Wt
, 0 ≤ t < T, g0(z) = z.

For each z ∈ C, the solution t 7→ gt(z) has a maximal interval
[0, τz). The chordal Loewner hulls driven by W are the sets
Kt = {z ∈ H : τz ≤ t}, 0 ≤ t < T .

For each t, gt maps H \Kt conformally onto H.

If g−1
t extends continuously from H to H, and η(t) := g−1

t (Wt),
0 ≤ t < T , is a continuous curve, then η is called the chordal
Loewner curve driven by W .
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Chordal SLE

When Wt :=
√
κBt, where κ > 0 and Bt is a standard Brownian

motion, the Loewner curve η is known to exist and is called a
chordal SLEκ curve in H from 0 to ∞ ([Rohde-Schramm]).

If f maps H conformally onto D, then f ◦ η modulo time
parametrization is called a chordal SLEκ curve in D from f(0) to
f(∞) (as prime ends).

A chordal SLEκ curve η in D from a to b satisfies the following
DMP. If τ is a stopping time, then conditional on η|[0,τ ] and the
event that η is incomplete at τ , the rest of η is a chordal SLEκ

from η(τ) to b in a connected component of D \ η[0, τ ].
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SLEκ(ρ) Curves

SLEκ(ρ) was introduced by Lawler, Schramm and Werner.

To define SLEκ(ρ), one solves a system of SDE/ODE to find the
driving process and the force point process(es).

Let κ > 0 and ρ ∈ R. Let w ∈ R and v ∈ (R \ {w}) ∪ {w+, w−}.
Let Wt and Vt be the solution of

dWt =
√
κdBt + 1{Wt ̸=Vt}

ρdt

Wt − Vt
, dVt = 1{Wt ̸=Vt}

2dt

Vt −Wt

with initial values W0 = w and V0 = v.

The chordal Loewner curve driven by W exists ([Miller-Sheffield]),
and is called an SLEκ(ρ) curve in H, started from w, with the
force point v, and aimed at ∞.

The definition extends to general simply connected domains via
conformal maps.
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DMP for SLEκ(ρ)

The DMP for SLEκ(ρ) involves the force point. Suppose η is an
SLEκ(ρ) in D from w0 to w∞ with the force point v lying on the ccw
(resp. cw) arc from w0 to w∞. Let τ be a stopping time for η.
Conditionally on the part of η before τ and the event that η is
incomplete at τ , the rest of η is an SLEκ(ρ) curve

in the component of D \ η[0, τ ] whose boundary contains w∞

started from η(τ) and aimed at w∞,

with the force point located at vτ , which equals

v, if η[0, τ ] does not disconnect v from w∞;
the ccw(resp. cw)-most prime end visited by η by τ , if otherwise.
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Boundary Intersection

Let η be an SLEκ(ρ) in H started from w with force point v ≥ w+. We
assume ρ > −2 so that η approaches ∞. There are three cases.

(Boundary-avoiding) If ρ ≥ κ
2 − 2, then η ∩ (v,∞) = ∅.

(Boundary-filling) If ρ ≤ κ
2 − 4, then η ∩ (v,∞) = (v,∞).

(Boundary-touching) If ρ ∈ (κ2 − 4, κ2 − 2), then η ∩ (v,∞) is
unbounded and has no interior points.

In the third case, dimH(η ∩ (v,∞)) = (ρ+4)(κ−4−2ρ)
2κ by Miller and Wu.

We focus on the Minkowski content of the intersection.
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Minkowski Content

Given a set S ⊂ Rn, n ∈ N, d ∈ (0, n), and r > 0, we define

Contd(S, r) = rd−nmn(Sr),

where Sr = {x ∈ Rn : dist(x, S) < r} and mn is the Lebesgue
measure. Then Contd(S) := limr→0+ Contd(S, r) is called the
d-dim Minkowski content of S, if the limit exists.
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Minkowski Content

Some examples:

If Bt is an n-dim Brownian motion, n ≥ 3, then for some constant
Cn ∈ (0,∞), Cont2(B[0, t]) = Cnt for all t ≥ 0.

If Bt is a 1-dim BM with the local time process Lt, then for some
C1 ∈ (0,∞), Cont1/2([0, t] ∩B−1(0)) = C1Lt for all t ≥ 0.

Let η be an SLEκ curve, κ ∈ (0, 8), in H from 0 to ∞, then for any
t2 > t1 ≥ 0, Contd(η([t1, t2])) exists with d = 1 + κ

8
([Lawler-Rezaei]). When κ ∈ (4, 8), for any compact real interval
I, Contd(η ∩ I) exists with d = 2− 8

κ ([Lawler]).

For n = 2, 3, let S be the set of cut points of an n-dim BM. Then
for nice compact set V ⊂ Rn, Contd(S ∩ V ) exists, where
d = dimH(S) ([Holden-Lawler-Li-Sun]).
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Minkowski Content Measure

Minkowski content is not a measure. In order to refer to Minkowski
content as a measure, a rigorous definition is needed. For this purpose,
we introduce the “Minkowski content measure”.

Definition

Let S denote the family of subsets of Rd, which are intersection of a
closed set and an open set. For S ∈ S, a measure µ on S is called a
d-dimensional Minkowski content measure (MCM) on S if for any
compact set K ⊂ S,

(i) µ(K) <∞; and

(ii) if µ(∂SK) = 0, then Contd(K) = µ(K).

The examples in the previous slide are all MCM.
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Minkowski Content Measure

The definition implies the following facts.

Uniqueness. Any S ∈ S has at most one d-dim MCM.

Restriction. Let S1 ⊂ S2 ∈ S. If µ is the d-dim MCM on S2, and
µ(∂S2S1) = 0, then µ|S1 is the d-dim MCM on S1.

Weak limit. If S is compact, then µ is the d-dim MCM on S iff it
is the weak limit of rd−n

1Sr ·mn as r → 0+.

Conformal covariance. If S ∈ S has d-dim MCM µ and is
contained in an open set U , and if ϕ : U → Rn is an injective
conformal map, then ϕ∗(|ϕ′|d · µ) is the d-dim MCM on ϕ(S).

12 / 38



Minkowski Content Measure

The definition implies the following facts.

Uniqueness. Any S ∈ S has at most one d-dim MCM.

Restriction. Let S1 ⊂ S2 ∈ S. If µ is the d-dim MCM on S2, and
µ(∂S2S1) = 0, then µ|S1 is the d-dim MCM on S1.

Weak limit. If S is compact, then µ is the d-dim MCM on S iff it
is the weak limit of rd−n

1Sr ·mn as r → 0+.

Conformal covariance. If S ∈ S has d-dim MCM µ and is
contained in an open set U , and if ϕ : U → Rn is an injective
conformal map, then ϕ∗(|ϕ′|d · µ) is the d-dim MCM on ϕ(S).

12 / 38



Minkowski Content Measure

The definition implies the following facts.

Uniqueness. Any S ∈ S has at most one d-dim MCM.

Restriction. Let S1 ⊂ S2 ∈ S. If µ is the d-dim MCM on S2, and
µ(∂S2S1) = 0, then µ|S1 is the d-dim MCM on S1.

Weak limit. If S is compact, then µ is the d-dim MCM on S iff it
is the weak limit of rd−n

1Sr ·mn as r → 0+.

Conformal covariance. If S ∈ S has d-dim MCM µ and is
contained in an open set U , and if ϕ : U → Rn is an injective
conformal map, then ϕ∗(|ϕ′|d · µ) is the d-dim MCM on ϕ(S).

12 / 38



Minkowski Content Measure

The definition implies the following facts.

Uniqueness. Any S ∈ S has at most one d-dim MCM.

Restriction. Let S1 ⊂ S2 ∈ S. If µ is the d-dim MCM on S2, and
µ(∂S2S1) = 0, then µ|S1 is the d-dim MCM on S1.

Weak limit. If S is compact, then µ is the d-dim MCM on S iff it
is the weak limit of rd−n

1Sr ·mn as r → 0+.

Conformal covariance. If S ∈ S has d-dim MCM µ and is
contained in an open set U , and if ϕ : U → Rn is an injective
conformal map, then ϕ∗(|ϕ′|d · µ) is the d-dim MCM on ϕ(S).

12 / 38



Minkowski Content Measure

The definition implies the following facts.

Uniqueness. Any S ∈ S has at most one d-dim MCM.

Restriction. Let S1 ⊂ S2 ∈ S. If µ is the d-dim MCM on S2, and
µ(∂S2S1) = 0, then µ|S1 is the d-dim MCM on S1.

Weak limit. If S is compact, then µ is the d-dim MCM on S iff it
is the weak limit of rd−n

1Sr ·mn as r → 0+.

Conformal covariance. If S ∈ S has d-dim MCM µ and is
contained in an open set U , and if ϕ : U → Rn is an injective
conformal map, then ϕ∗(|ϕ′|d · µ) is the d-dim MCM on ϕ(S).

12 / 38



Minkowski Content Measure

Theorem

Let η be an SLEκ(ρ) curve in H started from w with force point
v ≥ w+. Suppose ρ is in the boundary-touching region. Let
d = dimH(η ∩ (v,∞)). Then the d-dim MCM on η ∩ (v,∞) exists and
is atomless.

Alberts and Sheffield constructed a conformal covariant measure on the
intersection of SLEκ in H with R, and conjectured that it is related to
Minkowski content. This theorem confirms their conjecture.
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Green’s Function

The proof follows the Green’s function approach introduced by
Lawler and Rezaei. Let α = 1− d. We need to prove the existence
of the 1-point and 2-point Green’s function at x ̸= y ∈ (v,∞):

G(x) = lim
r→0+

r−αP[dist(x, η) < r],

G(x, y) = lim
r,s→0+

r−αs−αP[dist(x, η) < r,dist(y, η) < s].

In addition, we need some sharp estimates of the probabilities:

P[dist(x, η) < r] = G(x)rα(1 +O(r)),

P[dist(x, η) < r,dist(y, η) < s] = G(x, y)rαsα(1 +O(r + s)).
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Radial Bessel Processes
The work on the Green’s functions relies on radial Bessel processes.

Let δ ∈ R. A diffusion process Θt ∈ [0, π] satisfying the SDE

dΘt = dBt +
δ − 1

2
cot(Θt)dt

is called a radial Bessel process of dim δ (RBESδ)

The name comes from the fact that (i) it appears naturally from
radial SLEκ(ρ) processes, and (ii) Θ behaves like a BESδ when it
is near 0 or π.

When δ = n ∈ N, RBESn is related to Brownian motion on sphere
Sn in the same way as BESn is related to Brownian motion on Rn.

The process Zt := cos(Θt) ∈ [−1, 1] is called a cosined radial Bessel
process of dim δ (CRBESδ), which satisfies the SDE

dZt =
√
1− Z2

t dBt −
δ

2
Ztdt.
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Radial Bessel Processes

A diffusion process Θt ∈ [0, π] satisfying the SDE

dΘt = dBt +
δ+ − 1

4
cot(

Θt

2
)dt+

δ− − 1

4
tan(

Θt

2
)dt

is called a RBES(δ+,δ−). It behaves like a Bessel process of dim δ+
near 0 and of dim δ− near π.

The CRBES(δ+,δ−) process Zt := cos(Θt) satisfies the SDE

dZt =
√
1− Z2

t dBt −
δ+
4
(Zt + 1)dt− δ−

4
(Zt − 1)dt.

The transition density of Z is known, and is expressed as an
infinite series involving Jacobi polynomials.

When δ+, δ− > 0, the lifetime of Z is ∞, and has a unique
stationary measure, which has a density that is proportional to

(1− x)
δ+
2
−1(1 + x)

δ−
2
−1.
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Radial Bessel Processes and SLEκ(ρ)

Lemma

Consider an SLEκ(ρv, ρu) curve η in H started from w with force
points v < u ∈ [w+,∞). Define

Zt =
Wt + Ut − 2Vt

Ut −Wt
, p(t) = −κ

2
log

( Ut − Vt

g′t(u)(u− v)

)
, Ẑs = Zp−1(s).

Then (Ẑs)s≥0 is a CRBES(δ+,δ−) with δ+ = 4
κ(ρv + 2) and

δ− = 4
κ(κ− 4− ρv − ρu). We may recover W from (Ẑs)s∈R and w, v, u.

We use this lemma to study SLEκ(ρ) with ρ > (κ2 − 4) ∨ (−2) by
setting ρv = ρ and ρu = 0. From ρ > κ

2 − 4 we know that η a.s. does

not hit u. The Ẑ a.s. hits −1 because δ+ > 0 and δ− < 2.
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One-point Green’s Function

Applying the lemma to ρv = ρ and ρ∗u = κ− 8− 2ρ, we get Ẑ∗

with dim (δ+, δ
∗
−), where δ∗− = 4

κ(ρ+ 4) = 4− δ− > 2.

Note that δ∗− is the dual dimension of δ−. The Ẑ∗ could be

understood as the Ẑ conditioned to not hit −1, and the
SLEκ(ρ, κ− 8− 2ρ) curve could be understood as the SLEκ(ρ)
curve conditioned to pass through u.

The above facts could be used to derive the 1-pt Green’s function
for the SLEκ(ρ). In fact, the Green’s function is closely related to
the RN process between SLEκ(ρ, κ− 8− 2ρ) and SLEκ(ρ).
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Two-point Green’s Function

For the 2-point Green’s function, we use following philosophy
introduced by Lawler and Werness. Assume that u2 > u1 > v.

In order for η to reach two discs D1 = D(u1, r1) and
D2 = D(u2, r2), it is very likely that η visits D1 before D2.

The probability that η reaches D1 is approximated by 1-pt Green’s
function.

Then we could use DMP of SLEκ(ρ), Koebe’s distortion theorem
and 1-pt Green’s function to estimate the conditional probability
that the rest of η reaches D2.

We need to show that, with a high probability, η is not close to u2
when it reaches D1. This requires the most technical work.
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Decomposition Formula

Let µH
(w,v)→∞ denote the law of the above SLEκ(ρ) curve.

For u ∈ I = (v,∞), let µH
(w,v)→u→∞ denote the law of a random

curve with two arms: the first arm from w to u is an
SLEκ(ρ, κ− 8− 2ρ) curve with force points (v, u), and the second
arm conditioned on the first is an SLEκ(ρ) curve from u to ∞.

We understand µH
(w,v)→u→∞ as the SLEκ(ρ) conditioned to hit u.

Let Mη∩I denote the d-dim MCM on η ∩ I.

Let G(w, v;u) be the 1-pt Green’s function for µH
(w,v)→∞ at u.

Then we have the following decomposition formula:

µH
(w,v)→∞(dη)

−→⊗Mη∩I(du) = µH
(w,v)→u→∞(dη)

←−⊗G(w, v;u) ·m(du).
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SLE Loop Measures

We now discuss SLEκ(ρ) bubble measures, which resemble SLE loop
measures.

SLE loop measures are single-loop measures, which may be
rooted or unrooted.

Werner constructed (2008) unrooted SLE8/3 loop measures in Ĉ.
Sheffield and Werner constructed (2012) rooted SLEκ bubbles for
κ ∈ (83 , 4] in the exploration of CLEκ (multi-loop measures).

Miller and Sheffield constructed (2012) space-filling SLEκ for
κ > 4 from ∞ to ∞.

Benoist and Dubédat constructed (2016) unrooted SLE2 loops.
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SLE Loop Measures

Several types of SLEκ loop measures for κ ∈ (0, 8) were
systematically constructed (Z. 2021), which include

Rooted SLEκ loops in Ĉ.
Unrooted SLEκ loops in Ĉ.
Boundary-avoiding unrooted SLEκ loops in arbitrary domains.
Rooted SLEκ bubbles in simply connected domains.
Unrooted SLEκ bubbles for κ ∈ (4, 8).

For κ ∈ (83 , 4], the unrooted SLEκ loop measure in Ĉ is some
constant times the intensity measure of whole-plane CLEκ

([Kemppainen-Werner, 15], [Ang-Sun, 22]).
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Domain Markov Property

An SLEκ loop η in Ĉ rooted at w satisfy DMP as follows. Let τ be a
positive stopping time. Then conditionally on the part of η before τ ,
and the event that η is incomplete at τ , the rest of η is an SLEκ

in the connected component of D \ η[0, τ ] whose boundary
contains both η(τ) and w

from (the prime end) η(τ) to (the prime end) w.

The rooted SLEκ loop measures are infinite measures, and we have to
use some symbols to make the above statement rigorous.
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Domain Markov Property

Let µD
a→b denote the law of a chordal SLEκ in D from a to b.

Let Σ =
⋃

T̂∈(0,∞]
C([0, T̂ ), Ĉ).

For any stopping time τ , let Στ = {f ∈ Σ : τ(f) < T̂f}.
The SLEκ loop measure in Ĉ rooted at w is a sigma-finite measure
µw on Σ, which satisfies that, for any stopping time τ > 0,

1Στµw = 1Στµw(dη)⊕τ µ
Ĉ(η[0,τ ];w)
η(τ)→w ,

where Ĉ(η[0, τ ];w) is the unique connected component of
Ĉ \ η[0, τ ] whose boundary contains w, and η(τ) and w are
identified with two prime ends of Ĉ \ η[0, τ ].
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DMP for SLEκ(ρ) Bubbles

SLEκ(ρ) bubbles are closely related to SLEκ bubbles. There are ccw
and cw bubbles. A ccw SLEκ(ρ) bubble η in D rooted at w ∈ ∂D
satisfies the following DMP. Let τ be a positive stopping time. Then
conditional on the part of η before τ and the event that η is incomplete
at τ , the rest of η is an SLEκ(ρ) curve

in the connected component of D \ η[0, τ ] which shares with D a
prime end arc lying immediately to the left of w

from (the prime end) η(τ) to (the prime end) w−

with the force point [w+]ητ being the ccw-most prime end visited
by η by time τ .

The above statement could be easily made rigorous using symbols.
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DMP for SLEκ(ρ) Bubbles

The above three figures respectively represent the boundary-filling,
boundary-touching and boundary-avoiding cases.
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Construction of the SLEκ(ρ) Bubbles

It suffices to construct ccw SLEκ(ρ) bubble in H rooted at 0,
which could be intuitively understood as an SLEκ(ρ) in H from 0
to 0− with the force point 0+.

Before the construction, we make the following observation. Let
x < 0 < 0+ ≤ v, and η is an SLEκ(ρ) curve in H started from 0,
aimed at x, and with the force point v.

Let σ be the hitting time at {∞} ∪ (−∞, x]. Then by SLE
coordinate changes ([Schramm-Wilson]), the part of η before σ is a
two-force-point SLEκ(ρ, κ− 6− ρ) curve in H started from 0, with
the force points (v, x), and stopped when it swallows x.
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Construction of SLEκ(ρ) Bubbles

We first consider the easy case: ρ ∈ (−2, κ2 − 4]. Then
κ− 6− ρ ≥ κ

2 − 2 > −2. Thus, we may define an SLEκ(ρ, κ− 6− ρ)
curve γ in H started from 0 with the force points (0+, 0−).

The γ ends at ∞ and does not intersect R− as κ− 6− ρ ≥ κ
2 − 2.

To complete the construction of the bubble, we simply continue it
with an SLEκ(ρ) curve in the remaining domain from ∞ to 0 with
the force point being ∞+.
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Radial Bessel Processes and SLEκ(ρ)

For the case ρ > (κ2 − 4) ∨ (−2), we will use the following lemmas

Lemma

Let η be an SLEκ(ρ+, ρ−) curve started from 0 with force points
v+ ∈ [0+,∞) and v− ∈ (−∞, 0). Define

Zt =
2Wt − V +

t − V −
t

V +
t − V −

t

, p(t) =
κ

2
log

(V +
t − V −

t

v+ − v−

)
, Ẑs = Zp−1(s).

Then (Ẑs)s≥0 is a CRBES(δ+,δ−), where δ± = 4
κ(ρ± + 2). We may

recover W using Ẑ and w, v+, v−.

This lemma will be applied to the case ρ+ = ρ and ρ− = κ− 6− ρ. In
that case, we have δ+ > 0 and δ− < 2.
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Radial Bessel Processes and SLEκ(ρ)

Another lemma we need is the following.

Theorem

Let η be an SLEκ(ρ+, ρ
∗
−) curve η in H started from 0 with force points

0+, 0−, where ρ+, ρ
∗
− > −2. Define

Zt =
2Wt − V +

t − V −
t

V +
t − V −

t

, p(t) =
κ

2
log(V +

t − V −
t ), Ẑs = Zp−1(s).

Then (Ẑs)s∈R is a stationary CRBES(δ+,δ∗−), where δ+ = 4
κ(ρ+ + 2)

and δ∗− = 4
κ(ρ

∗
− + 2). We may recover W using Ẑ.

This lemma will be applied to the case ρ+ = ρ and ρ∗− = ρ+ 2. In that
case, δ+ > 0 and δ∗− = 4− δ− is dual to δ−.
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Radial Bessel Processes

Using the dual relation between CRBES(δ+,δ−) and CRBES(δ+,δ∗−), we
may construct an infinite measure µR

δ+,δ−
on

ΣR :=
⋃

T∈RC((−∞, T ),R) such that a process X with the “law”
µR
δ+,δ−

satisfies the following Markov property:

If τ is a finite stopping time, then conditionally on the part of X
before τ and the event that X is not complete by τ , the rest part
of X is a CRBES(δ+,δ−).

Such µR
δ+,δ−

is locally absolutely continuous w.r.t. the law µR
δ+,δ∗−

of the

stationary CRBES(δ+,δ∗−) defined on R.
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Construction of SLEκ(ρ) Bubbles

The last lemma gives an injective map Φ : W 7→ Ẑ such that the

law µ
0;(0+,0−)
κ;(ρ+,ρ∗−) of the driving function of an SLEκ(ρ+, ρ−) curve

started from 0 with force points (0+, 0−) under the pushforward Φ

is µR
δ+,δ∗−

, i.e., Φ∗(µ
0;(0+,0−)
κ;(ρ+,ρ∗−)) = µR

δ+,δ∗−
.

Now we define µ
0;(0+,0−)
κ;(ρ+,ρ−) = Φ−1

∗ (µR
δ+,δ−

). Then µ
0;(0+,0−)
κ;(ρ+,ρ−) is an

infinite measure on driving processes. The pushforward measure of

µ
0;(0+,0−)
κ;(ρ+,ρ−) on curves under the Loewner map satisfies the

SLEκ(ρ)-bubble-DMP up to the hitting time on (−∞, 0].

If ρ ≥ κ
2 − 2, then η a.s. avoids (−∞, 0) and ends at 0. Then we

already get the SLEκ(ρ) bubble measure.

If ρ < κ
2 − 2, then curve a.s. ends at some point x ∈ (−∞, 0). To

complete the construction, we continue the curve with an SLEκ(ρ)
curve from x to 0 with the force point x+.

32 / 38



Weak Convergence and Reversibility

In the case ρ ≤ κ
2 − 4, the SLEκ(ρ) law µH

(r;r+)→−r converges

weakly to the law µH
0⟲ of the ccw SLEκ(ρ) bubble in H rooted at 0

as r → 0+.

In the case ρ > κ
2 − 4, (2r)−αµH

(r;r+)→−r converges weakly to µH
0⟲,

where

α =
(ρ+ 2)(2ρ+ 8− κ)

2κ
.

The above weak convergence implies that, if SLEκ(ρ) satisfies
reversibility, say κ ∈ (0, 8) and ρ ≥ κ

2 − 4, then the time-reversal of
the ccw bubble measure µH

0⟲ is the cw bubble measure µH
0⟳.
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Minkowski Content

In the case that κ ∈ (0, 8) and ρ is in the boundary touching
region, a curve η following the “law” µH

0⟲ intersects R at a
compact fractal set.

Using the existence of boundary MCM for SLEκ(ρ) we could prove
that η ∩ R possesses MCM.

Moreover, we get a decomposition equality for µH
w⟲, w ∈ R:

µH
w⟲(dη)

−→⊗Md
η∩R(du) = µH

w⇆u(dη)
←−⊗Cκ,ρ|w − u|−2α ·m(du),

where Cκ,ρ ∈ (0,∞) is a constant depending only on κ, ρ, and
µH
w⇆u could be understood as an SLEκ(ρ) bubble rooted at w

conditioned to pass through u.
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Unrooted SLEκ(ρ) Bubbles

Looking at the marginal measures in the decomposition equality
for µH

w⟲, we find that

Contd(η ∩ R) · µH
w⟲(dη) = Cκ,ρ

∫
R\{w}

µH
w⇆u|u|−2αm(du).

Thus, µH
w⟲ may be expressed by

µH
w⟲ = Contd(· ∩ R)−1 · Cκ,ρ

∫
R\{w}

µH
w⇆u|w − u|−2αm(du).

This equality motivates us to define the unrooted ccw SLEκ(ρ)
bubble measure µH

⟲ by

µH
⟲ = Contd(· ∩ R)−1 ·

∫
R
µH
w⟲m(dw)

= Contd(· ∩ R)−2

∫
R2

µH
w⇆uCκ,ρ|w − u|−2αm2(dw ⊗ du).
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Decomposition of Unrooted SLEκ(ρ) Bubble

We get two decomposition formulas for the unrooted bubble measure:

µH
⟲(dη)

−→⊗Md
η∩R(dw) = µH

w⟲(dη)
←−⊗ m(dw).

µH
⟲(dη)

−→⊗(Md
η∩R)

2(dw⊗ du) = µH
w⇆u(dη)

←−⊗Cκ,ρ|w−u|−2α ·m2(dw⊗ du).
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Conformal Invariance/Covariance

If ρ ≤ κ
2 − 4, the rooted SLEκ(ρ) bubble measures satisfy

conformal invariance. Suppose f is a Möbius automorphism of H
that fixes w ∈ R. Then

f∗(µ
H
w⟲) = µH

w⟲.

If ρ > (−2) ∨ (κ2 − 4), then we have conformal covariance:

f∗(µ
H
w⟲) = f ′(w)αµH

w⟲.

The unrooted SLEκ(ρ) bubble measure µH
⟲ satisfies conformal

invariance:
f∗(µ

H
⟲) = µH

⟲

if f is any Möbius automorphism of H.
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Thank you for your attention!
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