Multiple SLE via conformal welding of Liouville quantum gravity disks

Pu Yu

Massachusetts Institute of Technology

Random conformal geometry and related fields in Jeju joint works with Morris Ang and Xin Sun June 8, 2023

I VII	1 11	\лгі	
1 1 0		VII	

Outline

1 LQG, LCFT and SLE

2 Multiple SLE and conformal welding

	18.4	
1 11		111
114		,

< A >

• The GFF on the upper half plane \mathbb{H} : The Gaussian random field on \mathbb{H} with mean 0 and covariance

$$\operatorname{Cov}(h(z), h(w)) = G_{\mathbb{H}}(z, w)$$

where $G_{\mathbb{H}}(z, w)$ is the Green's function

$$G_{\mathbb{H}}(z,w) = -\log|z-w| - \log|z-\bar{w}| + 2\log|z|_{+} + 2\log|w|_{+}$$

with $|z|_{+} = \max\{|z|, 1\}$.

• *h* is a well-defined generalized function.

Liouville quantum gravity (LQG)

- Let $\gamma \in (0, 2)$, $Q = \frac{2}{\gamma} + \frac{\gamma}{2}$ and ϕ be a variant of the GFF, e.g., $\phi = h + f$ where *f* is a continuous function.
- Area measure: $\mu_{\phi}(d^2z) = "e^{\gamma\phi(z)}d^2z"$
- Length measure: $\nu_{\phi}(dx) = "e^{\frac{\gamma}{2}\phi(x)}dx"$.

Liouville conformal field theory on $\mathbb H$

- Start with the GFF h on \mathbb{H} .
- Sample (h, \mathbf{c}) from $P_{\mathbb{H}} \times [e^{-Qc}dc]$, and set $\phi(z) = h(z) 2Q\log|z|_+ + \mathbf{c}$. Let $LF_{\mathbb{H}}$ be the law of ϕ [David-Kupiainen-Rhodes-Vargas '14].
- Let $\beta_j \in \mathbb{R}$ and $x_j \in \partial \mathbb{H}$. Liouville field with boundary insertions: $LF_{\mathbb{H}}^{(\beta_j, x_j)}(d\phi) = \prod_j e^{\frac{\beta_j}{2}\phi(x_j)} LF_{\mathbb{H}}(d\phi).$

- Let $\gamma \in (0, 2)$, $Q = \frac{2}{\gamma} + \frac{\gamma}{2}$.
- Say $(D_1, \phi_1) \sim_{\gamma} (D_2, \phi_2)$, if there exists $f : D_1 \to D_2$ conformal with $\phi_2 = \phi_1 \circ f^{-1} + Q \log |(f^{-1})'|$.
- A quantum surface is an equivalence class over the relation \sim_{γ} .

ヘロア ヘ団 アイヨア 小田 アー

Quantum disks

- Let W > 0 be the *weight* parameter. Let $\beta = \gamma + \frac{2-W}{\gamma}$.
- Weight *W* (thick) quantum disks: $W > \frac{\gamma^2}{2}$, and near each marked point z_0 the field looks like $h \beta \log |\cdot -z_0|$. Can be viewed as *uniform embedding of* $LF_{\mathbb{H}}^{(\beta,0),(\beta,\infty)}$ (Ang-Holden-Sun'21).
- Special weight W = 2: the two marked points can be resampled from the boundary length measure, which defines $QD_{0,2}$.
- $QD_{0,n}$: starting from $QD_{0,2}$ and sample n 2 marked points from the boundary length measure.

イロト (雪) (ヨ) (ヨ)

Multiple SLE_{κ} as a probability measure

Let $\kappa \in (0, 4]$, and α be a given link pattern.

- Local construction via Loewner flow (e.g. Dubédať07, Graham'07, Kytölä-Peltola'16)
- Global construction by weighting the law of N independent SLE_{κ} curves (e.g. Kozdron-Lawler'06, Peltola-Wu'19)
- Resampling property: given N 1 curves, the conditional law of the remaining curve is the SLE_{κ} .
- The resampling property uniquely characterize the multiple SLE probability measure (Miller-Sheffield'12, Beffara-Peltola-Wu'18)

Multiple SLE as non-probability measure

- Let $b = \frac{6-\kappa}{2\kappa}$ be the boundary scaling exponent.
- Multiple SLE pure partition function $\mathcal{Z}_{\alpha}(D; x_1, ..., x_{2N})$: solution to a 2nd order PDE and is used to construct the local multiple SLE (Peltola-Wu'19).
- Conformal covariance:

$$\mathrm{mSLE}_{\kappa,\alpha}(D, x_1, ..., x_{2N}) = \prod f'(x_i)^b f \circ \mathrm{mSLE}_{\kappa,\alpha}(f(D), f(x_1), ..., f(x_{2N}))$$

for conformal maps $f : D \rightarrow f(D)$.

9/19

Conformal welding of quantum wedges

Let $\kappa = \gamma^2 \in (0, 4)$.

Theorem (Duplantier-Miller-Sheffield '14)

$$egin{aligned} \mathcal{M}^{\mathsf{wedge}}(\mathcal{W}^L+\mathcal{W}^R)\otimes \mathrm{SLE}_\kappa(\mathcal{W}^L-2,\mathcal{W}^R-2)\ &=\mathcal{M}^{\mathsf{wedge}}(\mathcal{W}^L) imes\mathcal{M}^{\mathsf{wedge}}(\mathcal{W}^R). \end{aligned}$$

(1)

Pu Yu (MIT)	Multiple SLE and LQG disk	June 8, 2023	10/19

化口下 化固下 化医下不足下

Conformal welding of quantum disks

Theorem (Ang-Holden-Sun '20)

Let $\kappa = \gamma^2 \in (0, 4)$.

$$\mathcal{M}_{2}^{\text{disk}}(W^{L}+W^{R}) \otimes \text{SLE}_{\kappa}(W^{L}-2,W^{R}-2) = c \int_{0}^{\infty} \text{Weld}(\mathcal{M}_{2}^{\text{disk}}(W^{L};\ell),\mathcal{M}_{2}^{\text{disk}}(W^{R};\ell)d\ell.$$
(2)

Pu Yu (MIT)	Multiple SLE and LQG disk	June 8, 2023	11/19

イロト イボト イヨト イヨト

Conformal welding of LQG disks by link pattern

 $\alpha = \{\{1, 6\}, \{2, 5\}, \{3, 4\}\}, \text{ with Weld}_{\alpha}(QD) \text{ written as}$ $\int_{\mathbb{R}^{3}_{+}} \text{Weld}(\text{QD}_{0,2}(\ell_{1}), \text{QD}_{0,4}(\ell_{1}, \ell_{2}), \text{QD}_{0,4}(\ell_{2}, \ell_{3}), \text{QD}_{0,2}(\ell_{3}))d\ell_{1} d\ell_{2} d\ell_{3}.$

Conformal welding of LQG disks by link pattern

 $\alpha = \{\{1, 6\}, \{2, 3\}, \{4, 5\}\}, \text{ with Weld}_{\alpha}(QD) \text{ written as}$ $\int_{\mathbb{R}^{3}_{+}} \text{Weld}(\text{QD}_{0,2}(\ell_{1}), \text{QD}_{0,2}(\ell_{2}), \text{QD}_{0,2}(\ell_{3}), \text{QD}_{0,6}(\ell_{1}, \ell_{2}, \ell_{3}))d\ell_{1} d\ell_{2} d\ell_{3}.$

			= 9,40
Pu Yu (MIT)	Multiple SLE and LQG disk	June 8, 2023	13/19

Conformal welding of LQG disks by link pattern

Theorem (Ang-Sun-Y. '23+)

Let $\gamma \in (0, 2)$, $\kappa = \gamma^2$ and $\beta = \gamma - \frac{2}{\gamma}$. Let $N \ge 2$ and $\alpha \in LP_N$ be a link pattern. Then there exists a constant $c \in (0, \infty)$ such that

$$\int_{0 < y_{1} < ... < y_{2N-3} < 1} \left[LF_{\mathbb{H}}^{(\beta,0),(\beta,1),(\beta,\infty),(\beta,y_{1}),...,(\beta,y_{2N-3})} \times \right] MSLE_{\kappa,\alpha}(\mathbb{H},0,y_{1},...,y_{2N-3},1,\infty) dy_{1}...dy_{2N-3} = c \operatorname{Weld}_{\alpha}(\mathrm{QD})$$
(3)

where the left hand side is understood as the law of a curve-decorated quantum surface.

	•		= 1940
Pu Yu (MIT)	Multiple SLE and LQG disk	June 8, 2023	14/19

Random modulus = partition function

- The above theorem implies that the random location of the marked points under conformal welding is encoded by multiple SLE pure partition function.
- This implication also works for other settings.

Pu Yu I	(MIT))

Random modulus = partition function

Theorem (Ang-Sun-Y '23+)

Let $\beta_k = \gamma - \frac{2k}{\gamma}$. The conformal welding of N - 1 samples from $QD_{0,3}$ with 2 samples from $QD_{0,2}$ in the previous picture is given by

$$c \int_{0 < x_{1} < ... < x_{N-2} < 1} \left[LF_{\mathbb{H}}^{(\beta_{1}, x_{0}), (\beta_{1}, x_{1}), ..., (\beta_{1}, x_{N-1}), (\beta_{N}, \infty)} \times \prod_{0 \le i < j \le N-1} (x_{j} - x_{i})^{\frac{2}{\kappa}} IG_{x_{0}, ..., x_{N-1}} \right] dx_{1} ... dx_{N-2}$$

$$(4)$$

where $x_0 = 0$, $x_{N-1} = 1$, and $IG_{x_0,...,x_{N-1}}$ denote the flow lines of the Imaginary Geometry field with marked points $x_0, ..., x_{N-1}$ and $\frac{2\pi}{\sqrt{\kappa}}$ change in boundary value near each marked point.

Pu Yu (MIT)	Multiple SLE and LQG disk	June 8, 2023	16/19

Random modulus = partition function

- The value $\prod_{0 \le i < j \le N-1} (x_j x_i)^{\frac{2}{\kappa}}$ can be viewed as the partition function of the Imaginary Geometry field (Dubédat).
- Similar identities holds when the weight 2 is replaced by other weights $W_j > \frac{\gamma^2}{2}$.

- (In progress) Joint with Ang, Holden and Sun, we will show that similar result holds also for $\kappa \in (4, 8)$, where the conformal welding of generalized version of quantum disks (or quantum disks decorated with *loop trees*) gives Liouville field decorated with multiple SLE_{κ}.
- With Ang we will show that the conformal welding of general LQG/LCFT surfaces gives LQG/LCFT surfaces decorated by random curves. This shall give a new aspect to study SLE on more general topological surfaces.

Thanks for listening!

◆□> ◆□> ◆三> ◆三> 三三 のへで