SLE-decorated LQG as an infinitely divisible law on metric spaces

Jinwoo Sung (Joint with Yuyang Feng)
University of Chicago
Random Conformal Geometry and Related Fields in Jeju

Mating of trees

$$
r \in(0, \sqrt{2}]:
$$

- Sample the following independently.
- $(\mathbb{C}, h, 0): \gamma$-quantum cone
- η : Whole-plane space-filling $S L E_{16 / \gamma^{2}}$ curve from ∞ to ∞
- Then parameterize η by γ-LQG measure μ_{h}.
- $\mu_{h}(\eta[s, t])=t-s, \quad \eta(0)=0$.

- ν_{h} : γ-LQG boundary length on SLE $_{\gamma^{2}}$-type curves.

Theorem (Duplantier-Miller-Sheffield, '14)

The process $\left(L_{t}, R_{t}\right)$ is a planar Brownian motion with correlation $-\cos \left(\pi \gamma^{2} / 4\right)$ between the two coordinates. Moreover, $\left(L_{t}, R_{t}\right)$ a.s. determines h and η up to rotation and scaling of \mathbb{C}.

$$
\gamma \in(\sqrt{2}, 2):
$$

$$
\begin{aligned}
& L_{t}=\nu_{n}(\text { red })-\nu_{n}(\text { yellow }) \\
& R_{t}=\nu_{n}(\text { blue })-\nu_{n}(\text { green })
\end{aligned}
$$

Mating of trees

$$
\gamma \in(0, \sqrt{2}]
$$

- Sample the following independently.
- $(\mathbb{C}, h, 0): \gamma$-quantum cone
- η : Whole-plane space-filling $\operatorname{SLE}_{16 / \gamma^{2}}$ curve from ∞ to ∞
- Then parameterize η by γ-LQG measure μ_{h}.
- $\mu_{h}(\eta[s, t])=t-s, \quad \eta(0)=0$.

- $\nu_{h}: \gamma$-LQG boundary length on SLE $_{\gamma^{2}}$-type curves.

Theorem (Duplantier-Miller-Sheffield, '14)

The process $\left(L_{t}, R_{t}\right)$ is a planar Brownian motion with correlation $-\cos \left(\pi \gamma^{2} / 4\right)$ between the two coordinates. Moreover, $\left(L_{t}, R_{t}\right)$ a.s. determines h and η up to rotation and scaling of \mathbb{C}.

- The γ-LQG surface $\mathcal{C}_{[s, t]}:=\left(\eta[s, t],\left.h\right|_{\eta[s, t]},\left.\eta\right|_{[s, t]}\right) / \sim_{\gamma}$
- Independent over disjoint intervals.

$$
\gamma \in(\sqrt{2}, 2):
$$

- The law depends only on $t-s$.

LQG metric

- For a GFF h on \mathbb{C}, the γ-LQG metric D_{h} is the rigorous construction of

$$
" D_{h}(z, w):=\inf _{P: z \rightarrow w} \int_{0}^{1} e^{\frac{\gamma}{d_{\gamma}} h(P(t))}\left|P^{\prime}(t)\right| d t "
$$

where d_{γ} is the Hausdorff dimension of D_{h}. Constructed in a series of works by Ding, Dubédat, Falconet, Gwynne, Miller, Pfeffer, Sun, Zeitouni, and Zhang.

LQG metric

- For a GFF h on \mathbb{C}, the γ-LQG metric D_{h} is the rigorous construction of

$$
" D_{h}(z, w):=\inf _{P: z \rightarrow w} \int_{0}^{1} e^{\frac{\gamma}{d_{\gamma}} h(P(t))}\left|P^{\prime}(t)\right| d t^{\prime \prime}
$$

where d_{γ} is the Hausdorff dimension of D_{h}. Constructed in a series of works by Ding, Dubédat, Falconet, Gwynne, Miller, Pfeffer, Sun, Zeitouni, and Zhang.

- For a continuous curve $P:[a, b] \rightarrow \mathbb{C}$, define

$$
\operatorname{len}\left(P ; D_{h}\right):=\sup _{T} \sum_{i=1}^{\# T} D_{h}\left(P\left(t_{i-1}\right), P\left(t_{i}\right)\right)
$$

where the supremum is over all partitions

$$
T: a=t_{0}<t_{1}<\cdots<t_{\# T}=b .
$$

- For $U \subset \mathbb{C}$, the internal metric of D_{h} on U is defined by

$$
D_{h}^{U}(z, w):=\inf _{U \supset P: z \rightarrow w} \operatorname{len}\left(P ; D_{h}\right) .
$$

LQG metric axioms

Theorem (Gwynne-Miller, '19)

The γ-LQG metric D_{h} is the unique continuous metric satisfying the following axioms up to a deterministic multiplicative constant.
(1) Length space: $\forall z, w \in \mathbb{C}$ and $\varepsilon>0$, there is a path $P: z \rightarrow w$ such that len $\left(P ; D_{h}\right)<D_{h}(z, w)+\varepsilon$.
(2) Locality: For a deterministic open set $U \subset \mathbb{C}$, the internal metric D_{h}^{U} is a.s. determined by $\left.h\right|_{U}$.
(3) Weyl scaling
(- Coordinate change for translation and scaling

LQG metric axioms

Theorem (Gwynne-Miller, '19)

The γ-LQG metric D_{h} is the unique continuous metric satisfying the following axioms up to a deterministic multiplicative constant.
(1) Length space: $\forall z, w \in \mathbb{C}$ and $\varepsilon>0$, there is a path $P: z \rightarrow w$ such that $\operatorname{len}\left(P ; D_{h}\right)<D_{h}(z, w)+\varepsilon$.
(2) Locality: For a deterministic open set $U \subset \mathbb{C}$, the internal metric D_{h}^{U} is a.s. determined by $\left.h\right|_{u}$.
© Weyl scaling
(1) Coordinate change for translation and scaling
\Rightarrow Since $D_{h}^{\eta[s, t]}$ is a.s. determined by $\left.h\right|_{\eta[s, t]}$, which is determined by $\left.(L, R)\right|_{[s, t]}$, we would like to say that $\left(\eta[s, t], D_{h}^{\eta[s, t]}\right)$ has "independent and stationary increments."

Main result

Proposition

For each $s<t$, almost surely,

$$
\operatorname{diam}\left(\eta[s, t] ; D_{h}\right):=\sup _{z, w \in \eta[s, t]} D_{h}^{\eta[s, t]}(z, w) \quad \begin{cases}<\infty & \text { if } \gamma \in(0, \sqrt{8 / 3}) \\ =\infty & \text { if } \gamma \in[\sqrt{8 / 3}, 2)\end{cases}
$$

Theorem (Feng-S., '23+)

The curve-decorated metric measure space $\mathcal{S}_{[s, t]}:=\left(\eta[s, t], D_{h}^{\eta[s, t]},\left.\mu_{h}\right|_{\eta[s, t]},\left.\eta\right|_{[s, t]}\right)$ is measurable under the Gromov-Hausdorff-Prokhorov-uniform topology for $\gamma \in(0, \sqrt{8 / 3})$. Moreover, it has an infinitely divisible law:
(1) For $s_{1}<t_{1} \leq \cdots \leq s_{k}<t_{k}$, the surfaces $\mathcal{S}_{\left[s_{1}, t_{1}\right]}, \ldots, \mathcal{S}_{\left[s_{k}, t_{k}\right]}$ are independent.
(2) The law is stationary under translations in time: i.e., $\mathcal{S}_{[s, t]} \stackrel{d}{=} \mathcal{S}_{[0, t-s]}$.

Background: Minkowski content measure for the LQG metric

- $N_{\varepsilon}\left(A ; D_{h}\right):=$ the smallest number of D_{h}-balls of radii ε required to cover A.

Theorem (Gwynne-S., '22)

For each $\gamma \in(0,2)$, let $\mathfrak{b}_{\varepsilon}=\mathbb{E}\left[N_{\varepsilon}\left(\eta[0,1] ; D_{h}\right)\right]$. Then $\mathfrak{b}_{\varepsilon} \asymp \varepsilon^{-d_{\gamma}}$, and for every bournded Borel set $A \subset \mathbb{C}$ with $\mu_{h}(\partial A)=0$ a.s., we have

$$
\mu_{h}(A)=\lim _{\varepsilon \rightarrow 0} \mathfrak{b}_{\varepsilon}^{-1} N_{\varepsilon}\left(A ; D_{h}\right) \quad \text { in probability. }
$$

Consequently, the pointed metric space ($\mathbb{C}, D_{h}, 0$) (measurable w.r.t. the Gromov-Hausdorff topology) a.s. determines the field h up to rotation and scaling of \mathbb{C}.

- Define $\widetilde{N}_{\varepsilon}(A)=N_{\varepsilon}\left(\left\{z \in A: D_{h}(z, \partial A) \geq \varepsilon\right\} ; D_{h}\right)$. This is a.s. determined by D_{h}^{A}.
- Key lemma: $\left(\widetilde{N}_{\varepsilon}(\eta[s, t])\right)_{\varepsilon>0}$ is independent over disjoint intervals and its law is stationary under translations in time.

Proof overview

1. Identify the law of $\left.h\right|_{\eta[s, t]}$.

- We use the LCFT description for conformal welding by Ang, Holden, Yu, Remy, and Sun.

$$
m=\text { modulus }
$$

- Let P_{a} be the law of the LQG cell $\mathcal{C}_{[0, a]}=\left(\eta[0, a],\left.h\right|_{\eta[0, a]},\left.\eta\right|_{[0, a]}\right) / \sim_{\gamma}$.
- For each γ, there exists an unspecified probability measure ρ on $(0, \infty)$ such that $P_{a} \times 1_{a>0} d a$ is proportional to:

$$
\gamma \in(0, \sqrt{2}] \quad \operatorname{Quad}\left(2-\frac{r^{2}}{2}, \gamma^{2}, 2-\frac{r^{2}}{2}, \gamma^{2} ; m\right) \times \rho(d m)
$$

$$
\gamma \in(\sqrt{2}, 2)
$$

$$
M_{2}^{\text {disk }\left(2-\frac{r^{2}}{2}\right)}
$$

Proof overview

2. Bound the diameter of each quantum disk/quadrangle.

- Hughes-Miller ('22): A.s., D_{h}^{U} extends continuously to ∂U when h is a free-boundary GFF on U.
- This result extends to fields with boundary insertions of order $\alpha \leq Q=\frac{2}{\gamma}+\frac{\gamma}{2}$.
- For a thick quantum disk ($\mathcal{D}, h, x_{1}, x_{2}$) sampled from $\mathcal{M}_{2}^{\text {disk }}(W)$ with $W>\gamma^{2} / 2$, $D_{h}\left(x_{1}, x_{2}\right) \leq C \mu_{h}(\mathcal{D})^{1 / d_{\gamma}}$ with superpolynomially high probability as $C \rightarrow \infty$.

Proof overview

3. Concatenate small beads in the thin quantum disk.

- The thin quantum disk $\mathcal{M}_{2}^{\text {disk }}(W)$ with $W<\gamma^{2} / 2$ can be sampled by:
- Sample T from $\left(1-\frac{2}{\gamma^{2}} W\right)^{-2} 1_{T>0} d T$.
- Sample a Poisson point process $\left\{\left(u, \mathcal{D}_{u}\right)\right\}$ from the intensity measure $1_{t \in[0, T]} \times \mathcal{M}_{2}^{\text {disk }}\left(\gamma^{2}-W\right)$.
- Concatenate the disks $\left\{\mathcal{D}_{u}\right\}$ chronogically.
- $\left\{\left(u, \mu_{h}\left(\mathcal{D}_{u}\right)\right)\right\}$ is a p.p.p. with intensity measure $d t \times a^{\left(2 / \gamma^{2}-1\right)-1}$ da on $[0, T] \times(0, \infty)$.
- $\left\{\left(u, D_{h}^{\mathcal{D}_{u}}\left(x_{1}, x_{2}\right)\right)\right\}$ is a p.p.p. with intensity measure $d t \times s^{\left(2 / \gamma^{2}-1\right) d_{\gamma}-1} d s$ on $[0, T] \times(0, \infty)$.
- The distances between the marked points of the beads are summable if and only if

$$
\int_{0}^{1} s^{\left(\frac{2}{\gamma^{2}}-2\right) d_{\gamma}} d s<\infty \Leftrightarrow\left(\frac{2}{\gamma^{2}}-1\right) d_{\gamma}>-1 \quad \Leftrightarrow \quad d_{\gamma}<\frac{1}{1-\frac{2}{\gamma^{2}}}
$$

- $\gamma \mapsto d_{\gamma}$ is strictly increasing and $d_{\sqrt{8 / 3}}=4$.

Application: The distance exponent for the mated-CRT map

- Gwynne-Holden-Sun ('16):

$$
\chi(\gamma):=\lim _{\varepsilon \rightarrow 0} \frac{\log \mathbb{E}\left[\operatorname{diam}\left(\left.\mathcal{G}^{\varepsilon}\right|_{(0,1]}\right)\right]}{\log \varepsilon^{-1}}
$$

exists and $\chi(\gamma) \leq 1-2 / \gamma^{2}$.

- Conjecture: There exists $\gamma_{*} \in(\sqrt{2}, \sqrt{8 / 3}]$ such that for $\gamma \in\left(0, \gamma_{*}\right]$, we have

$$
\chi(\gamma)=1 / d_{\gamma} .
$$

Application: The distance exponent for the mated-CRT map

- Gwynne-Holden-Sun ('16):

$$
\chi(\gamma):=\lim _{\varepsilon \rightarrow 0} \frac{\log \mathbb{E}\left[\operatorname{diam}\left(\left.\mathcal{G}^{\varepsilon}\right|_{(0,1]}\right)\right]}{\log \varepsilon^{-1}}
$$

exists and $\chi(\gamma) \leq 1-2 / \gamma^{2}$.

- Conjecture: There exists $\gamma_{*} \in(\sqrt{2}, \sqrt{8 / 3}]$ such that for $\gamma \in\left(0, \gamma_{*}\right]$, we have $\chi(\gamma)=1 / d_{\gamma}$.

Theorem (Feng-S., '23+)

The conjecture holds with $\gamma_{*}=\sqrt{8 / 3}$.
Moreover, $\chi(\gamma)=\left(1 / d_{\gamma}\right) \vee\left(1-2 / \gamma^{2}\right)$.

- Proved for $\gamma=\sqrt{2}$ by Gwynne-Pfeffer ('19).
- The proof consists of the following two main inputs:
- Ang-Falconet-Sun ('20): Almost surely, $\mu_{h}\left(\mathcal{B}_{r}\left(z ; D_{h}\right)\right)=r^{d_{\gamma}+o(1)}$ as $r \rightarrow 0$ uniformly for z on compact sets.
- $\mathbb{E}\left[\left(\operatorname{diam}\left(\eta[0,1], D_{h}^{\eta[0,1]}\right)\right)^{p}\right]<\infty$ for some $p>0$ (in fact, for all $p>0$).

Questions

- There are metric spaces constructed from branching structures that correspond to $\gamma \geq \sqrt{8 / 3}$. Are the two thresholds related?
- $\gamma=\sqrt{8 / 3}$: Brownian sphere, constructed from a continuum random tree.
(Le Gall)
Corresponds to a $\sqrt{8 / 3}$-LQG sphere. (Miller-Sheffield)
- $\gamma \in(\sqrt{8 / 3}, 2)$: Stable maps, constructed from a stable looptree
(Curien-Miermont-Riera, '22+).
Conjectured to correspond to a CLE $_{\gamma^{2}}$ carpet on a γ-LQG sphere.

Stable looptree (simulation by Curien and Kortchemski)

Questions

- There are metric spaces constructed from branching structures that correspond to $\gamma \geq \sqrt{8 / 3}$. Are the two thresholds related?
- $\gamma=\sqrt{8 / 3}$: Brownian sphere, constructed from a continuum random tree.
(Le Gall)
Corresponds to a $\sqrt{8 / 3}$-LQG sphere. (Miller-Sheffield)
- $\gamma \in(\sqrt{8 / 3}, 2)$: Stable maps, constructed from a stable looptree
(Curien-Miermont-Riera, '22+).
Conjectured to correspond to a CLE $_{\gamma^{2}}$ carpet on a γ-LQG sphere.
- Is there a different space-filling curve that gives an infinitely divisible structure for the γ-LQG metric space, especially when $\gamma \geq \sqrt{8 / 3}$?
- Kaavadias-Miller ('22+): For $\gamma \in(\sqrt{4 / 3}, 2)$, $\operatorname{SLE}_{\gamma^{2}}\left(\gamma^{2}-4\right)$ on γ-LQG can be viewed as a Peano curve between a pair of stable looptrees, which is the scaling limit of bipolar oriented random planar maps with large faces.
kam sa ham ni da

