SLE-decorated LQG as an infinitely divisible law on metric spaces

Jinwoo Sung (Joint with Yuyang Feng)

University of Chicago

Random Conformal Geometry and Related Fields in Jeju

Mating of trees

- Sample the following independently.
 - (\mathbb{C} , h, 0): γ -quantum cone
 - η : Whole-plane space-filling SLE_{16/ γ^2} curve from ∞ to ∞
- Then parameterize η by γ -LQG measure μ_h .
 - $\mu_h(\eta[s,t]) = t s, \ \eta(0) = 0.$
- ν_h : γ -LQG boundary length on SLE $_{\gamma^2}$ -type curves.

Theorem (Duplantier–Miller–Sheffield, '14)

The process (L_t, R_t) is a planar Brownian motion with correlation $-\cos(\pi\gamma^2/4)$ between the two coordinates. Moreover, (L_t, R_t) a.s. determines h and η up to rotation and scaling of \mathbb{C} .

Mating of trees

- Sample the following independently.
 - (\mathbb{C} , h, 0): γ -quantum cone
 - η : Whole-plane space-filling SLE_{16/ γ^2} curve from ∞ to ∞
- Then parameterize η by γ -LQG measure μ_h .
 - $\mu_h(\eta[s,t]) = t s, \ \eta(0) = 0.$
- ν_h : γ -LQG boundary length on SLE $_{\gamma^2}$ -type curves.

Theorem (Duplantier–Miller–Sheffield, '14)

The process (L_t, R_t) is a planar Brownian motion with correlation $-\cos(\pi\gamma^2/4)$ between the two coordinates. Moreover, (L_t, R_t) a.s. determines h and η up to rotation and scaling of \mathbb{C} .

- The γ -LQG surface $\mathcal{C}_{[s,t]} := (\eta[s,t], h|_{\eta[s,t]}, \eta|_{[s,t]})/\sim_{\gamma}$
 - Independent over disjoint intervals.
 - The law depends only on t s.

8E (0, J2]:

 $\chi \in (5, 2)$:

η(+)

η(t)

 $L_{t} = V_{h}(red) - V_{h}(yellow)$

 $R_t = V_h (blue) - V_h (qreen)$

7[0,+]

Y(0)

LQG metric

• For a GFF h on \mathbb{C} , the γ -LQG metric D_h is the rigorous construction of

$$"D_h(z,w) := \inf_{P:z \to w} \int_0^1 e^{\frac{\gamma}{d_\gamma} h(P(t))} |P'(t)| dt"$$

where d_{γ} is the Hausdorff dimension of D_h . Constructed in a series of works by Ding, Dubédat, Falconet, Gwynne, Miller, Pfeffer, Sun, Zeitouni, and Zhang.

LQG metric

• For a GFF h on \mathbb{C} , the γ -LQG metric D_h is the rigorous construction of

$$"D_h(z,w) := \inf_{P:z \to w} \int_0^1 e^{\frac{\gamma}{d_\gamma} h(P(t))} |P'(t)| dt"$$

where d_{γ} is the Hausdorff dimension of D_h . Constructed in a series of works by Ding, Dubédat, Falconet, Gwynne, Miller, Pfeffer, Sun, Zeitouni, and Zhang.

• For a continuous curve $P: [a, b] \to \mathbb{C}$, define

$$len(P; D_h) := \sup_{T} \sum_{i=1}^{\#T} D_h(P(t_{i-1}), P(t_i))$$

where the supremum is over all partitions

- $T : a = t_0 < t_1 < \cdots < t_{\#T} = b.$
- For $U \subset \mathbb{C}$, the **internal metric** of D_h on U is defined by

$$D_h^U(z,w) := \inf_{U \supset P: z \to w} \operatorname{len}(P; D_h).$$

LQG metric axioms

Theorem (Gwynne–Miller, '19)

The γ -LQG metric D_h is the unique continuous metric satisfying the following axioms up to a deterministic multiplicative constant.

- Length space: $\forall z, w \in \mathbb{C}$ and $\varepsilon > 0$, there is a path $P : z \to w$ such that $\text{len}(P; D_h) < D_h(z, w) + \varepsilon$.
- 2 **Locality:** For a deterministic open set $U \subset \mathbb{C}$, the internal metric D_h^U is a.s. determined by $h|_U$.
- **Over a contract of the set of th**
- Oordinate change for translation and scaling

LQG metric axioms

Theorem (Gwynne–Miller, '19)

The γ -LQG metric D_h is the unique continuous metric satisfying the following axioms up to a deterministic multiplicative constant.

- Length space: $\forall z, w \in \mathbb{C}$ and $\varepsilon > 0$, there is a path $P : z \to w$ such that $\text{len}(P; D_h) < D_h(z, w) + \varepsilon$.
- 2 **Locality:** For a deterministic open set $U \subset \mathbb{C}$, the internal metric D_h^U is a.s. determined by $h|_U$.
- Weyl scaling
- **④** Coordinate change for translation and scaling
- $\Rightarrow \text{ Since } D_h^{\eta[s,t]} \text{ is a.s. determined by} \\ h|_{\eta[s,t]}, \text{ which is determined by} \\ (L,R)|_{[s,t]}, \text{ we would like to say that} \\ (\eta[s,t], D_h^{\eta[s,t]}) \text{ has "independent} \\ \text{ and stationary increments."} \end{cases}$

Main result

Proposition

For each s < t, almost surely,

$$\operatorname{diam}(\eta[s,t];D_h) := \sup_{z,w \in \eta[s,t]} D_h^{\eta[s,t]}(z,w) \quad \begin{cases} < \infty & \text{if } \gamma \in (0,\sqrt{8/3}), \\ = \infty & \text{if } \gamma \in [\sqrt{8/3},2). \end{cases}$$

Theorem (Feng–S., '23+)

The curve-decorated metric measure space $S_{[s,t]} := (\eta[s,t], D_h^{\eta[s,t]}, \mu_h|_{\eta[s,t]}, \eta|_{[s,t]})$ is measurable under the Gromov–Hausdorff–Prokhorov–uniform topology for $\gamma \in (0, \sqrt{8/3})$. Moreover, it has an infinitely divisible law:

• For $s_1 < t_1 \leq \cdots \leq s_k < t_k$, the surfaces $\mathcal{S}_{[s_1,t_1]}, \ldots, \mathcal{S}_{[s_k,t_k]}$ are independent.

2 The law is stationary under translations in time: i.e., $S_{[s,t]} \stackrel{d}{=} S_{[0,t-s]}$.

Background: Minkowski content measure for the LQG metric

• $N_{\varepsilon}(A; D_h) :=$ the smallest number of D_h -balls of radii ε required to cover A.

Theorem (Gwynne–S., '22)

For each $\gamma \in (0, 2)$, let $\mathfrak{b}_{\varepsilon} = \mathbb{E}[N_{\varepsilon}(\eta[0, 1]; D_h)]$. Then $\mathfrak{b}_{\varepsilon} \simeq \varepsilon^{-d_{\gamma}}$, and for every bounded Borel set $A \subset \mathbb{C}$ with $\mu_h(\partial A) = 0$ a.s., we have

$$\mu_h(A) = \lim_{\varepsilon \to 0} \mathfrak{b}_{\varepsilon}^{-1} N_{\varepsilon}(A; D_h)$$
 in probability.

Consequently, the pointed metric space $(\mathbb{C}, D_h, 0)$ (measurable w.r.t. the Gromov–Hausdorff topology) a.s. determines the field h up to rotation and scaling of \mathbb{C} .

- Define $N_{\varepsilon}(A) = N_{\varepsilon}(\{z \in A : D_h(z, \partial A) \ge \varepsilon\}; D_h)$. This is a.s. determined by D_h^A .
- Key lemma: $(\tilde{N}_{\varepsilon}(\eta[s, t]))_{\varepsilon>0}$ is independent over disjoint intervals and its law is stationary under translations in time.

Proof overview

- 1. Identify the law of $h|_{\eta[s,t]}$.
 - We use the LCFT description for conformal welding by Ang, Holden, Yu, Remy, and Sun.

- Let P_a be the law of the LQG cell $\mathcal{C}_{[0,a]} = (\eta[0,a], h|_{\eta[0,a]}, \eta|_{[0,a]})/\sim_{\gamma}$.
- For each γ , there exists an unspecified probability measure ρ on $(0, \infty)$ such that $P_a \times 1_{a>0} da$ is proportional to: $\boxed{\gamma \in (\sqrt{2}, 2)}$

Proof overview

- 2. Bound the diameter of each quantum disk/quadrangle.
 - Hughes–Miller ('22): A.s., D_h^U extends continuously to ∂U when h is a free-boundary GFF on U.
 - This result extends to fields with boundary insertions of order $\alpha \leq Q = \frac{2}{\gamma} + \frac{\gamma}{2}$.
 - For a thick quantum disk $(\mathcal{D}, h, x_1, x_2)$ sampled from $\mathcal{M}_2^{\text{disk}}(W)$ with $W > \gamma^2/2$, $D_h(x_1, x_2) \leq C \mu_h(\mathcal{D})^{1/d_{\gamma}}$ with superpolynomially high probability as $C \to \infty$.

Proof overview

- 3. Concatenate small beads in the thin quantum disk.
 - The thin quantum disk $\mathcal{M}_2^{\text{disk}}(W)$ with $W < \gamma^2/2$ can be sampled by:
 - Sample *T* from $(1 \frac{2}{\gamma^2}W)^{-2} \mathbb{1}_{T>0} dT$.
 - Sample a Poisson point process $\{(u, \mathcal{D}_u)\}$ from the intensity measure $1_{t \in [0, T]} \times \mathcal{M}_2^{\text{disk}}(\gamma^2 W)$.
 - Concatenate the disks $\{D_u\}$ chronogically.
 - $\{(u, \mu_h(\mathcal{D}_u))\}$ is a p.p.p. with intensity measure $dt \times a^{(2/\gamma^2-1)-1}$ da on $[0, T] \times (0, \infty)$.
 - $\{(u, D_h^{\mathcal{D}_u}(x_1, x_2))\}$ is a p.p.p. with intensity measure $dt \times s^{(2/\gamma^2 1)d_\gamma 1} ds$ on $[0, T] \times (0, \infty)$.
 - The distances between the marked points of the beads are summable if and only if

Application: The distance exponent for the mated-CRT map

• Gwynne–Holden–Sun ('16):

$$\chi(\gamma) := \lim_{\varepsilon \to 0} \frac{\log \mathbb{E}[\operatorname{diam}(\mathcal{G}^{\varepsilon}|_{(0,1]})]}{\log \varepsilon^{-1}}$$

exists and $\chi(\gamma) \leq 1 - 2/\gamma^2$.

• Conjecture: There exists $\gamma_* \in (\sqrt{2}, \sqrt{8/3}]$ such that for $\gamma \in (0, \gamma_*]$, we have $\chi(\gamma) = 1/d_{\gamma}$.

Application: The distance exponent for the mated-CRT map

• Gwynne–Holden–Sun ('16):

$$\chi(\gamma) := \lim_{\varepsilon \to 0} \frac{\log \mathbb{E}[\operatorname{diam}(\mathcal{G}^{\varepsilon}|_{(0,1]})]}{\log \varepsilon^{-1}}$$

exists and $\chi(\gamma) \leq 1 - 2/\gamma^2$.

• Conjecture: There exists $\gamma_* \in (\sqrt{2}, \sqrt{8/3}]$ such that for $\gamma \in (0, \gamma_*]$, we have $\chi(\gamma) = 1/d_{\gamma}$. Theorem (Feng-S., '23+)

The conjecture holds with $\gamma_* = \sqrt{8/3}$. Moreover, $\chi(\gamma) = (1/d_{\gamma}) \lor (1 - 2/\gamma^2)$.

- Proved for $\gamma = \sqrt{2}$ by Gwynne–Pfeffer ('19).
- The proof consists of the following two main inputs:
 - Ang–Falconet–Sun ('20): Almost surely, μ_h(B_r(z; D_h)) = r^{d_γ+o(1)} as r → 0 uniformly for z on compact sets.
 - $\mathbb{E}[(\operatorname{diam}(\eta[0,1], D_h^{\eta[0,1]}))^p] < \infty$ for some p > 0 (in fact, for all p > 0).

Questions

- There are metric spaces constructed from branching structures that correspond to $\gamma \ge \sqrt{8/3}$. Are the two thresholds related?
 - $\gamma = \sqrt{8/3}$: Brownian sphere, constructed from a continuum random tree. (Le Gall)

Corresponds to a $\sqrt{8/3}$ -LQG sphere. (Miller–Sheffield)

 γ ∈ (√8/3, 2): Stable maps, constructed from a stable looptree (Curien–Miermont–Riera, '22+).

Conjectured to correspond to a CLE_{γ^2} carpet on a γ -LQG sphere.

Stable looptree (simulation by Curien and Kortchemski)

Questions

- There are metric spaces constructed from branching structures that correspond to $\gamma \ge \sqrt{8/3}$. Are the two thresholds related?
 - $\gamma = \sqrt{8/3}$: Brownian sphere, constructed from a continuum random tree. (Le Gall)

Corresponds to a $\sqrt{8/3}$ -LQG sphere. (Miller–Sheffield)

 γ ∈ (√8/3, 2): Stable maps, constructed from a stable looptree (Curien–Miermont–Riera, '22+).

Conjectured to correspond to a CLE_{γ^2} carpet on a γ -LQG sphere.

- Is there a different space-filling curve that gives an infinitely divisible structure for the γ -LQG metric space, especially when $\gamma \ge \sqrt{8/3}$?
 - ► Kaavadias–Miller ('22+): For γ ∈ (√4/3, 2), SLE_{γ²}(γ² − 4) on γ-LQG can be viewed as a Peano curve between a pair of stable looptrees, which is the scaling limit of bipolar oriented random planar maps with large faces.

