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Mating of trees

Sample the following independently.

I (C, h, 0): �-quantum cone
I ⌘: Whole-plane space-filling SLE16/�2 curve from 1 to 1

Then parameterize ⌘ by �-LQG measure µh.

I µh(⌘[s, t]) = t � s, ⌘(0) = 0.

⌫h: �-LQG boundary length on SLE�2 -type curves.

Theorem (Duplantier–Miller–She�eld, ’14)

The process (Lt ,Rt) is a planar Brownian motion with correlation

� cos(⇡�2/4) between the two coordinates. Moreover, (Lt ,Rt)

a.s. determines h and ⌘ up to rotation and scaling of C.

The �-LQG surface C[s,t] := (⌘[s, t], h|⌘[s,t], ⌘|[s,t])/ ⇠�

I Independent over disjoint intervals.
I The law depends only on t � s.
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LQG metric
For a GFF h on C, the �-LQG metric Dh is the rigorous construction of

“Dh(z ,w) := inf
P:z!w

Z 1

0
e

�
d�

h(P(t)) |P 0
(t)|dt”

where d� is the Hausdor↵ dimension of Dh. Constructed in a series of works by Ding, Dubédat,

Falconet, Gwynne, Miller, Pfe↵er, Sun, Zeitouni, and Zhang.

For a continuous curve P : [a, b] ! C, define

len(P ;Dh) := sup
T

#TX

i=1

Dh(P(ti�1),P(ti ))

where the supremum is over all partitions

T : a = t0 < t1 < · · · < t#T = b.

For U ⇢ C, the internal metric of Dh on U is defined by

DU
h (z ,w) := inf

U�P:z!w
len(P ;Dh).

Jinwoo Sung (University of Chicago) LQG metric in SLE cells June 9, 2023 3 / 11
















































LQG metric
For a GFF h on C, the �-LQG metric Dh is the rigorous construction of

“Dh(z ,w) := inf
P:z!w

Z 1

0
e

�
d�

h(P(t)) |P 0
(t)|dt”

where d� is the Hausdor↵ dimension of Dh. Constructed in a series of works by Ding, Dubédat,
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LQG metric axioms

Theorem (Gwynne–Miller, ’19)

The �-LQG metric Dh is the unique continuous metric satisfying the following axioms up to a

deterministic multiplicative constant.

1 Length space: 8z ,w 2 C and " > 0, there is a path

P : z ! w such that len(P ;Dh) < Dh(z ,w) + ".

2 Locality: For a deterministic open set U ⇢ C, the
internal metric DU

h is a.s. determined by h|U .
3 Weyl scaling

4 Coordinate change for translation and scaling

) Since D⌘[s,t]
h is a.s. determined by

h|⌘[s,t], which is determined by

(L,R)|[s,t], we would like to say that

(⌘[s, t],D⌘[s,t]
h ) has “independent

and stationary increments.”
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Main result

Proposition
For each s < t, almost surely,

diam(⌘[s, t];Dh) := sup

z,w2⌘[s,t]
D⌘[s,t]

h (z ,w)

(
< 1 if � 2 (0,

p
8/3),

= 1 if � 2 [
p
8/3, 2).

Theorem (Feng–S., ’23+)

The curve-decorated metric measure space S[s,t] := (⌘[s, t],D⌘[s,t]
h , µh|⌘[s,t], ⌘|[s,t]) is

measurable under the Gromov–Hausdor↵–Prokhorov–uniform topology for � 2 (0,
p

8/3).
Moreover, it has an infinitely divisible law:

1 For s1 < t1  · · ·  sk < tk , the surfaces S[s1,t1], . . . ,S[sk ,tk ] are independent.

2 The law is stationary under translations in time: i.e., S[s,t]
d
= S[0,t�s].
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Background: Minkowski content measure for the LQG metric

N"(A;Dh) := the smallest number of Dh-balls of radii " required to cover A.

Theorem (Gwynne–S., ’22)

For each � 2 (0, 2), let b" = E[N"(⌘[0, 1];Dh)]. Then b" ⇣ "�d� , and for every bounded

Borel set A ⇢ C with µh(@A) = 0 a.s., we have

µh(A) = lim
"!0

b�1
" N"(A;Dh) in probability.

Consequently, the pointed metric space (C,Dh, 0) (measurable w.r.t. the Gromov–Hausdor↵

topology) a.s. determines the field h up to rotation and scaling of C.

Define eN"(A) = N"({z 2 A : Dh(z , @A) � "};Dh). This is a.s.

determined by DA
h .

Key lemma: ( eN"(⌘[s, t]))">0 is independent over disjoint

intervals and its law is stationary under translations in time.
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Proof overview
1. Identify the law of h|⌘[s,t].

We use the LCFT description for conformal welding by Ang, Holden, Pu, Remy, and Sun.

Let Pa be the law of the LQG cell C[0,a] = (⌘[0, a], h|⌘[0,a], ⌘|[0,a])/ ⇠� .

For each �, there exists an unspecified probability measure ⇢ on (0,1) such that Pa ⇥ 1a>0 da is

proportional to:
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Proof overview

2. Bound the diameter of each quantum disk/quadrangle.

Hughes–Miller (’22): A.s., DU
h extends continuously to @U when h is a free-boundary GFF on U.

This result extends to fields with boundary insertions of order ↵  Q =
2
� +

�
2 .

For a thick quantum disk (D, h, x1, x2) sampled from Mdisk
2 (W ) with W > �2/2,

Dh(x1, x2)  Cµh(D)
1/d� with superpolynomially high probability as C ! 1.
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Proof overview
3. Concatenate small beads in the thin quantum disk.

The thin quantum disk Mdisk
2 (W ) with W < �2/2 can be sampled by:

I Sample T from (1� 2
�2W )�21T>0 dT .

I Sample a Poisson point process {(u,Du)} from the intensity measure 1t2[0,T ] ⇥Mdisk
2 (�2 �W ).

I Concatenate the disks {Du} chronogically.

{(u, µh(Du))} is a p.p.p. with intensity measure dt ⇥ a(2/�
2�1)/��1 da on [0,T ]⇥ (0,1).

{(u,DDu
h (x1, x2))} is a p.p.p. with intensity measure dt ⇥ s(2/�

2�1)d�/��1 ds on [0,T ]⇥ (0,1).

The distances between the marked points of the beads are summable if and only if

Z 1

0
s
( 2
�2 �2)

d�
� ds < 1 ,

✓
2

�2
� 1

◆
d�
�

> �1 , d� <
1

1� 2
�2

� 7! d� is strictly increasing and dp
8/3

= 4.
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Application: The distance exponent for the mated-CRT map

Gwynne–Holden–Sun (’16):

�(�) := lim
"!0

logE[diam(G"|(0,1])]
log "�1

exists and �(�) = 1� 2/�2
.

Conjecture: There exists �⇤ 2 (
p
2,
p
8/3]

such that for � 2 (0, �⇤], we have

�(�) = 1/d� .

Theorem (Feng–S., ’23+)

The conjecture holds with �⇤ =
p

8/3.
Moreover, �(�) = (1/d�) ^ (1� 2/�2

).

Proved for � =
p
2 by Gwynne–Pfe↵er (’19).

The proof consists of the following two main

inputs:

I Ang–Falconet–Sun (’20): Almost surely,

µh(Br (z ;Dh)) = rd�+o(1) as r ! 0 uniformly

for z on compact sets.

I E[(diam(⌘[0, 1],D⌘[0,1]
h ))p] < 1 for some

p > 0 (in fact, for all p > 0).
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Questions

There are metric spaces constructed from branching structures that corre-

spond to � �
p
8/3. Are the two thresholds related?

I � =
p

8/3: Brownian sphere, constructed from a continuum random tree.

(Le Gall)

Corresponds to a
p

8/3-LQG sphere. (Miller–She�eld)

I � 2 (
p

8/3, 2): Stable maps, constructed from a stable looptree

(Curien–Miermont–Riera, ’22+).

Conjectured to correspond to a CLE�2 carpet on a �-LQG sphere.

Is there a di↵erent space-filling curve that gives an infinitely divisible struc-

ture for the �-LQG metric space, especially when � �
p
8/3?

I Kaavadias–Miller (’22+): For � 2 (
p

4/3, 2), SLE�2(�2 � 4) on �-LQG

can be viewed as a Peano curve between a pair of stable looptrees, which

is the scaling limit of bipolar oriented random planar maps with large faces.
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Stable looptree 
(simulation by Curien 
and Kortchemski)
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