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» Lattice Yang Mills assigns random N-by-N matrix from some compact Lie
group (like U(N), say) to each directed edge of a d-dimensional lattice.

» If you reverse direction of edge, you replace the matrix by its inverse.

» Use i.i.d. Haar measure with weighting that makes product of directed
edges around any unit square “want to be" close to identity.

> Precisely, weight by exponential of 3(sum of real parts of plaquette traces).

» Wilson loop: multiply matrices around directed cycle, find expected trace.

> Yang Mills problem (roughly): construct/understand basics of continuum
version. Famous prize problem. Important for standard model.
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> Want to assign random matrix (or expected trace) to each (nice enough)
continuum directed loop. Perhaps in some “generalized function” sense.

> SPDE APPROACH: construct a dynamical version of continuum Yang-Mills
(on a torus, say) and try to show that it converges to stationary law in large
time limit. Take initial value to be “Gaussian-free-field connection” that is
believed to “look correct” at small scales. Hope other scales mix in time.
(Martin Hairer, Hao Shen, Sky Cao, Bjorn Bringmanm, Sourav Chatterjee,
etc.) Works in 2D. Significant progress in 3D but 4D out of reach for now.

> NON-DYNAMIC CONTINUUM APPROACH: start with Gaussian
connection and modify field in some other way (to make it roughly correct at
some scales) and take limit as approximation improves.

> LATTICE APPROACH: Explore the lattice model, possibly in terms of
random surfaces. to gain insicht into continuum theoryv.
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This talk is about the lattice approach and its “random surface” formulations.

Lattice Yang-Mills boils down to understanding expected products of
certain random matrix traces.

Random surfaces considered today will be planar or higher genus maps that
are “embedded in” (or mapped to) d-dimensional space. Special embedded
maps called edge-plaquette embeddings will play a key role.

Let us start with the core ideas: matrix traces and embedded maps.

Then we can discuss how these topics relate to each other.

Part of story on arXiv (Park, Pfeffer, S, Yu) part in prep. (Cao, Park S)
arXiv paper develops techniques to treat matrix trace problem in continuum

2D Yang-Mills. Forthcoming work applies these techniques to lattice
Yang-Mills in higher dimensions.
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Abstract

Although lattice Yang-Mills theory on finite subgraphs of Z is easy to rigorously define, the
construction of a satisfactory continuum theory on B is a major open problem when d > 3.
Such a theory should in some sense assign a Wilson loop expectation to each suitable finite
collection £ of loops in BY. One classical approach is to try to represent this expectation as
a sum over surfaces with boundary £. There are some formal/heuristic ways to make sense of
this notion, but they typically yield an ill-defined difference of infinities.

In this paper. we show how to make sense of Yang-Mills integrals as surface sums for d =
2, where the continunum theory is more accessible. Applications include several new explicit
calculations, a new combinatorial interpretation of the master field, and a new probabilistic

proof of the Makeenko-Migdal equation.
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AD: If t small, matrices~identity. And (/ + My)(/ + My) = | + My + M>, so
productsassums. See Narayanan-S for matrix sum spectral analysis.
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Abstract:

Suppose a, i are Lipschitz strongly concave functions from [0,1] to &
and « is a concave function from [0, 1] to B, such that a(0) = 4(0) = 0, and
a{1) = A{0) =0 and A(1) = (1) = 0. For an » x n Hermitian matrix W
let spec( W) denote the vector in B™ whose coordinates are the eigenvalues
of W listed in non-increasing order. Let X = é-a, g = 8- 4 on (0, 1] and
v = 8", at all points of (0, 1], where & is the left derivative. Let Ay (i)
n(a(%) —al5H), for i € [n], and similarly, pa (3) := n?(5(3) - 6(52))
and 1 (i) = n?(y(£) — v 52))

Let Xo, Y be independent random Hermitian matrices from unitarily
invariant distributions with spectra An, prn respectively. We define norm
|| - |15 te correspond in a certain way to the sup norm of an antiderivative.
We prove that the following limit exists.

lim B P llspec{Xn + Yu) - vafls < €]

oo n?

We interpret this limit in terms of the surface tension o of continuum limits
of the discrete hives defined by Knutson and Tao.

We provide matching large deviation upper and lower bounds for the
spectrum of the sum of two random matrices Xy and Yy, in terms of the
surface tension o mentioned above.

We also prove large deviation principles for random hives with a and
A that are €2, where the rate function can be interpreted in terms of the
maximizer of a functional that is the sum of a term related to the free energy
of hives associated with o, 5 and % and a quantity related to logarithms of
Vandermonde determinants associated with +.

MSC2020 subject classifications: Primary 60F10, 60B20; secondary
82B41

Keywords and phrases: Large deviations, Random matrices, Random
surfaces.
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dynamics (where you can resample ¢ at individual points, or remove edge to
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Let's further warm up with a (Yang-Mills-related) random surface puzzle.
Consider a uniformly random planar triangulation T with a fixed number of
edges/vertices and a fixed number of boundary edges/vertices.

Now weight the law of T by the partition function for a 3D Gaussian free
field ¢ on T (subject to some fixed boundary conditions on 9T).
VISUALIZATION PUZZLE: Suppose boundary values of ¢ map boundary
of T to boundary of large planar domain. What do you expect a random
instance of T to look like when embedded in 3D via ¢?

FOLLOW UP: How would you imagine a measure-preserving Glauber
dynamics (where you can resample ¢ at individual points, or remove edge to
make quadrilateral, then glue it back along other diagonal)?

Did you imagine...

gently rippling fluctuations about an area minimizing equilibrium?

wildly breaking tsunamis on a Brownian-map-like fractal surface?

a single dancing tree that dwarfs everything else?

a gladiatorial arena where cannibalistic robot insects fight to the death?
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Let's further warm up with a (Yang-Mills-related) random surface puzzle.
Consider a uniformly random planar triangulation T with a fixed number of
edges/vertices and a fixed number of boundary edges/vertices.
Now weight the law of T by the partition function for a 3D Gaussian free
field ¢ on T (subject to some fixed boundary conditions on 9T).
VISUALIZATION PUZZLE: Suppose boundary values of ¢ map boundary
of T to boundary of large planar domain. What do you expect a random
instance of T to look like when embedded in 3D via ¢?
FOLLOW UP: How would you imagine a measure-preserving Glauber
dynamics (where you can resample ¢ at individual points, or remove edge to
make quadrilateral, then glue it back along other diagonal)?
Did you imagine...

A. gently rippling fluctuations about an area minimizing equilibrium?

B. wildly breaking tsunamis on a Brownian-map-like fractal surface?

C. a single dancing tree that dwarfs everything else?

D. a gladiatorial arena where cannibalistic robot insects fight to the death?

Let's play the movie.
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Let's further warm up with a (Yang-Mills-related) random surface puzzle.
Consider a uniformly random planar triangulation T with a fixed number of
edges/vertices and a fixed number of boundary edges/vertices.
Now weight the law of T by the partition function for a 3D Gaussian free
field ¢ on T (subject to some fixed boundary conditions on 9T).
VISUALIZATION PUZZLE: Suppose boundary values of ¢ map boundary
of T to boundary of large planar domain. What do you expect a random
instance of T to look like when embedded in 3D via ¢?
FOLLOW UP: How would you imagine a measure-preserving Glauber
dynamics (where you can resample ¢ at individual points, or remove edge to
make quadrilateral, then glue it back along other diagonal)?
Did you imagine...

A. gently rippling fluctuations about an area minimizing equilibrium?

B. wildly breaking tsunamis on a Brownian-map-like fractal surface?

C. a single dancing tree that dwarfs everything else?

D. a gladiatorial arena where cannibalistic robot insects fight to the death?
Let's play the movie.
AD: To visualize random planar maps using Smith embeddings see
just-posted arXiv paper: Bertacco, Gwynne, S.
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Scaling limits of planar maps under the Smith embedding

Federico Bertacco Ewain Gwynne Scott Sheffield
Imperial College London University of Chicago MIT
Abstract
The Smith embedding of a finite planar map with two marked vertices, possibly with conductances on the

edges, is a way of representing the map as a tiling of a finite eylinder by rectangles. In this embedding
each edge of the planar map corresponds to a rectangle, and each vertex corresponds to a horizontal
segment. Given a sequence of finite planar maps embedded in an infinite cylinder, such that the random
walk on both the map and its planar dual converges to Brownian motion modulo time change, we prove
that the a prior embedding is elose to an affine o jon of the Smith ing at large scales. By
applying this result, we prove that the Smith embeddings of mated-CRT maps with the sphere topology
converge to y-Liouville quantum gravity (+-LQG).
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PUZZLE VARIANT: EDGE-PLAQUETTE EMBEDDINGS

» Consider a pair (M, 1) where M is a planar (or higher genus) map and
¥ : M — L is a graph homomorphism. We assume that:
1. The dual graph of M is bipartite. Faces of M can be colored blue and yellow.
2. ¢ maps each yellow face of M isometrically onto a face of L.
3. ¢ maps each blue face of M onto a single edge of L.



PUZZLE VARIANT: EDGE-PLAQUETTE EMBEDDINGS

» Consider a pair (M, 1) where M is a planar (or higher genus) map and
¥ : M — L is a graph homomorphism. We assume that:
1. The dual graph of M is bipartite. Faces of M can be colored blue and yellow.
2. ¢ maps each yellow face of M isometrically onto a face of L.
3. ¢ maps each blue face of M onto a single edge of L.
> Call this an edge-plaquette embedding (EPE) because each blue face maps
onto a single edge, and each yellow face maps onto a single plaquette.
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Path: p = ejeve;.. . €,.

Cycle: ¢ is cyclic equivalence class of closed paths.

String: s = ({1,4a,...,4).

Plaquette: p = e1ere3e4.

Matrices: Qe and Qp = Qe Qe, Qe; Qe,. Also Q,, for path.
W, is real part of trace of Q.

Fundamental object is E[W;, Wy, - - - W,,] w.r.t. measure...

duan,s(Q) = Zi ks exp(NB 3 Tr(Qp)) I don(Q.)

pEPY ecEy
Take oy to be Haar measure on group like U(N), SO(N), etc.

Can replace exp with real polynomial that is large near 1 and small (but
positive) elsewhere in [—1,1]. For example x — x'%(1 + x).
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» We want an edge-plaquette-embedding model that is useful in Yang-Mills.

> Need to assign “weight” to every face of £ (depending on number of
plaquettes there) and every edge (depending on number and type of blue
faces there).

> Weingarten function W = W, is inverse in the group ring of Q(n)[S;] of the
function o — n#oyeles(o),

> W(o) depends only on the conjugacy class—i.e. on the cycle structure of o.
Order cycles from biggest to smallest, represent by Young diagram.

» Not the simplest function...

W(@) = 5 3 [oenae) TT (ne)+1)]
A (if)er

where () is the character (trace corresponding to o in irreducible
representation represented by ).

> Interpret o as collection of blue faces (one blue face of length 2k for each
cycle of o of length k). Then W(o) is weight associated to given collection
of blue faces at edge.

> To simplify W expression we need nice way to express x (o).



Yuval Roichman
Massachusetts Institute of Technology

Abstract, Recent developments in the theory of Young tableaux imply good bounds
on the characters of the symmetric groups. The applications of these estimates vary from
classical problems in representation theory and the theory of permutation groups to random
walks and graph theory.

1. Introduction.

Let ¢ be an element in a finite group G, and let i¢d be the identity element in G.
Let p be an ordinary representation of G, The character x,(¢) is the trace of p(g). The
normalized character of p at g, denoted by 7,(g), Is the ratio o

The normalized characters of the irreducible representations of finite groups play an
important role in the study of random walks on these groups [D ch. 3], expander graphs
[Lul ch. 8] and many other areas. Unfortunately, there are no general explicit formulas for
the irreducible characters of the symmetric groups. The Mumaghan-Nakayama rule (The-
orem 2.6) is a recursive method to compute the characters, Frobenius formula (Theorem
2.4) presents the characters as coeflicients of a complicated polynomial. Explicit formulas
for characters of very simple conjugacy classes (e.g. cycles of length < 6) follow from this
formula. See [Fs]. [In] and [Su].
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From Magee and Puder

1 wa(e)? )

We (7) = (2 22 4 (0

(o).

where A runs over all partitions of L, y is the character of S, corresponding to A, and d), (n) is the
number of semistandard Young tableaux with shape A, filled with numbers from [n]. A well known

formula for dy (n) is dy (n) = )iigc}n{s,j}e)\ (n+j — i), where (i,j) are the coordinates of cells in
the Young diagram with shape A (e.g. [Ful97, Section 4.3, Equation (9)]). Thus,

Corollary 2.3. For o € Sp, Wg; (o) may have poles only at integers n with —L < n < L.

Below we use the following properties of the Weingarten function. The standard norm of p €
Sy, denoted ||p|, is the shortest length of a product of transpositions giving p, and is equal to
L — #cycles (p).

Theorem 2.4. Let w € S5; be a permutation.

1. [C506, Corollary 2.7] Leading term:
. Mob () 1
Wg, (7)) = o 2.1
gr (™) = T * (n£-+||w||+2) : 1)
where
k
Méb (x) = sgn () [ eiesf1: (22)
i=1
with® C1,...,Ck the cycles composing w, and ¢y = (2m)! being the m-th Catalan number.

ml(ma 1)l

2. [Col03, Theorem 2.2] Asymptotic expansion:
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» One approach to making a random surface is to fix the number of yellow
plaquettes of each type (so assign weight 1 to that number and 0 to all
others). Then we just have to worry about blue faces. In this case...

» Theorem: When gauge group is U(N), expected trace product is
proportional to >_ [] W(e) - =2 where sum is over spanning edge-plaquette
embeddings with given plaquette numbers, and g is genus. (Variants apply to
other gauge groups.)

» This is related to string trajectories in Chatterjee and Jafarov with 3 = 0.
We can incorporate weights on yellow plaquette numbers by imagining we
first sample the number of plaquettes of each type from some law, then
employ theorem above.

> Still a large sum. But if number of plaquettes wants to be small, surface may
approximate minimal surface.

> In general there are lots of symmetries that allow cancellation (e.g. moves
that swap sign but don't change genus). In 2D, weighted sum over all
surfaces is equivalent to weighted sum over flat surfaces. Do the battling
insects cancel themselves out in higher dimensions? At least when N = c0?

» AD: Magee and Puder offer more context about Weingarten function.
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Gauge fixing, Wilson loops, basic questions

» Gauge fixing: reduce number of degrees of freedom.

» Fiddling with gauge choice can affect a loop integral by changing conjugacy
class of matrix.

> We think about <ng W, - - Wgn>. In principle if you knew all of this
information for every string you could recover the joint law of the conjugacy
classes over all loops.

» But this seems to be the natural way to describe the law: we want a function
from the set £ of finite collections of oriented loops to the real numbers.

» What does this function look like? What relations does it satisfy? Is there a
continuum analog of this function? On what space and in what sense should
the continuum analog be defined?

> See works of Thierry Lévy and others ( e.g., Driver, Gabriel, Hall, Kemp) in
two dimensions. Look up Makeenko-Migdal.

» In two dimensions, gauge fixing simplifies problem tremendously. Two
dimensions can be place to test theories believed to hold in general dimension.
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» Each term of TrA* has form aj jaj kak,jari. Represent this by a directed
square with vertices labeled i/, j, k, /. One directed edge for each factor.

» Do same thing for TrA® and TrA®. Get hexagon and octagon.



Graphical representation of a term of Tr(A*)Tr(A°)Tr(A?)

A2,1A1,3A3,2A2,2 f\ﬂ A573A372A274A472A272A275
© @
O @
% Al,lA1,4A4,1A1,2A2,2A2,3A3,2A2,1
©)

©)
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» Suppose A is sampled from GUE. How do you compute E[TrA*TrASTrA®]?

» Each term of TrA* has form aj jaj kak,jari. Represent this by a directed
square with vertices labeled /7, j, k, /. One directed edge for each factor.

» Do same thing for TrA® and TrA8. Get a hexagon and octagon.

> Wick’s theorem: if X1, X5,..., X5, are jointly Gaussian, each with mean
zero, then what is E[X1Xz ... X24]?

» Answer: Consider product like E[X1X3]E[X3Xy] ... E[X2n—1X2n]. Sum over
all 2n—1)-(2n—3)-...-1 such products.

> Note E[A; jAk] = O(i.j)(1,k)-
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only on genus.



Classical matrix-map story

>
>

>
>

Suppose A is sampled from GUE. How do you compute E[TrA*TrA®TrA8]?

Each term of TrA* has form aj jaj kak,jari. Represent this by a directed
square with vertices labeled /7, j, k, /. One directed edge for each factor.

Do same thing for TrA® and TrA®. Get a hexagon and octagon.

Wick’s theorem: if Xi, X5, ..., X, are jointly Gaussian, each with mean
zero, then what is E[X1Xz ... X24]?

Answer: Consider product like E[X1X3]E[X3X4] . .. E[X2n—1X24]. Sum over
all 2n—1)-(2n—3)-...-1 such products.

Note E[A,',jAk,/] = 6(i,j),(l,k)-

A non-zero term in the Wick expansion is an orientation-preserving,

label-compatible matching of the edges of the three labeled faces. Each such
term contributes 1.

So E[TrA*TrA°TrA®] = 3, a;\/ where a; is number of surfaces with j
vertices. Number of faces/edges fixed. Euler's formula: exponent depends
only on genus.

Similar story for GOE but maps not orientable, weights are signed.
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Classical matrix-map story

» What about E[et(TrA4+TrA6+TrA8)]?

Maybe infinity?... (Can find variants where won't be infinity.)

v

» Taylor expand. Get a formal power series, where coefficient of t* counts
surfaces (not necessarily connected) with k faces.

4 6 8 . .
> Use log E[et(TA™+TrA™+TrAD] to get formal power series counting connected
surfaces.

» Expansion in powers of N enumerates within genus classes.

» What if you have more than one matrix?



Graphical representation of a term of
Tr(ROGB)Tr(BGBROB)Tr(GRBRBGOB)

R 101 3G32B2 9 \‘% Bs 3G32Bs 4Ry 202 2B 5

K G11R1 4Ba 1R 2B22G2 3032851
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» Imagine assigning a matrix A" with i.i.d. complex Gaussian entries to each
directed edge (v, w) of a lattice. Actually, let's impose constraint that A"
is conjugate tranpose of A"¥"Y. So we have one matrix of information for each
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Classical matrix-map story

» Imagine assigning a matrix A" with i.i.d. complex Gaussian entries to each
directed edge (v, w) of a lattice. Actually, let's impose constraint that A"
is conjugate tranpose of A"¥"Y. So we have one matrix of information for each
edge.

» For any oriented plaquette P can write TrP for trace of corresponding
product of matrices. Now we can formally compute E[e2- T (P)] where sum
ranges over all oriented plaquettes. Using Wick's theorem, we get a sum of
surfaces built out of oriented plaquettes.



We can divide each edge into approximate Gaussians

—
——

parallel swaps

"X_




Surface interpretations for 2D Wilson loop expectations




A. Label regions ~ B. Choose spanning tree C. Create clockwise “lasso” for each region
Root

D. Produce “lasso basis” word corresponding to whole loop
To MhAds 29N 32 Aoy 49X 1234 2 A AAsAadeA A

E. Shrink tree to point

’ 1 F. “Fan out” excursion-bounded “petals” G. Note cyclic word ordering

H. Integrate over point pairings I. Cut point-root edges J. Glue edges and find genus




B. Each non-tree edge (plus tree-paths from ends
to root) forms “lasso” (flip if needed to be clockwise) C-

ek

D. Obtain clockwise-traced beaded loop
with edges corresponding to original loop’s edges

A. Label edges in order Glue successive tree-edge repeats

E. Add marked pairs: draw point-to-root paths (tracing tree branch) and compute genus




A. Start with slit tree  B. Peel apart branches C. Cut and glie )
' MO8y D. Obtain surface of  E, Regluing branches

some genus with paths  does not change genus

|
SR N




A. Draw spanning tree in black, one red vertex for each face
B. Draw blue dual tree path from each red vertex to outer face

C. Form word by recording \; whenever corresponding blue edge is crossed clockwise, )\;1 if counterclockwise

D. Form surface containing k copies of \; face if corresponding blue path crosses k black edges.



Continuum scaling limits of random surfaces?

U(l) x SU(2) x SU(3)
gauge theory surfaces in 4D?
4 ° ° °

3

branched polymér? 2
d

) f Brownian map/pure LQG
LQG ¢ . ?
L 1
> /N

Can interpret d as a lattice dimension or (as we will later see) weight factor for
planar maps (based on determinant of Laplacian). Can interpret N as a matrix
dimension or as a weight factor (based on surface genus). Non-integer values of d
and N make sense. Need to handle oscillatory weighting and cancellation.
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Background: determinant of discrete Laplacian

> Easy Gaussian integral: [(2r)1/2e~7/2 = 7-1/2

> In dimension d, [(2m)~9/2e~(A)/2 = | det A|=/2, which we refer to as
partition function. Note that | det A|1/2 is height of normal density function
at origin. Probability Gaussian is in € box is (up to 27 factors) about
€| det A|1/2.

» Laplacian of finite connected graph (V, E) is linear operator A from RY to
itself. Its matrix is given by

1 i#J,(vi,vj) € E
Mi,j: 0 ’75./7(17 j)gE
“dea(v) i=)

> Let R C RY be the set of functions with mean zero. Then —A: R — R is
invertible, and Kirchhoff's matrix tree theorem states that if « is the
determinant of this invertible operator on R then « is the number of
spanning trees of V.

» « is also product of all non-zero eigenvalues of matrix M.

» The DGFF partition function can be be written
fR(Qﬂ.)—\V—1|/2e—(f,—Af)/2df — -2



