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Measures on fractals

A central aspect of the analysis of fractals is the construction of measures
on top of them. They can provide us with

Hausdorff dimension
Ways of sampling points on the fractal
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Measures on fractals

Frostman measure: Constructed when proving lower bounds for
Hausdorff dimensions. Often not explicit. (Exception: LQG measure is
the Frostman measure on thick points of the GFF!)

Say that K is the set we are interested in. Typically such measures are
defined as a subsequential limit of measures:

µn(A) =

∫
A

∑
z∈Dn

En(z)

E[En(z)]
1Jn(z)(w)dw

Here En is a random variable s.t. if En(z) > 0 for all n ∈ N, then
z ∈ K , Dn grid of points, Jn(z) neighbourhood of z .
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Measures on fractals

Minkowski content: The d-dimensional Minkowski content of a set
A is defined as

Md(A) = lim
r→0

rd−2
∫
C

1{dist(z,A)<r}dz .

Non-trivial when d is the dimension of A. Typically hard to construct.

Conformal Minkowski content: Somewhat similar to the Minkowski
content, but often easier to compute. For A ⊂ D,

CMd(A) = lim
r→0

rd−2
∫
D

1{cradD\A(z)<r}dz .

Hausdorff measure:

Hd(A) = lim
δ→0

inf{
∑
j

diam(Ej) : A ⊂ ∪jEj , diam(Ej) ≤ δ}.

Good luck.
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Properties and relations

Hausdorff measure and Minkowski content agree on nice sets (for
example H1(γ) = M1(γ) if γ is a rectifiable curve). In general, there
is a constant C = C (s)

Hs(A) ≤ CMs(A).

Minkowski contents satisfy the following conformal covariance
relation. Let A ⊂ D and f : D → D̃ be conformal. Then,

Md(f (A)) =

∫
A
|f ′(z)|ddMd(z).
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What would you need?

Let K ⊂ D be the (random) set of interest.

A key ingredient in proving existence of Minkowski content of K is an
exact one-point estimate:

P(dist(z ,K ) ≤ ε) ∼ cεβ

Problem: it is hard to show that such a limit exists. Typically we just
have P(dist(z ,K ) ≤ ε) ≍ εβ .
However, the key step in getting the up to constants asymptotics
often consists of showing that the limit exists with dist(z ,K ) replaced
by cradD\K (z), that is,

P(cradD\K (z) ≤ ε) ∼ ĉεβ.

⇒ In a good position to construct the conformal Minkowski content!
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⇒ In a good position to construct the conformal Minkowski content!

Lukas Schoug (Based on joint work with Jason Miller) (Helsinki)Measure on fractals
Random Conformal Geometry and Related Fields in Jeju 9 June 2023
8 / 31



What would you need?

Let K ⊂ D be the (random) set of interest.
A key ingredient in proving existence of Minkowski content of K is an
exact one-point estimate:

P(dist(z ,K ) ≤ ε) ∼ cεβ

Problem: it is hard to show that such a limit exists. Typically we just
have P(dist(z ,K ) ≤ ε) ≍ εβ .
However, the key step in getting the up to constants asymptotics
often consists of showing that the limit exists with dist(z ,K ) replaced
by cradD\K (z), that is,

P(cradD\K (z) ≤ ε) ∼ ĉεβ.
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Measures on fractals

Typically want to construct above mentioned measures on SLE, CLE, etc.
So far, the following have been constructed the following. Let
dκ = 1 + κ/8.

Conformal Minkowski content on η ∩R, when η ∼ SLEκ for κ ∈ (4, 8)
[Alberts-Sheffield, 2011]
Minkowski content of η ∩ R, when η ∼ SLEκ for κ ∈ (4, 8) [Lawler,
2015]
Minkowski content of SLEκ [Lawler-Rezaei, 2015]
dκ-dimensional Hausdorff measure of SLEκ is zero when κ < 8
[Rezaei, 1018]
Minkowski content of Brownian cut points in dimensions 2 and 3
[Holden-Lawler-Li-Sun, 2022]
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Natural parametrisation of SLE

The natural parametrisation of SLE is conjecturally the
parametrisation which arises when SLE is constructed as the scaling
limit of discrete interfaces normalised by step size. (And proved by
Lawler and Viklund for the convergence of LERW to SLE2!)
Constructed by Lawler and Sheffield for chordal SLE and shown by
Lawler and Rezaei to be (a constant times) the Minkowski content of
SLE.
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Does the Minkowski content exist?

Should we expect there to be a Minkowski content?

For simplicity let h be a zero-boundary GFF in a simply connected
domain D (can have more general boundary conditions).
Let A−a be the first passage set of h of level −a, let hA−a be the
distribution that is harmonic off A−a that arises with the coupling,
and let hA−a be the harmonic function (i.e. hA−a = hA−a in D \ A−a).
Define the measure νA−a = hA−a − hA−a . Then, νA−a defines a
positive measure on A−a and

νA−a(f ) = lim
ε→0

1
2
| log ε|1/2

∫
D
f (z)1{dist(z,A−a)≤ε}(z)dz .

That is, νA−a is (proportional to) the Minkowski content “in the
gauge” ε 7→ ε2| log ε|1/2. [Aru-Lupu-Sepúlveda, 2019]

This means that M2(A−a) = 0, that is, we should maybe not expect
the Minkowski content of each interesting fractal to exist.
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Open problems

We are yet to construct/show the existence of the Minkowski contents or
conformal Minkowski contents of:

SLE: double points, cut points, exceptional sets (e.g. the multifractal
spectra)
CLE: CLE and its pivotal points
GFF: thick points, two-valued sets
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Constructing measures using the GFF

Often, above mentioned measures are too hard to construct. A natural way
to construct measures on GFF-related fractals is via the GFF.

1 For a GFF h on a domain D, pick/construct object Xh(z) such that Xh

is supported and non-negative on the desired random element K ⊆ D.
2 Take the conditional expectation E[Xh(dz)|K ], possibly multiplied by

some compensator F (z) : D → R.
For many choices of Xh, this yields a measure on the random fractal K
which exhibits conformal covariance with the “right” exponent.
The compensator F is typically a power of the conformal radius, to handle
the conformal radius terms that naturally occur when considering the
image/pushforward of Xh.

Lukas Schoug (Based on joint work with Jason Miller) (Helsinki)Measure on fractals
Random Conformal Geometry and Related Fields in Jeju 9 June 2023
14 / 31



Constructing measures using the GFF

Often, above mentioned measures are too hard to construct. A natural way
to construct measures on GFF-related fractals is via the GFF.

1 For a GFF h on a domain D, pick/construct object Xh(z) such that Xh

is supported and non-negative on the desired random element K ⊆ D.

2 Take the conditional expectation E[Xh(dz)|K ], possibly multiplied by
some compensator F (z) : D → R.

For many choices of Xh, this yields a measure on the random fractal K
which exhibits conformal covariance with the “right” exponent.
The compensator F is typically a power of the conformal radius, to handle
the conformal radius terms that naturally occur when considering the
image/pushforward of Xh.

Lukas Schoug (Based on joint work with Jason Miller) (Helsinki)Measure on fractals
Random Conformal Geometry and Related Fields in Jeju 9 June 2023
14 / 31



Constructing measures using the GFF

Often, above mentioned measures are too hard to construct. A natural way
to construct measures on GFF-related fractals is via the GFF.

1 For a GFF h on a domain D, pick/construct object Xh(z) such that Xh

is supported and non-negative on the desired random element K ⊆ D.
2 Take the conditional expectation E[Xh(dz)|K ], possibly multiplied by

some compensator F (z) : D → R.

For many choices of Xh, this yields a measure on the random fractal K
which exhibits conformal covariance with the “right” exponent.
The compensator F is typically a power of the conformal radius, to handle
the conformal radius terms that naturally occur when considering the
image/pushforward of Xh.

Lukas Schoug (Based on joint work with Jason Miller) (Helsinki)Measure on fractals
Random Conformal Geometry and Related Fields in Jeju 9 June 2023
14 / 31



Constructing measures using the GFF

Often, above mentioned measures are too hard to construct. A natural way
to construct measures on GFF-related fractals is via the GFF.

1 For a GFF h on a domain D, pick/construct object Xh(z) such that Xh

is supported and non-negative on the desired random element K ⊆ D.
2 Take the conditional expectation E[Xh(dz)|K ], possibly multiplied by

some compensator F (z) : D → R.
For many choices of Xh, this yields a measure on the random fractal K
which exhibits conformal covariance with the “right” exponent.

The compensator F is typically a power of the conformal radius, to handle
the conformal radius terms that naturally occur when considering the
image/pushforward of Xh.

Lukas Schoug (Based on joint work with Jason Miller) (Helsinki)Measure on fractals
Random Conformal Geometry and Related Fields in Jeju 9 June 2023
14 / 31



Constructing measures using the GFF

Often, above mentioned measures are too hard to construct. A natural way
to construct measures on GFF-related fractals is via the GFF.

1 For a GFF h on a domain D, pick/construct object Xh(z) such that Xh

is supported and non-negative on the desired random element K ⊆ D.
2 Take the conditional expectation E[Xh(dz)|K ], possibly multiplied by

some compensator F (z) : D → R.
For many choices of Xh, this yields a measure on the random fractal K
which exhibits conformal covariance with the “right” exponent.
The compensator F is typically a power of the conformal radius, to handle
the conformal radius terms that naturally occur when considering the
image/pushforward of Xh.

Lukas Schoug (Based on joint work with Jason Miller) (Helsinki)Measure on fractals
Random Conformal Geometry and Related Fields in Jeju 9 June 2023
14 / 31



Natural parametrisation of SLE

Let η ∼ SLEκ and (ft) be the centred Loewner chain of η. Let

ηt(u) = ft(η(t + u)), t ≥ 0.

Let dκ = 1+κ/8 and for a measure µ on η, define the measure µt on ηt by

µt(dz) = |(f −1
t )′|−dκµ0 ◦ f −1

t (dz).

If (η, µ) and (ηt , µt) have the same law for each t > 0, then µ is the
natural parametrisation of η.
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Natural parametrisation of SLE

Let η ∼ SLEκ in H, κ ∈ (0, 8). Let h be a zero-boundary GFF in H and let
ξh be the LQG length measure associated with η0 (subcritical if κ < 4,
critical if κ = 4, generalised quantum length if κ ∈ (4, 8)).

µ(dz) = cradH(z)
q(κ)E[ξh(dz)|η]

Theorem
The measure µ is (a deterministic constant times) the natural
parametrisation of SLEκ. (κ ∈ (0, 4): [Benoist, 2018], κ = 4:
[Margarint-S., in preparation], κ ∈ (4, 8): [Miller-S.,2023]
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Natural measure on CLE

Fix κ ∈ (8/3, 8) and let PD be a law on pairs (Γ,Ξ) where Γ ∼ CLEκ on D
and Ξ is a measure supported on the carpet/gasket of Γ.

(PD) is said to be conformally covariant with exponent d if the
following is true. Assume that φ : D → D̃ is conformal and
(Γ,Ξ) ∼ PD and (Γ̃, Ξ̃) ∼ P

D̃
are coupled together so that Γ̃ = φ(Γ).

Then, for all Borel A ⊆ D,

Ξ̃(φ(A)) =

∫
A
|φ′(z)|ddΞ(z).

For U ⊆ D, let UΓ be the points in U which are not on or surrounded by a
loop in Γ which intersects Uc and ΓU be the loops of Γ, contained in U.

We say that (PD) satisfies the CLEκ Markov property if the following
is true. Suppose that (Γ,Ξ) ∼ PD , U ⊆ D open and V is a
component of UΓ. Then, the conditional law of (ΓV ,Ξ|V ) given
Γ \ ΓV and Ξ|D\V is that of PV .
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Natural measure on CLE

Let dκ be the a.s. Hausdorff dimension of CLEκ

Theorem (Miller-S. 2023)
Fix κ ∈ (8/3, 8). Then there is a family of probability measures (PD) as on
the previous slide, which are conformally covariant with exponent dκ,
satisfies the CLEκ Markov property, and such that if (Γ,Ξ) ∼ PD , then
ED [Ξ(K )] < ∞ for each compact K ⊂ D and P(Ξ(D) > 0) = 1. Let (P̃D)
be another such family of measures. Then there is a constant C > 0 such
that if (Γ,Ξ) ∼ PD , then (Γ,CΞ) ∼ P̃D .

If the dκ-dimensional Minkowski content of CLEκ exists (and its
intensity is locally finite), then it is equal to (a constant times) the
measure in the theorem.
We expect that the assumption ED [Ξ(K )] < ∞ is not necessary.
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Other measures via GFF

With a similar strategy, the natural measures have been constructed and
proved to be unique (under the assumption of finiteness of intensities on
compacts) on the following sets [Cai-Li, 2023]:

SLEκ(ρ) for κ ∈ (0, 4),
CLEκ, κ ∈ (4, 8) pivotal points,
CLEκ carpet/gasket, κ ∈ (8/3, 4) ∪ (4, 8),
Cut points of SLE

Moreover, the measure on the cut points of SLE was also constructed and
moment bounds were derived in [Kavvadias-Miller-S., 2023].
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Conformal Minkowski content on TVS..?

We also mention the following measure constructed using a GFF
[S.-Sepúlveda-Viklund, 2020]. Let h be a zero-boundary GFF on D and
A−a,b be the TVS of levels −a and b and let σc = 2λ/(a+ b). Define

V iσ = lim
ε→0

ε−σ2/2e iσhε(z).

Then E[Re(V iσc )|A−a,b](dz) defines a measure on A−a,b.

More precisely, define for each δ > 0

µδ(dz) = δcradD\A−a,b
(z)−(σc−δ)2/2dz .

Then, the limit µ of µδ exists in the weak topology and for each continuous
and bounded f , E[Re(V iσc , f )|A−a,b] =

a+b
2 µ(f ).

Furthermore, if the conformal Minkowski content of A−a,b exists, then it is
(a constant times) µ.
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Differences between measures

We remark that the measures which are constructed on other sets that the
FPS and TVS use GFFs which are independent of the fractal we construct
a measure on, whereas the measures on the local sets of the GFF use the
very GFF that they are coupled with.

Furthermore, note that while µ is also a measure on CLE4 (provided that
a = b = 2λ), it is different from the CLE measure constructed in the other
work. The CLE measure should be the Minkowski content, whereas the
TVS measure should be the conformal Minkowski content.
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Constructing measures using the GFF

Often, above mentioned measures are too hard to construct. A natural way
to construct measures on GFF-related fractals is via the GFF.

1 For a GFF h on a domain D, pick/construct object Xh(z) such that Xh

is supported and non-negative on the desired random element K ⊆ D.
2 Take the conditional expectation E[Xh(dz)|K ], possibly multiplied by

some compensator F (z) : D → R.
For many choices of Xh, this yields a measure on the random fractal K
which exhibits conformal covariance with the “right” exponent.
The compensator F is typically a power of the conformal radius, to handle
the conformal radius terms that naturally occur when considering the
image/pushforward of Xh.
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Construction

Measure Ξ on CLEκ carpet/gasket κ ∈ (8/3, 4) ∪ (4, 8) constructed
as a conditional expectation of the natural LQG measure
([Miller-Sheffield-Werner, 2020]) on CLEκ, given the CLEκ, with
compensator being an appropriate power of the conformal radius.

Local finiteness of intensity E[Ξ] follows from the finiteness of the
intensity of the natural LQG measure as well as the decomposition of
a quantum disk/generalised quantum disk into the sum of a
zero-boundary GFF and a harmonic function. Thus, Ξ is a.s. locally
finite.
By some LQG-type calculations, it follows that the associated family
of laws (PD) is conformally covariant with exponent dκ and respects
the CLEκ Markov property.
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Existence of measure on CLE4

Pick sequence κn ↗ 4 and couple each CLEκn with the same family of
Brownian loop soups with intensity constants cn ↗ 1 and let Ξκn be
the constructed measures normalised to have expected total mass 1.

By monotonicity, the CLEκn carpets Γκn converges to the CLE4
carpet Γ4 in the topology of the Hausdorff distance. By the Skorokhod
representation theorem, (Γκn ,Ξκn) converge a.s. to (Γ4,Ξ4) where Ξ4

is a measure on Γ4.
Conformal covariance with exponent d4 and the property that the
associated laws satisfy the CLE4 Markov property are inherited from
the corresponding properties of the measures Ξκn .
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Uniqueness of CLE measure

The uniqueness was proved in two steps.

1 Note that the conformal covariance implies a certain conformal
covariance formula for the intensities. This uniquely characterises the
intensity measure (up to multiplicative constant).

2 Explore the CLEκ piece by piece and use the property of respecting
the CLEκ Markov property.
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Form of the intensity

Let (Γ,Ξ) ∼ PD.
By the conformal covariance, we have that if ϕ : D → D is conformal
and we set Γ̃ = ϕ(Γ) and

Ξ̃(dz) = |ϕ′(z)|−dΞ ◦ ϕ(dz),

then (Γ̃, Ξ̃)
d
= (Γ,Ξ).

Taking expectations, we have

E[Ξ](dz) = |ϕ′(z)|−dE[Ξ] ◦ ϕ(dz)

for all ϕ : D → D conformal. This completely determines the form of
E[Ξ].
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Structure of intensity

Let B(D) denote the σ-algebra of Borel subsets of D.

Lemma
Let m be a locally finite measure on (D,B(D)) for which there exists a
d ∈ R such that for each Möbius transformation ϕ : D → D, we have

m(dz) = |ϕ′(z)|−dm ◦ ϕ(dz).

Then there exists a constant Cm such that

m(dz) = Cm

(
1

1 − |z |2

)2−d

dz .

Proof consists of first showing that m is absolutely continuous with respect
to Lebesgue measure and performing a calculation and letting
ϕ(w) = w−z

1−zw .

Lukas Schoug (Based on joint work with Jason Miller) (Helsinki)Measure on fractals
Random Conformal Geometry and Related Fields in Jeju 9 June 2023
29 / 31



Structure of intensity

Let B(D) denote the σ-algebra of Borel subsets of D.

Lemma
Let m be a locally finite measure on (D,B(D)) for which there exists a
d ∈ R such that for each Möbius transformation ϕ : D → D, we have

m(dz) = |ϕ′(z)|−dm ◦ ϕ(dz).

Then there exists a constant Cm such that

m(dz) = Cm

(
1

1 − |z |2

)2−d

dz .

Proof consists of first showing that m is absolutely continuous with respect
to Lebesgue measure and performing a calculation and letting
ϕ(w) = w−z

1−zw .

Lukas Schoug (Based on joint work with Jason Miller) (Helsinki)Measure on fractals
Random Conformal Geometry and Related Fields in Jeju 9 June 2023
29 / 31



Uniqueness

Let (PD) and (P̃D) be as in the statement of the existence/uniqueness
theorem and assume that (Γ,Ξ) ∼ PD and (Γ, Ξ̃) ∼ P̃D are coupled so that
the CLEκ is the same and E[Ξ(D)] = E[Ξ̃(D)] = 1

1 Show that Ξ(L) = 0 a.s. for any loop L ∈ Γ.
2 Define a suitable exploration Γn of Γ.
3 Note that any finite step of the exploration, the discovered part of the

carpet/gasket has 0 mass for Ξ and Ξ̃.
4 What is left to explore is conditionally independent CLEκ given the

explored parts.
5 By conformal covariance and the property of respecting the CLEκ

Markov property the mass assigned to the part of the carpet/gasket
left to be explored is the same for Ξ and Ξ̃.

6 Deduce that Ξ = Ξ̃.

Uniqueness is proved!
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Thanks for listening!
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