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Background: Brownian loop soups, isomorphism, level lines



Brownian loop soups in the plane (Lawler-Werner)

The Brownian loop measure µ is a measure on parametrized loops

µ =

∫
R2

∫ ∞
0

1

t
p(t, z , z)Pz,tdtdλ(z)

I p(t, ·, ·) is the transition density of the Brownian motion. In R2, we
have

p(t, x , y) =
1

2πt
e−‖y−x‖

2/(2t).

I Pz,t is the probability measure on Brownian bridges in R2 rooted at
z with time length t;

I dλ is the Lebesgue measure on R2.

This measure is infinite, but locally finite.

A Brownian loop soup with intensity θ > 0 is a Poisson point process of
intensity θµ for θ > 0. A different intensity parameter c = 2θ is also
widely used.
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For any domain D ⊂ R2, let µD be µ restricted to the loops that are
contained in D. A Brownian loop soup in D with intensity θ is a Poisson
point process of intensity θµD .

Figure: Brownian loop soup in the unit square

If D is a bounded domain, then inside a Brownian loop soup in D,

I there are a.s. finitely many big loops (time-length or dimeter ≥ ε)

I and a.s. infinitely many small loops (time-length or dimeter ≤ ε). In
particular, the union of all loops in a loop soup is dense.



For any domain D ⊂ R2, let µD be µ restricted to the loops that are
contained in D. A Brownian loop soup in D with intensity θ is a Poisson
point process of intensity θµD .

Figure: Brownian loop soup in the unit square

If D is a bounded domain, then inside a Brownian loop soup in D,

I there are a.s. finitely many big loops (time-length or dimeter ≥ ε)

I and a.s. infinitely many small loops (time-length or dimeter ≤ ε). In
particular, the union of all loops in a loop soup is dense.



Conformal invariance

Let f be a conformal map from D1 onto D2. Let ΓD1 be a Brownian loop
soup in D1. Then f (ΓD1 ) is a Brownian loop soup in D2.

f

True for any intensity θ > 0.



Brownian loop soup clusters

Two loops are in the same cluster if there is a finite chain of loops that
connect them to each other.

By Sheffield-Werner [2012]

Phase transition at the intensity
c = 1: A loop soup in D with c > 1
has a.s. one single cluster. A loop
soup in D with intensity c has a.s.
infinitely many clusters if c ≤ 1.

For c ∈ (0, 1], the outer boundaries
of the closures of the outermost
clusters form a collection of simple
loops which is distributed as a
conformal loop ensemble (CLE).

The parameter c ∈ (0, 1] is also the central charge and
c(κ) = (6− κ)(3κ− 8)/(2κ).. This corresponds to κ ∈ (8/3, 4].
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Level lines of the GFF: κ = 4

I Chordal version. Schramm-Sheffield [2010] introduced local sets.
SLE4 is coupled to the GFF as its level line.

I Loop version. Miller-Sheffield: coupling with CLE4.
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I Other variants by Aru-Sepúlveda-Werner (two-valued sets),
Miller-Sheffield-Werner (boundary CLE), etc.
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Isomorphism theory

Symanzik, Brydges-Frölich-Spencer, Dynkin : different versions of
isomorphism relating the occupation time of Brownian motions to
random fields

Le Jan extended it to the Brownian loop soups.

Theorem 1 (Le Jan)
The occupation time field T of a Brownian loop soup with intensity
c = 1 is equal to (1/2 times) the square of the Gaussian free field ϕ.

True in dimensions 1, 2, 3 (continuum), and also for random walk loop
soups (with exponential holding time) on discrete graphs.

In d = 1 (continuum) and on a discrete graph, occupation time field is
directly well defined as a function.
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We will focus on d = 2, where we need to renormalize. The occupation
time field T is a distribution. For an open set O ⊂ D,

T (O) := lim
ε→0

Tε(O)− E[Tε(O)].

The GFF ϕ is a distribution. The square of ϕ is defined via a
renormalization procedure, and is called the Wick square

: ϕ2 : (f ) = lim
ε→0

∫
D

(
ϕε(x)2 − E[ϕε(x)2]

)
f (x)dx ,

where ϕε(x) = ϕ(B(x , ε))/(πε2).
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Lupu’s cable graph

Take a discrete graph, and consider each edge as a continuous interval.
Consider a loop soup made of 1D Brownian motions on the edges, which
go to each of the adjacent edges with equal probabilities, when arriving
at a vertex.

I The occupation time field of this loop soup is a continuous function.

I The isomorphism still holds on this graph, i.e., the occupation time
field is equal to the square of the GFF on the cable graph.

I The GFF on the cable graph restricted to the vertices is a GFF on
the discrete graph.



Lupu’s cable graph

By Lupu [2016]: Given a loop soup on the cable graph, one can take the
square root of its occupation time, and give i.i.d. signs to each cluster.
This gives rise to a GFF on the cable graph.

This recovers the GFF as a measurable function of the loop soup on the
cable graph and the signs of the clusters.
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In the 2D continuum, can we recover the GFF as a measurable function
of the Brownian loop soup and the i.i.d. signs of its clusters?

In 2D, the occupation time field is a distribution (not a function), hence
we cannot take its square root.
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Q.-Werner: Three couplings of different natures commute
(proof using Lupu’s cable graph)

(critical) loop soup CLE4

GFF

Sheffield-Werner

Isomorphism

Schramm-Sheffield
Le Jan

Miller-Sheffield

Local set, Level line

Commutation

Aru-Lupu-Sepúlveda: Describe the clusters using nested CLE4. The GFF
h on D can be decomposed via the clusters:

ϕ =
∑

C clusters

σCνC .

σC ∈ {−1, 1} i.i.d. fair coins.
νC is Minkowski content of C.

Proof crucially relies on the couplings between the critical loop soup,
CLE4 and the GFF.
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A conformally invariant field for each intensity c ∈ (0, 1]



What is a natural analogue for subcritical intensities?

Loop soup CLE4

Field???

Sheffield-Werner

Level line???Isomorphism???



A field hθ for θ ∈ (0, 1/2]

Theorem 2 (Jego, Lupu, Q., 2023+)

1. Covariance: There exists Cθ : D × D → [0,∞] such that for all test
function f ,

E(hθ, f )2 =

∫
D×D

f (x)Cθ(x , y)f (y)dxdy .

The blow-up of the covariance Cθ on the diagonal is given by

Cθ(x , y) =

(
log

1

|x − y |

)2(1−θ)+o(1)

as x − y → 0.

2. Conformal invariance: Let ψ : D → D̃ be a conformal map between
two bounded simply connected domains We have

hθ,D ◦ ψ−1 (d)
= hθ,D̃ .

3. Symmetry: hθ
(d)
= −hθ.



A field hθ for θ ∈ (0, 1/2]

Theorem 3 (Jego, Lupu, Q., 2023+)
For θ ∈ (0, 1/2], hθ is a measurable function of the loop soup together
with i.i.d. signs (σC) of the clusters. The field hθ can be decomposed via
the clusters in a loop soup of intensity θ:

ϕ =
∑

C clusters

σCνC .

σC ∈ {−1, 1} i.i.d. fair coins, νC is Minkowski content of C.

When θ = 1/2, h = hθ has the law of a GFF in D, so that

: L :=
1

2
: h2 : .

We recover a result by Aru, Lupu and Sepúlveda, but we use a different
approach.
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Isomorphism for θ ∈ (0, 1/2)

A conjecture that we plan to prove in a subsequent paper:

Conjecture 1 (Construction of hθ from a discrete loop soup)
Sample a random walk loop soup on a discrete lattice, with occupation
time field Lθ,N(x). Define

hθ,N(x) :=
Γ(θ)

21−θΓ(2− θ)
σCx (2πLθ,N(x))1−θ.

Then hθ,N converges to a constant times hθ.

Permanental field: by Marcus-Rosen [2010], before loop soup! Then
identified with the loop-soup occupation time field by Le
Jan-Marcus-Rosen [2012].

Our field: fractional power of the permanental field. Morally, we expect
L = |hθ|1/(1−θ). Name: Fractional permanental field?



One-dimensional analogue

Le Jan, Lupu: The occupation time field of a 1D loop soup of intensity θ
on R+ is distributed as a BESQ2θ on R+.

For θ ∈ (0, 1], BESQ2θ a.s. hits 0 infinitely many times. For θ > 1,
BESQ2θ a.s. never hits 0.

Naively, if we take Tθ = BESQ2θ, take the square root, and give i.i.d.
signs to each cluster (or excursion), then we get a Bessel process with
dimension 2θ.

Square Bessel Bessel

However, surprisingly, the correct thing is to take the fractional power
1− θ ! This means taking the square root for θ = 1/2.
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Let Tθ be the occupation time field of a loop soup on [0,∞) with
intensity θ ∈ (0, 1), so that Tθ is distributed as a square Bessel process
with dimension 2θ. Let hθ be obtained from T by taking the power
1− θ, and then choosing i.i.d. signs for each cluster (excursion).

Lemma 4
For all 0 ≤ x ≤ y , and all bounded measurable function F ,

E [hθ(x)hθ(y)F (Tθ(z), z ∈ [x , y ])]

=
Γ(θ∗)

Γ(θ)
G (x , y)2(1−θ)E [F (Tθ∗(z), z ∈ [x , y ])] ,

where θ∗ = 2− θ is the dual intensity, and G (x , y) = 2x ∧ y is the
Green’s function on [0,∞).

Tilting the probability by hθ(x)hθ(y) amounts to changing the dimension
of the Bessel process (intensity of the loop soup) to its dual.

Lemma 5
Let θ ∈ (0, 1). The process hθ is a martingale.
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An analogous result in dimension two

Lemma 6 (Jego, Lupu, Q., 2023+)
For x , y ∈ D, we can construct a probability measure Px↔y on a loop
soup in D conditioned to have a cluster that goes through both x and y .

Theorem 7 (Jego, Lupu, Q., 2023+)
Let F : D × D × L→ R be a bounded measurable function such that for
all L ∈ L, F (·, ·,L) is smooth. Then

E
[∫

D

F (x , y ,LθD)hθ(x)hθ(y)dxdy

]
=

∫
D×D

Cθ(x , y)Ex↔y [F (x , y ,L)] dxdy .



Level line of our field

Partial exploration of the loop soup (using the partial exploration of the
CLE, by Sheffield-Werner).

We show that SLEκ is a level line of hθ with constant boundary
conditions on both sides, where

2θ(κ) = c(κ) = (6− κ)(3κ− 8)/(2κ).



Level line of our field

I The level-line/GFF coupling works only for κ = 4.

I A more general flow-line/GFF coupling is developed by
Miller-Sheffield in Imaginary Geometry which works for SLEκ for all
κ.

−λ+ winding λ+ winding

However, for κ 6= 4, there is a winding term which makes the
coupling less amenable.

I Our coupling does not have any winding term.

Our field is a generalisation of the Gaussian free field.

Attention: Our field is not equal to the CLE nesting field!
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Crossing exponent in the Brownian loop soup



Key ingredients in the proof of Theorem 2

The correlation function is given by the following limit:

Cθ(x , y) := lim
γ→0

1

Z 2
γ

P[x
Lθ

D∧Ξx
a∧Ξy

a←→ y ],

where

Zγ = P
(
e−1∂D

Lθ
D←→ Ξ0

a

)
, Ξx

a ≈ B(x , e−c/γ), γ =
√

2a.

I Main input: We compute the crossing exponent

P
(
e−1∂D

Lθ
D←→ r∂D

)
= | log r |−1+θ+o(1).

As a consequence, Zγ = γ1−θ+o(1).

As a consequence, the correlation function blows up as

Cθ(x , y) =

(
log

C

|x − y |

)2(1−θ)+o(1)

as x − y → 0.
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Crossing exponent of a cluster

Theorem 8 (Jego, Lupu, Q.)
Let θ ∈ (0, 1/2] and r ∈ (0, 1). The probability that a cluster in a
Brownian loop soup LθD intersects both the microscopic circle ε∂D and
the macroscopic circle r∂D decays like

P
(
ε∂D

Lθ
D←→ r∂D

)
= | log ε|−1+θ+o(1) as ε→ 0.

I When θ = 0, this probability decays like | log ε|−1.

I When θ = 1/2, this probability decays like | log ε|−1/2.

This cannot be obtained using CLE. The probability that n ≥ 2 clusters
in LθD intersect both the microscopic circle ε∂D and the macroscopic
circle r∂D should decay like

εα2n+o(1) as ε→ 0,

where α2n is the 2n-arm exponent of SLE. Polynomial in ε!
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Exact scaling limit of the crossing probability

Theorem 9 (Jego, Lupu, Q.)
Let θ ∈ (0, 1/2]. For all s > 1, the following crossing probability
converges

P
(
δ∂D

Lθ
D←→ δs∂D

)
−−−→
δ→0

f∞(s) (1)

where

f∞(s) =
sin(πθ)

π

∫ ∞
s−1

tθ−1(t + 1)−1dt. (2)

We can observe that

f∞(s) ∼ sin(πθ)

π(1− θ)
sθ−1, as s →∞. (3)
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A fixed-point equation

If f∞ exists, then it should satisfy

f∞(s) = 1−
(

1− 1

s

)θ
+θ(s−1)θ

∫ ∞
1

(s+t−1)−θ−1f∞(t)dt, s ≥ 1. (4)

I One loop crossing δ∂D↔ δs∂D : 1−
(

1− 1
s

)θ
I The first loop crosses exactly δ∂D↔ δ1+(s−1)/t∂D, and the rest is

crossed by a cluster in δD.

For all α ∈ (0, 1− θ), the equation (4) admits a unique solution
belonging to

Fα :=

{
f : [1,∞)→ [0, 1] measurable,‖f ‖α := sup

s≥1
sα|f (s)| <∞

}
.

Tightness + Uniqueness =⇒ Existence of f∞.
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Polar sets of a cluster

Let D ⊂ C be a bounded open simply connected domain and let A ⊂ D
be a Borel set. We will say that A is polar for the clusters of LθD if

P
(
∃ C cluster of LθD : C ∩ A 6= ∅

)
= 0.

Let K : C× C→ [0,∞] be a measurable function and let

CapK (A) :=

(
inf

{∫
K (x , y)µ(dx)µ(dy) : µ probability measure on A

})−1

be the capacity of A with respect to the kernel K .

Theorem 10 (Jego-Lupu-Q.)
Let θ ∈ (0, 1/2], D ⊂ C be a bounded open simply connected domain
and let A ⊂ D be a closed set. If A is polar for the clusters of LθD , then
Caplogα(A) = 0 for all α > 1− θ. Conversely, if A is not polar for the

clusters of LθD , then Caplogα(A) > 0 for all α < 1− θ.

Kakutani’s theorem: A closed set A is polar for Brownian motion iff
Caplogα(A) = 0 for α = 1.



Minkowski content

Theorem 11 (Jego, Lupu, Q.)
Let θ ∈ (0, 1/2]. A cluster Ck in a Brownian loop soup LθD a.s. has
Minkowski gauge function t2G (t) for some function
G (t) = | log t|1−θ+o(1).

The Minkowski content µk of Ck under the gauge function t2G (t) is a
radon measure.

For all bounded measurable function f : C→ R,

k∑
j=1

σCj (µj , f ) −→
k→∞

(hθ, f ).



Thank you for your attention !


	Background: Brownian loop soups, isomorphism, level lines
	A conformally invariant field for each intensity c(0,1]
	Crossing exponent in the Brownian loop soup

