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Brownian loop soups in the plane (Lawler-Werner)

The Brownian loop measure p is a measure on parametrized loops

/ / p(t,z,z)P, ;dtd\(z)
R2

» p(t,-,-) is the transition density of the Brownian motion. In R?, we
have
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» P, . is the probability measure on Brownian bridges in R? rooted at
z with time length t;

» d) is the Lebesgue measure on R2.
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Brownian loop soups in the plane (Lawler-Werner)

The Brownian loop measure p is a measure on parametrized loops

/ / p(t,z,z)P, ;dtd\(z)
R2

» p(t,-,-) is the transition density of the Brownian motion. In R?, we
have

1 2
tx,y) = ——e Ily=xI7/(1),
p(t.x,y) = 5—
» P, . is the probability measure on Brownian bridges in R? rooted at

z with time length t;
» d) is the Lebesgue measure on R2.

This measure is infinite, but locally finite.

A Brownian loop soup with intensity 6 > 0 is a Poisson point process of
intensity Ou for 8 > 0. A different intensity parameter ¢ = 20 is also
widely used.



For any domain D C R?, let up be j restricted to the loops that are
contained in D. A Brownian loop soup in D with intensity 6 is a Poisson
point process of intensity 6pup.

Figure: Brownian loop soup in the unit square



For any domain D C R?, let up be j restricted to the loops that are
contained in D. A Brownian loop soup in D with intensity 6 is a Poisson
point process of intensity 6pup.

Figure: Brownian loop soup in the unit square

If D is a bounded domain, then inside a Brownian loop soup in D,
> there are a.s. finitely many big loops (time-length or dimeter > ¢)

» and a.s. infinitely many small loops (time-length or dimeter < ¢). In
particular, the union of all loops in a loop soup is dense.



Conformal invariance

Let f be a conformal map from D; onto D,. Let ['p, be a Brownian loop
soup in Dy. Then f(I'p,) is a Brownian loop soup in D,.
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True for any intensity 6 > 0.
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Brownian loop soup clusters

Two loops are in the same cluster if there is a finite chain of loops that
connect them to each other.

By Sheffield-Werner [2012]

Phase transition at the intensity
c =1: Aloop soup in D with ¢ > 1
has a.s. one single cluster. A loop
soup in D with intensity ¢ has a.s.
infinitely many clusters if ¢ < 1.
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Brownian loop soup clusters

Two loops are in the same cluster if there is a finite chain of loops that
connect them to each other.

By Sheffield-Werner [2012]

Phase transition at the intensity
c =1: Aloop soup in D with ¢ > 1
has a.s. one single cluster. A loop
soup in D with intensity ¢ has a.s.
infinitely many clusters if ¢ < 1.

For ¢ € (0, 1], the outer boundaries
of the closures of the outermost
clusters form a collection of simple
loops which is distributed as a
conformal loop ensemble (CLE).

The parameter ¢ € (0, 1] is also the central charge and
c(k) = (6 — k)(3x — 8)/(2k).. This corresponds to € (8/3,4].



Level lines of the GFF: Kk = 4

» Chordal version. Schramm-Sheffield [2010] introduced local sets.
SLE, is coupled to the GFF as its level line.
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Level lines of the GFF: kK = 4

» Chordal version. Schramm-Sheffield [2010] introduced local sets.
SLE, is coupled to the GFF as its level line.

» Loop version. Miller-Sheffield: coupling with CLE;,.

» Other variants by Aru-Sepilveda-Werner (two-valued sets),
Miller-Sheffield-Werner (boundary CLE), etc.
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Isomorphism theory

Symanzik, Brydges-Frolich-Spencer, Dynkin : different versions of
isomorphism relating the occupation time of Brownian motions to
random fields

Le Jan extended it to the Brownian loop soups.

Theorem 1 (Le Jan)

The occupation time field T of a Brownian loop soup with intensity
c =1 is equal to (1/2 times) the square of the Gaussian free field .

True in dimensions 1,2, 3 (continuum), and also for random walk loop
soups (with exponential holding time) on discrete graphs.

In d =1 (continuum) and on a discrete graph, occupation time field is
directly well defined as a function.



We will focus on d = 2, where we need to renormalize. The occupation
time field T is a distribution. For an open set O C D,

7(0) = E'TO T.(0) — E[T.(0)].



We will focus on d = 2, where we need to renormalize. The occupation
time field T is a distribution. For an open set O C D,

7(0) = E'TO T.(0) — E[T.(0)].

The GFF ¢ is a distribution. The square of ¢ is defined via a
renormalization procedure, and is called the Wick square

LG (F) = lim / (e (x)? — Efp(x)2]) f(x)dx,
D

e—0

where ¢ (x) = ¢(B(x; £))/(me?).



Lupu’s cable graph

Take a discrete graph, and consider each edge as a continuous interval.
Consider a loop soup made of 1D Brownian motions on the edges, which
go to each of the adjacent edges with equal probabilities, when arriving
at a vertex.

» The occupation time field of this loop soup is a continuous function.
» The isomorphism still holds on this graph, i.e., the occupation time
field is equal to the square of the GFF on the cable graph.

» The GFF on the cable graph restricted to the vertices is a GFF on
the discrete graph.




Lupu’s cable graph

By Lupu [2016]: Given a loop soup on the cable graph, one can take the
square root of its occupation time, and give i.i.d. signs to each cluster.
This gives rise to a GFF on the cable graph.




Lupu’s cable graph

By Lupu [2016]: Given a loop soup on the cable graph, one can take the
square root of its occupation time, and give i.i.d. signs to each cluster.
This gives rise to a GFF on the cable graph.

This recovers the GFF as a measurable function of the loop soup on the
cable graph and the signs of the clusters.
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of the Brownian loop soup and the i.i.d. signs of its clusters?



In the 2D continuum, can we recover the GFF as a measurable function
of the Brownian loop soup and the i.i.d. signs of its clusters?

In 2D, the occupation time field is a distribution (not a function), hence
we cannot take its square root.




Q.-Werner: Three couplings of different natures commute
(proof using Lupu's cable graph)

Sheffield-Werner

(critical) loop soup -— CLE,

Commutation Schramm-Sheffield
Miller-Sheffield
Local set, Level line

Le Jan

Isomorphism
GFF

Aru-Lupu-Sepllveda: Describe the clusters using nested CLE;. The GFF
h on D can be decomposed via the clusters:

Y = Z aclc.
C clusters

oc € {—1,1} i.i.d. fair coins.
ve is Minkowski content of C.



Q.-Werner: Three couplings of different natures commute
(proof using Lupu's cable graph)

Sheffield-Werner

(critical) loop soup -— CLE,

Commutation Schramm-Sheffield
Miller-Sheffield
Local set, Level line

Le Jan
Isomorphism
GFF

Aru-Lupu-Sepllveda: Describe the clusters using nested CLE;. The GFF
h on D can be decomposed via the clusters:

Y = Z aclc.

C clusters

oc € {—1,1} i.i.d. fair coins.
ve is Minkowski content of C.

Proof crucially relies on the couplings between the critical loop soup,
CLE4 and the GFF.
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What is a natural analogue for subcritical intensities?

Sheffield-Werner
Loop soup - > CLE4
w
o
Isomorphism??? “«_ 7 Level line???
A

»
Field?77?



A field hy for 6 € (0,1/2]

Theorem 2 (Jego, Lupu, Q., 2023+)

1.

Covariance: There exists Cy : D x D — [0, 00] such that for all test
function f,

E(hy, f)? = /D ARG ().

The blow-up of the covariance Cy on the diagonal is given by

1 2(1-6)+0(1)
) as x—y—0.

Co(x,y) = (log

Ix =yl

Conformal invariance: Let ¢ : D — D be a conformal map between
two bounded simply connected domains We have

hg,D 01/)71 (:) h6’,f)'

Symmetry: hy @ —hy.



A field hy for 6 € (0,1/2]

Theorem 3 (Jego, Lupu, Q., 2023+)

For 0 € (0,1/2], hy is a measurable function of the loop soup together
with i.i.d. signs (o¢) of the clusters. The field hy can be decomposed via
the clusters in a loop soup of intensity 6:

Y = Z oclc.

C clusters

oc € {—1,1} iid. fair coins, vc is Minkowski content of C.



A field hy for 6 € (0,1/2]

Theorem 3 (Jego, Lupu, Q., 2023+)

For 0 € (0,1/2], hy is a measurable function of the loop soup together
with i.i.d. signs (o¢) of the clusters. The field hy can be decomposed via
the clusters in a loop soup of intensity 6:

Y = Z oclc.

C clusters

oc € {—1,1} iid. fair coins, vc is Minkowski content of C.

When 0 = 1/2, h = hy has the law of a GFF in D, so that

We recover a result by Aru, Lupu and Sepllveda, but we use a different
approach.



Isomorphism for 6 € (0,1/2)

A conjecture that we plan to prove in a subsequent paper:

Conjecture 1 (Construction of hy from a discrete loop soup)

Sample a random walk loop soup on a discrete lattice, with occupation
time field Lg y(x). Define

r()

honx) = 5012 —5)”

CX(27TL97N(X))179.

Then hg n converges to a constant times hy.

Permanental field: by Marcus-Rosen [2010], before loop soup! Then
identified with the loop-soup occupation time field by Le
Jan-Marcus-Rosen [2012].

Our field: fractional power of the permanental field. Morally, we expect
L = |hg|*(*=9) Name: Fractional permanental field?



One-dimensional analogue

Le Jan, Lupu: The occupation time field of a 1D loop soup of intensity 6
on RT is distributed as a BESQqy on R*.
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For 8 € (0, 1], BESQyg a.s. hits 0 infinitely many times. For § > 1,
BESQy9 a.s. never hits 0.
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dimension 26.

NAVAVERS

N

Square Bessel Bessel




One-dimensional analogue

Le Jan, Lupu: The occupation time field of a 1D loop soup of intensity 6
on RT is distributed as a BESQqy on R*.

For 8 € (0, 1], BESQyg a.s. hits 0 infinitely many times. For § > 1,
BESQy9 a.s. never hits 0.

Naively, if we take Ty = BESQyg, take the square root, and give i.i.d.
signs to each cluster (or excursion), then we get a Bessel process with
dimension 26.
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Square Bessel Bessel

However, surprisingly, the correct thing is to take the fractional power
1 — 6! This means taking the square root for 6 = 1/2.



Let Ty be the occupation time field of a loop soup on [0, c0) with
intensity 6 € (0,1), so that Ty is distributed as a square Bessel process
with dimension 26. Let hy be obtained from T by taking the power

1 — 6, and then choosing i.i.d. signs for each cluster (excursion).

Lemma 4
For all 0 < x <y, and all bounded measurable function F,

E [ho(x)ho(y)F(To(2), z € [x, y])]

= G(x,y) " OR[F(Tp-(2),z € [x,¥])],

where 0* = 2 — 0 is the dual intensity, and G(x,y) = 2x Ay is the
Green's function on [0, 00).



Let Ty be the occupation time field of a loop soup on [0, c0) with
intensity 6 € (0,1), so that Ty is distributed as a square Bessel process
with dimension 26. Let hy be obtained from T by taking the power

1 — 6, and then choosing i.i.d. signs for each cluster (excursion).

Lemma 4
For all 0 < x <y, and all bounded measurable function F,

E [ho(x)ho(y)F(To(2), z € [x, y])]

_ rr((";)) Gy P OE [F(Tye(2).2 € [x, )]

where 0* = 2 — 0 is the dual intensity, and G(x,y) = 2x Ay is the
Green's function on [0, 00).

Tilting the probability by hy(x)hg(y) amounts to changing the dimension
of the Bessel process (intensity of the loop soup) to its dual.

Lemma 5
Let 0 € (0,1). The process hy is a martingale.



An analogous result in dimension two

Lemma 6 (Jego, Lupu, Q., 2023+)
For x,y € D, we can construct a probability measure Py, on a loop
soup in D conditioned to have a cluster that goes through both x and y.

Theorem 7 (Jego, Lupu, Q., 2023+)
Let F: D x D x £ — R be a bounded measurable function such that for
all L € £, F(-,-, L) is smooth. Then

E UD F(vavﬁ%)he(X)ha(y)dxdy} :/L;XD Co(x,y)Exesy [F(x,y, £)] dxdy.



Level line of our field

Partial exploration of the loop soup (using the partial exploration of the
CLE, by Sheffield-Werner).

We show that SLE, is a level line of hy with constant boundary
conditions on both sides, where

20(k) = c(k) = (6 — k)(3k — 8)/(2k).
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Level line of our field

» The level-line/GFF coupling works only for k = 4.

» A more general flow-line/GFF coupling is developed by
Miller-Sheffield in Imaginary Geometry which works for SLE,; for all
K.

— A+ winding A winding

However, for k # 4, there is a winding term which makes the
coupling less amenable.

» Our coupling does not have any winding term.

Our field is a generalisation of the Gaussian free field.

Attention: Our field is not equal to the CLE nesting field!
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Key ingredients in the proof of Theorem 2

The correlation function is given by the following limit:

1 GASINZY
Co(x,y) :== lim —P[x FopZa0=s

150 72 vl

where

Z, :IP( 19D <2, —°> . =X B(x,e” /),
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Key ingredients in the proof of Theorem 2

The correlation function is given by the following limit:

yls

.1 LONZINZY
Co(x,y) == 7"2‘0 ?P[X °
Y

where

2]
Z, =P (e—laﬂ) PN Eg) , =X~ B(x,e ), 4 =+2a.

» Main input: We compute the crossing exponent
£9
P (e—lam < r6]D)> = |log r|HH0TeM),

— A 1—040(1
As a consequence, Z, =~y @,
As a consequence, the correlation function blows up as

c 2(1—0)+0(1)
Ix — y|>

Co(x,y) = (Iog asx —y — 0.



Crossing exponent of a cluster

Theorem 8 (Jego, Lupu, Q.)

Let € (0,1/2] and r € (0,1). The probability that a cluster in a
Brownian loop soup LY intersects both the microscopic circle 9D and
the macroscopic circle roD decays like

4
P (58]1]) Loy raD) = | logg|~1H0+e() as e—0.
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Crossing exponent of a cluster

Theorem 8 (Jego, Lupu, Q.)

Let € (0,1/2] and r € (0,1). The probability that a cluster in a
Brownian loop soup LY intersects both the microscopic circle 9D and
the macroscopic circle roD decays like

4
P (58]1]) Loy raD) = | logg|~1H0+e() as e—0.

» When 0 = 0, this probability decays like | loge|~?.
» When 6 = 1/2, this probability decays like | loge|~%/2.
This cannot be obtained using CLE. The probability that n > 2 clusters

in E]% intersect both the microscopic circle e0D and the macroscopic
circle rOD should decay like

aznto(1)

€ as ¢ —0,

where a3, is the 2n-arm exponent of SLE. Polynomial in ¢!



Exact scaling limit of the crossing probability

Theorem 9 (Jego, Lupu, Q.)

Let 8 € (0,1/2]. For all s > 1, the following crossing probability
converges

4
IP’((SB]D &2y 65811)) — f(s) (1)

where



Exact scaling limit of the crossing probability

Theorem 9 (Jego, Lupu, Q.)
Let 8 € (0,1/2]. For all s > 1, the following crossing probability

converges
£9
IP’((S(?]D) &2y 65811)) () (1)
5—0
where
£o(s) = Sn(mo) / 1t + 1) dt. )
T s—1
We can observe that
foo(s) ~ :zrll(igg)) =1 as s — 00 (3)



A fixed-point equation

If f exists, then it should satisfy

o0
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> The first loop crosses exactly 60D < 61T~ 1/t9D, and the rest is
crossed by a cluster in .
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A fixed-point equation

If f exists, then it should satisfy

o0

fm(s):lf(lfé)aaﬁ(sfl)e/ (s+t—1)"71f (t)dt, s>1. (4)
1

0
» One loop crossing 60D « 650D : 1 — (1 — %)

> The first loop crosses exactly 60D < 61T~ 1/t9D, and the rest is
crossed by a cluster in .

For all @ € (0,1 — ), the equation (4) admits a unique solution
belonging to

Fo = {f . [1,00) — [0, 1] measurable,||f ||, := sup s®|f(s)| < oo}.
s>1

Tightness + Uniqueness = Existence of f,.



Polar sets of a cluster

Let D C C be a bounded open simply connected domain and let A C D
be a Borel set. We will say that A is polar for the clusters of L% if

P (3C cluster of £ :CNA#2)=0.

Let K: C x C — [0, 0] be a measurable function and let

Capy(A) := (inf {/ K(x, y)u(dx)u(dy) : ju probability measure on A}>_1

be the capacity of A with respect to the kernel K.

Theorem 10 (Jego-Lupu-Q.)

Let 6 € (0,1/2], D C C be a bounded open simply connected domain
and let A C D be a closed set. If A is polar for the clusters of LY then
Capyoga (A) = 0 for all « > 1 — 6. Conversely, if A is not polar for the
clusters of L}, then Capjyga(A) > 0 for all o <1 —6.

Kakutani's theorem: A closed set A is polar for Brownian motion iff
Capjga (A) = 0 for a = 1.



Minkowski content

Theorem 11 (Jego, Lupu, Q.)

Let 0 € (0,1/2]. A cluster Cy in a Brownian loop soup LY a.s. has
Minkowski gauge function t>G(t) for some function

G(t) = |log t|* 0+,

The Minkowski content ju; of Cy under the gauge function t2G(t) is a
radon measure.

For all bounded measurable function f : C — R,

> oc(uj ) — (ho, ).

" — 00
Jj=1



Thank you for your attention !
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