Conformally invariant fields out of Brownian loop soups

Wei Qian
City University of Hong Kong

> Joint work with
> Antoine Jego (EPFL) and Titus Lupu (CNRS)

Paper I: arXiv:2303.03782 Paper II: will be posted soon
Random Conformal Geometry and Related Fields in Jeju
6th June, 2023

Background: Brownian loop soups, isomorphism, level lines

Brownian loop soups in the plane (Lawler-Werner)

The Brownian loop measure μ is a measure on parametrized loops

$$
\mu=\int_{\mathbb{R}^{2}} \int_{0}^{\infty} \frac{1}{t} p(t, z, z) \mathbb{P}_{z, t} d t d \lambda(z)
$$

- $p(t, \cdot, \cdot)$ is the transition density of the Brownian motion. $\operatorname{In} \mathbb{R}^{2}$, we have

$$
p(t, x, y)=\frac{1}{2 \pi t} e^{-\|y-x\|^{2} /(2 t)} .
$$

- $\mathbb{P}_{z, t}$ is the probability measure on Brownian bridges in \mathbb{R}^{2} rooted at z with time length t;
- $d \lambda$ is the Lebesgue measure on \mathbb{R}^{2}.

Brownian loop soups in the plane (Lawler-Werner)

The Brownian loop measure μ is a measure on parametrized loops

$$
\mu=\int_{\mathbb{R}^{2}} \int_{0}^{\infty} \frac{1}{t} p(t, z, z) \mathbb{P}_{z, t} d t d \lambda(z)
$$

- $p(t, \cdot, \cdot)$ is the transition density of the Brownian motion. $\ln \mathbb{R}^{2}$, we have

$$
p(t, x, y)=\frac{1}{2 \pi t} e^{-\|y-x\|^{2} /(2 t)} .
$$

- $\mathbb{P}_{z, t}$ is the probability measure on Brownian bridges in \mathbb{R}^{2} rooted at z with time length t;
- $d \lambda$ is the Lebesgue measure on \mathbb{R}^{2}.

This measure is infinite, but locally finite.

Brownian loop soups in the plane (Lawler-Werner)

The Brownian loop measure μ is a measure on parametrized loops

$$
\mu=\int_{\mathbb{R}^{2}} \int_{0}^{\infty} \frac{1}{t} p(t, z, z) \mathbb{P}_{z, t} d t d \lambda(z)
$$

- $p(t, \cdot, \cdot)$ is the transition density of the Brownian motion. $\ln \mathbb{R}^{2}$, we have

$$
p(t, x, y)=\frac{1}{2 \pi t} e^{-\|y-x\|^{2} /(2 t)} .
$$

- $\mathbb{P}_{z, t}$ is the probability measure on Brownian bridges in \mathbb{R}^{2} rooted at z with time length t;
- $d \lambda$ is the Lebesgue measure on \mathbb{R}^{2}.

This measure is infinite, but locally finite.
A Brownian loop soup with intensity $\theta>0$ is a Poisson point process of intensity $\theta \mu$ for $\theta>0$. A different intensity parameter $c=2 \theta$ is also widely used.

For any domain $D \subset \mathbb{R}^{2}$, let μ_{D} be μ restricted to the loops that are contained in D. A Brownian loop soup in D with intensity θ is a Poisson point process of intensity $\theta \mu_{D}$.

Figure: Brownian loop soup in the unit square

For any domain $D \subset \mathbb{R}^{2}$, let μ_{D} be μ restricted to the loops that are contained in D. A Brownian loop soup in D with intensity θ is a Poisson point process of intensity $\theta \mu_{D}$.

Figure: Brownian loop soup in the unit square
If D is a bounded domain, then inside a Brownian loop soup in D,

- there are a.s. finitely many big loops (time-length or dimeter $\geq \varepsilon$)
- and a.s. infinitely many small loops (time-length or dimeter $\leq \varepsilon$). In particular, the union of all loops in a loop soup is dense.

Conformal invariance

Let f be a conformal map from D_{1} onto D_{2}. Let $\Gamma_{D_{1}}$ be a Brownian loop soup in D_{1}. Then $f\left(\Gamma_{D_{1}}\right)$ is a Brownian loop soup in D_{2}.

True for any intensity $\theta>0$.

Brownian loop soup clusters

Two loops are in the same cluster if there is a finite chain of loops that connect them to each other.

By Sheffield-Werner [2012]
Phase transition at the intensity $c=1$: A loop soup in D with $c>1$ has a.s. one single cluster. A loop soup in D with intensity c has a.s. infinitely many clusters if $c \leq 1$.

Brownian loop soup clusters

Two loops are in the same cluster if there is a finite chain of loops that connect them to each other.

By Sheffield-Werner [2012]
Phase transition at the intensity $c=1$: A loop soup in D with $c>1$ has a.s. one single cluster. A loop soup in D with intensity c has a.s. infinitely many clusters if $c \leq 1$.

For $c \in(0,1]$, the outer boundaries of the closures of the outermost clusters form a collection of simple loops which is distributed as a conformal loop ensemble (CLE).

Brownian loop soup clusters

Two loops are in the same cluster if there is a finite chain of loops that connect them to each other.

By Sheffield-Werner [2012]
Phase transition at the intensity $c=1$: A loop soup in D with $c>1$ has a.s. one single cluster. A loop soup in D with intensity c has a.s. infinitely many clusters if $c \leq 1$.

For $c \in(0,1]$, the outer boundaries of the closures of the outermost clusters form a collection of simple loops which is distributed as a conformal loop ensemble (CLE).

The parameter $c \in(0,1]$ is also the central charge and $c(\kappa)=(6-\kappa)(3 \kappa-8) /(2 \kappa)$.. This corresponds to $\kappa \in(8 / 3,4]$.

Level lines of the GFF: $\kappa=4$

- Chordal version. Schramm-Sheffield [2010] introduced local sets. SLE_{4} is coupled to the GFF as its level line.

Level lines of the GFF: $\kappa=4$

- Chordal version. Schramm-Sheffield [2010] introduced local sets. SLE_{4} is coupled to the GFF as its level line.
- Loop version. Miller-Sheffield: coupling with CLE_{4}.

Level lines of the GFF: $\kappa=4$

- Chordal version. Schramm-Sheffield [2010] introduced local sets. SLE_{4} is coupled to the GFF as its level line.
- Loop version. Miller-Sheffield: coupling with CLE $_{4}$.

- Other variants by Aru-Sepúlveda-Werner (two-valued sets), Miller-Sheffield-Werner (boundary CLE), etc.

Isomorphism theory

Symanzik, Brydges-Frölich-Spencer, Dynkin : different versions of isomorphism relating the occupation time of Brownian motions to random fields

Isomorphism theory

Symanzik, Brydges-Frölich-Spencer, Dynkin : different versions of isomorphism relating the occupation time of Brownian motions to random fields

Le Jan extended it to the Brownian loop soups.
Theorem 1 (Le Jan)
The occupation time field T of a Brownian loop soup with intensity $c=1$ is equal to ($1 / 2$ times) the square of the Gaussian free field φ.

Isomorphism theory

Symanzik, Brydges-Frölich-Spencer, Dynkin: different versions of isomorphism relating the occupation time of Brownian motions to random fields

Le Jan extended it to the Brownian loop soups.
Theorem 1 (Le Jan)
The occupation time field T of a Brownian loop soup with intensity $c=1$ is equal to ($1 / 2$ times) the square of the Gaussian free field φ. True in dimensions 1,2,3 (continuum), and also for random walk loop soups (with exponential holding time) on discrete graphs.

Isomorphism theory

Symanzik, Brydges-Frölich-Spencer, Dynkin : different versions of isomorphism relating the occupation time of Brownian motions to random fields

Le Jan extended it to the Brownian loop soups.
Theorem 1 (Le Jan)
The occupation time field T of a Brownian loop soup with intensity $c=1$ is equal to ($1 / 2$ times) the square of the Gaussian free field φ. True in dimensions 1, 2, 3 (continuum), and also for random walk loop soups (with exponential holding time) on discrete graphs.
In $d=1$ (continuum) and on a discrete graph, occupation time field is directly well defined as a function.

We will focus on $d=2$, where we need to renormalize. The occupation time field T is a distribution. For an open set $O \subset D$,

$$
T(O):=\lim _{\varepsilon \rightarrow 0} T_{\varepsilon}(O)-\mathbb{E}\left[T_{\varepsilon}(O)\right]
$$

We will focus on $d=2$, where we need to renormalize. The occupation time field T is a distribution. For an open set $O \subset D$,

$$
T(O):=\lim _{\varepsilon \rightarrow 0} T_{\varepsilon}(O)-\mathbb{E}\left[T_{\varepsilon}(O)\right]
$$

The GFF φ is a distribution. The square of φ is defined via a renormalization procedure, and is called the Wick square

$$
: \varphi^{2}:(f)=\lim _{\varepsilon \rightarrow 0} \int_{D}\left(\varphi_{\varepsilon}(x)^{2}-\mathbb{E}\left[\varphi_{\varepsilon}(x)^{2}\right]\right) f(x) d x
$$

where $\varphi_{\varepsilon}(x)=\varphi(B(x, \varepsilon)) /\left(\pi \varepsilon^{2}\right)$.

Lupu's cable graph

Take a discrete graph, and consider each edge as a continuous interval. Consider a loop soup made of 1D Brownian motions on the edges, which go to each of the adjacent edges with equal probabilities, when arriving at a vertex.

- The occupation time field of this loop soup is a continuous function.
- The isomorphism still holds on this graph, i.e., the occupation time field is equal to the square of the GFF on the cable graph.
- The GFF on the cable graph restricted to the vertices is a GFF on the discrete graph.

Lupu's cable graph

By Lupu [2016]: Given a loop soup on the cable graph, one can take the square root of its occupation time, and give i.i.d. signs to each cluster.
This gives rise to a GFF on the cable graph.

Lupu's cable graph

By Lupu [2016]: Given a loop soup on the cable graph, one can take the square root of its occupation time, and give i.i.d. signs to each cluster.
This gives rise to a GFF on the cable graph.

This recovers the GFF as a measurable function of the loop soup on the cable graph and the signs of the clusters.

In the 2D continuum, can we recover the GFF as a measurable function of the Brownian loop soup and the i.i.d. signs of its clusters?

In the 2D continuum, can we recover the GFF as a measurable function of the Brownian loop soup and the i.i.d. signs of its clusters?

In 2D, the occupation time field is a distribution (not a function), hence we cannot take its square root.

Q.-Werner: Three couplings of different natures commute (proof using Lupu's cable graph)

Aru-Lupu-Sepúlveda: Describe the clusters using nested CLE_{4}. The GFF h on D can be decomposed via the clusters:

$$
\varphi=\sum_{\mathcal{C} \text { clusters }} \sigma_{\mathcal{C}} \nu_{\mathcal{C}}
$$

$\sigma_{\mathcal{C}} \in\{-1,1\}$ i.i.d. fair coins.
$\nu_{\mathcal{C}}$ is Minkowski content of \mathcal{C}.
Q.-Werner: Three couplings of different natures commute (proof using Lupu's cable graph)

Aru-Lupu-Sepúlveda: Describe the clusters using nested CLE_{4}. The GFF h on D can be decomposed via the clusters:

$$
\varphi=\sum_{\mathcal{C} \text { clusters }} \sigma_{\mathcal{C}} \nu_{\mathcal{C}}
$$

$\sigma_{\mathcal{C}} \in\{-1,1\}$ i.i.d. fair coins.
$\nu_{\mathcal{C}}$ is Minkowski content of \mathcal{C}.
Proof crucially relies on the couplings between the critical loop soup, CLE_{4} and the GFF.

A conformally invariant field for each intensity $c \in(0,1]$

What is a natural analogue for subcritical intensities?

A field h_{θ} for $\theta \in(0,1 / 2]$

Theorem 2 (Jego, Lupu, Q., 2023+)

1. Covariance: There exists $C_{\theta}: D \times D \rightarrow[0, \infty]$ such that for all test function f,

$$
\mathbb{E}\left(h_{\theta}, f\right)^{2}=\int_{D \times D} f(x) C_{\theta}(x, y) f(y) d x d y
$$

The blow-up of the covariance C_{θ} on the diagonal is given by

$$
C_{\theta}(x, y)=\left(\log \frac{1}{|x-y|}\right)^{2(1-\theta)+o(1)} \quad \text { as } \quad x-y \rightarrow 0
$$

2. Conformal invariance: Let $\psi: D \rightarrow \tilde{D}$ be a conformal map between two bounded simply connected domains We have

$$
h_{\theta, D} \circ \psi^{-1} \stackrel{(\mathrm{~d})}{=} h_{\theta, \tilde{D}}
$$

3. Symmetry: $h_{\theta} \stackrel{(\mathrm{d})}{=}-h_{\theta}$.

A field h_{θ} for $\theta \in(0,1 / 2]$

Theorem 3 (Jego, Lupu, Q., 2023+)
For $\theta \in(0,1 / 2], h_{\theta}$ is a measurable function of the loop soup together with i.i.d. signs $\left(\sigma_{\mathcal{C}}\right)$ of the clusters. The field h_{θ} can be decomposed via the clusters in a loop soup of intensity θ :

$$
\varphi=\sum_{\mathcal{C} \text { clusters }} \sigma_{\mathcal{C}} \nu_{\mathcal{C}}
$$

$\sigma_{\mathcal{C}} \in\{-1,1\}$ i.i.d. fair coins, $\nu_{\mathcal{C}}$ is Minkowski content of \mathcal{C}.

A field h_{θ} for $\theta \in(0,1 / 2]$

Theorem 3 (Jego, Lupu, Q., 2023+)
For $\theta \in(0,1 / 2], h_{\theta}$ is a measurable function of the loop soup together with i.i.d. signs $\left(\sigma_{\mathcal{C}}\right)$ of the clusters. The field h_{θ} can be decomposed via the clusters in a loop soup of intensity θ :

$$
\varphi=\sum_{\mathcal{C} \text { clusters }} \sigma_{\mathcal{C}} \nu_{\mathcal{C}}
$$

$\sigma_{\mathcal{C}} \in\{-1,1\}$ i.i.d. fair coins, $\nu_{\mathcal{C}}$ is Minkowski content of \mathcal{C}.
When $\theta=1 / 2, h=h_{\theta}$ has the law of a GFF in D, so that

$$
: L:=\frac{1}{2}: h^{2}: .
$$

We recover a result by Aru, Lupu and Sepúlveda, but we use a different approach.

Isomorphism for $\theta \in(0,1 / 2)$

A conjecture that we plan to prove in a subsequent paper:
Conjecture 1 (Construction of h_{θ} from a discrete loop soup)
Sample a random walk loop soup on a discrete lattice, with occupation time field $L_{\theta, N}(x)$. Define

$$
h_{\theta, N}(x):=\frac{\Gamma(\theta)}{2^{1-\theta} \Gamma(2-\theta)} \sigma_{\mathcal{C}_{x}}\left(2 \pi L_{\theta, N}(x)\right)^{1-\theta} .
$$

Then $h_{\theta, N}$ converges to a constant times h_{θ}.
Permanental field: by Marcus-Rosen [2010], before loop soup! Then identified with the loop-soup occupation time field by Le Jan-Marcus-Rosen [2012].
Our field: fractional power of the permanental field. Morally, we expect $L=\left|h_{\theta}\right|^{1 /(1-\theta)}$. Name: Fractional permanental field?

One-dimensional analogue

Le Jan, Lupu: The occupation time field of a 1D loop soup of intensity θ on \mathbb{R}^{+}is distributed as a $\mathrm{BESQ}_{2 \theta}$ on \mathbb{R}^{+}.

One-dimensional analogue

Le Jan, Lupu: The occupation time field of a 1D loop soup of intensity θ on \mathbb{R}^{+}is distributed as a $\mathrm{BESQ}_{2 \theta}$ on \mathbb{R}^{+}.

For $\theta \in(0,1], B E S Q_{2 \theta}$ a.s. hits 0 infinitely many times. For $\theta>1$, $B E S Q_{2 \theta}$ a.s. never hits 0 .
Naively, if we take $T_{\theta}=B E S Q_{2 \theta}$, take the square root, and give i.i.d. signs to each cluster (or excursion), then we get a Bessel process with dimension 2θ.

Square Bessel

Bessel

One-dimensional analogue

Le Jan, Lupu: The occupation time field of a 1D loop soup of intensity θ on \mathbb{R}^{+}is distributed as a $\mathrm{BESQ}_{2 \theta}$ on \mathbb{R}^{+}.

For $\theta \in(0,1], B E S Q_{2 \theta}$ a.s. hits 0 infinitely many times. For $\theta>1$, $B E S Q_{2 \theta}$ a.s. never hits 0 .
Naively, if we take $T_{\theta}=B E S Q_{2 \theta}$, take the square root, and give i.i.d. signs to each cluster (or excursion), then we get a Bessel process with dimension 2θ.

Square Bessel

Bessel

However, surprisingly, the correct thing is to take the fractional power $1-\theta$! This means taking the square root for $\theta=1 / 2$.

Let T_{θ} be the occupation time field of a loop soup on $[0, \infty)$ with intensity $\theta \in(0,1)$, so that T_{θ} is distributed as a square Bessel process with dimension 2θ. Let h_{θ} be obtained from T by taking the power $1-\theta$, and then choosing i.i.d. signs for each cluster (excursion).
Lemma 4
For all $0 \leq x \leq y$, and all bounded measurable function F,

$$
\begin{aligned}
& \mathbb{E}\left[h_{\theta}(x) h_{\theta}(y) F\left(T_{\theta}(z), z \in[x, y]\right)\right] \\
= & \frac{\Gamma\left(\theta^{*}\right)}{\Gamma(\theta)} G(x, y)^{2(1-\theta)} \mathbb{E}\left[F\left(T_{\theta^{*}}(z), z \in[x, y]\right)\right],
\end{aligned}
$$

where $\theta^{*}=2-\theta$ is the dual intensity, and $G(x, y)=2 x \wedge y$ is the Green's function on $[0, \infty)$.

Let T_{θ} be the occupation time field of a loop soup on $[0, \infty)$ with intensity $\theta \in(0,1)$, so that T_{θ} is distributed as a square Bessel process with dimension 2θ. Let h_{θ} be obtained from T by taking the power $1-\theta$, and then choosing i.i.d. signs for each cluster (excursion).
Lemma 4
For all $0 \leq x \leq y$, and all bounded measurable function F,

$$
\begin{aligned}
& \mathbb{E}\left[h_{\theta}(x) h_{\theta}(y) F\left(T_{\theta}(z), z \in[x, y]\right)\right] \\
= & \frac{\Gamma\left(\theta^{*}\right)}{\Gamma(\theta)} G(x, y)^{2(1-\theta)} \mathbb{E}\left[F\left(T_{\theta^{*}}(z), z \in[x, y]\right)\right],
\end{aligned}
$$

where $\theta^{*}=2-\theta$ is the dual intensity, and $G(x, y)=2 x \wedge y$ is the Green's function on $[0, \infty)$.
Tilting the probability by $h_{\theta}(x) h_{\theta}(y)$ amounts to changing the dimension of the Bessel process (intensity of the loop soup) to its dual.
Lemma 5
Let $\theta \in(0,1)$. The process h_{θ} is a martingale.

An analogous result in dimension two

Lemma 6 (Jego, Lupu, Q., 2023+)
For $x, y \in D$, we can construct a probability measure $\mathbb{P}_{x \leftrightarrow y}$ on a loop soup in D conditioned to have a cluster that goes through both x and y.

Theorem 7 (Jego, Lupu, Q., 2023+)
Let $F: D \times D \times \mathfrak{L} \rightarrow \mathbb{R}$ be a bounded measurable function such that for all $\mathcal{L} \in \mathfrak{L}, F(\cdot, \cdot, \mathcal{L})$ is smooth. Then
$\mathbb{E}\left[\int_{D} F\left(x, y, \mathcal{L}_{D}^{\theta}\right) h_{\theta}(x) h_{\theta}(y) d x d y\right]=\int_{D \times D} C_{\theta}(x, y) \mathbb{E}_{x \leftrightarrow y}[F(x, y, \mathcal{L})] d x d y$.

Level line of our field

Partial exploration of the loop soup (using the partial exploration of the CLE, by Sheffield-Werner).

We show that SLE_{κ} is a level line of h_{θ} with constant boundary conditions on both sides, where

$$
2 \theta(\kappa)=c(\kappa)=(6-\kappa)(3 \kappa-8) /(2 \kappa) .
$$

Level line of our field

- The level-line/GFF coupling works only for $\kappa=4$.

Level line of our field

- The level-line/GFF coupling works only for $\kappa=4$.
- A more general flow-line/GFF coupling is developed by Miller-Sheffield in Imaginary Geometry which works for SLE $_{\kappa}$ for all κ.

However, for $\kappa \neq 4$, there is a winding term which makes the coupling less amenable.

Level line of our field

- The level-line/GFF coupling works only for $\kappa=4$.
- A more general flow-line/GFF coupling is developed by Miller-Sheffield in Imaginary Geometry which works for SLE $_{\kappa}$ for all κ.

However, for $\kappa \neq 4$, there is a winding term which makes the coupling less amenable.

- Our coupling does not have any winding term.

Level line of our field

- The level-line/GFF coupling works only for $\kappa=4$.
- A more general flow-line/GFF coupling is developed by Miller-Sheffield in Imaginary Geometry which works for SLE $_{\kappa}$ for all κ.

However, for $\kappa \neq 4$, there is a winding term which makes the coupling less amenable.

- Our coupling does not have any winding term.

Our field is a generalisation of the Gaussian free field.

Level line of our field

- The level-line/GFF coupling works only for $\kappa=4$.
- A more general flow-line/GFF coupling is developed by Miller-Sheffield in Imaginary Geometry which works for SLE $_{\kappa}$ for all κ.

However, for $\kappa \neq 4$, there is a winding term which makes the coupling less amenable.

- Our coupling does not have any winding term.

Our field is a generalisation of the Gaussian free field.
Attention: Our field is not equal to the CLE nesting field!

Crossing exponent in the Brownian loop soup

Key ingredients in the proof of Theorem 2

The correlation function is given by the following limit:

$$
C_{\theta}(x, y):=\lim _{\gamma \rightarrow 0} \frac{1}{Z_{\gamma}^{2}} \mathbb{P}\left[x \stackrel{\mathcal{L}_{D}^{\theta} \wedge E_{a}^{x} \wedge \Xi_{y}^{y}}{\longleftrightarrow} y\right],
$$

where

$$
Z_{\gamma}=\mathbb{P}\left(e^{-1} \partial \mathbb{D} \stackrel{\mathcal{L}_{\mathbb{D}}^{\theta}}{\longleftrightarrow} \Xi_{a}^{0}\right), \quad \Xi_{a}^{x} \approx B\left(x, e^{-c / \gamma}\right), \quad \gamma=\sqrt{2 a} .
$$

Key ingredients in the proof of Theorem 2

The correlation function is given by the following limit:

$$
C_{\theta}(x, y):=\lim _{\gamma \rightarrow 0} \frac{1}{Z_{\gamma}^{2}} \mathbb{P}\left[x \xrightarrow{\mathcal{L}_{D}^{\theta} \wedge E_{a}^{\star} \wedge \Xi_{a}^{y}} \longleftrightarrow \Longleftrightarrow\right],
$$

where

$$
Z_{\gamma}=\mathbb{P}\left(e^{-1} \partial \mathbb{D} \stackrel{\mathcal{L}_{\mathbb{D}}^{\theta}}{\longleftrightarrow} \Xi_{a}^{0}\right), \quad \Xi_{a}^{x} \approx B\left(x, e^{-c / \gamma}\right), \quad \gamma=\sqrt{2 a} .
$$

- Main input: We compute the crossing exponent

$$
\mathbb{P}\left(e^{-1} \partial \mathbb{D} \stackrel{\mathcal{L}_{\mathbb{D}}^{\theta}}{\longleftrightarrow} r \partial \mathbb{D}\right)=|\log r|^{-1+\theta+o(1)} .
$$

As a consequence, $Z_{\gamma}=\gamma^{1-\theta+o(1)}$.

Key ingredients in the proof of Theorem 2

The correlation function is given by the following limit:

$$
C_{\theta}(x, y):=\lim _{\gamma \rightarrow 0} \frac{1}{Z_{\gamma}^{2}} \mathbb{P}\left[x \xrightarrow{\mathcal{L}_{D}^{\theta} \wedge \Xi_{a}^{x} \wedge \Xi_{a}^{y}} \longleftrightarrow \Longleftrightarrow\right.
$$

where

$$
Z_{\gamma}=\mathbb{P}\left(e^{-1} \partial \mathbb{D} \stackrel{\mathcal{L}_{\mathbb{D}}^{\theta}}{\longleftrightarrow} \Xi_{a}^{0}\right), \quad \Xi_{a}^{x} \approx B\left(x, e^{-c / \gamma}\right), \quad \gamma=\sqrt{2 a} .
$$

- Main input: We compute the crossing exponent

$$
\mathbb{P}\left(e^{-1} \partial \mathbb{D} \stackrel{\mathcal{L}_{\mathbb{D}}^{\theta}}{\longleftrightarrow} r \partial \mathbb{D}\right)=|\log r|^{-1+\theta+o(1)} .
$$

As a consequence, $Z_{\gamma}=\gamma^{1-\theta+o(1)}$.
As a consequence, the correlation function blows up as

$$
C_{\theta}(x, y)=\left(\log \frac{C}{|x-y|}\right)^{2(1-\theta)+o(1)} \text { as } x-y \rightarrow 0
$$

Crossing exponent of a cluster

Theorem 8 (Jego, Lupu, Q.)
Let $\theta \in(0,1 / 2]$ and $r \in(0,1)$. The probability that a cluster in a Brownian loop soup $\mathcal{L}_{\mathbb{D}}^{\theta}$ intersects both the microscopic circle $\varepsilon \partial \mathbb{D}$ and the macroscopic circle r $\partial \mathbb{D}$ decays like

$$
\mathbb{P}\left(\varepsilon \partial \mathbb{D} \stackrel{\mathcal{L}_{\mathbb{B}}^{\theta}}{\longleftrightarrow} r \partial \mathbb{D}\right)=|\log \varepsilon|^{-1+\theta+o(1)} \quad \text { as } \quad \varepsilon \rightarrow 0 .
$$

Crossing exponent of a cluster

Theorem 8 (Jego, Lupu, Q.)
Let $\theta \in(0,1 / 2]$ and $r \in(0,1)$. The probability that a cluster in a Brownian loop soup $\mathcal{L}_{\mathbb{D}}^{\theta}$ intersects both the microscopic circle $\varepsilon \partial \mathbb{D}$ and the macroscopic circle r $\partial \mathbb{D}$ decays like

$$
\mathbb{P}\left(\varepsilon \partial \mathbb{D} \stackrel{\mathcal{L}_{\mathbb{W}}^{\theta}}{\longleftrightarrow} r \partial \mathbb{D}\right)=|\log \varepsilon|^{-1+\theta+o(1)} \quad \text { as } \quad \varepsilon \rightarrow 0 .
$$

- When $\theta=0$, this probability decays like $|\log \varepsilon|^{-1}$.
- When $\theta=1 / 2$, this probability decays like $|\log \varepsilon|^{-1 / 2}$.

Crossing exponent of a cluster

Theorem 8 (Jego, Lupu, Q.)
Let $\theta \in(0,1 / 2]$ and $r \in(0,1)$. The probability that a cluster in a Brownian loop soup $\mathcal{L}_{\mathbb{D}}^{\theta}$ intersects both the microscopic circle $\varepsilon \partial \mathbb{D}$ and the macroscopic circle r $\partial \mathbb{D}$ decays like

$$
\mathbb{P}\left(\varepsilon \partial \mathbb{D} \stackrel{\mathcal{L}_{\mathbb{D}}^{\theta}}{\longleftrightarrow} r \partial \mathbb{D}\right)=|\log \varepsilon|^{-1+\theta+o(1)} \quad \text { as } \quad \varepsilon \rightarrow 0 .
$$

- When $\theta=0$, this probability decays like $|\log \varepsilon|^{-1}$.
- When $\theta=1 / 2$, this probability decays like $|\log \varepsilon|^{-1 / 2}$.

This cannot be obtained using CLE. The probability that $n \geq 2$ clusters in $\mathcal{L}_{\mathbb{D}}^{\theta}$ intersect both the microscopic circle $\varepsilon \partial \mathbb{D}$ and the macroscopic circle $r \partial \mathbb{D}$ should decay like

$$
\varepsilon^{\alpha_{2 n}+o(1)} \quad \text { as } \quad \varepsilon \rightarrow 0
$$

where $\alpha_{2 n}$ is the $2 n$-arm exponent of SLE. Polynomial in ε !

Exact scaling limit of the crossing probability

Theorem 9 (Jego, Lupu, Q.)
Let $\theta \in(0,1 / 2]$. For all $s>1$, the following crossing probability converges

$$
\begin{equation*}
\mathbb{P}\left(\delta \partial \mathbb{D} \stackrel{\mathcal{L}_{\mathbb{D}}^{\theta}}{\longleftrightarrow} \delta^{s} \partial \mathbb{D}\right) \underset{\delta \rightarrow 0}{\longrightarrow} f_{\infty}(s) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{\infty}(s)=\frac{\sin (\pi \theta)}{\pi} \int_{s-1}^{\infty} t^{\theta-1}(t+1)^{-1} d t \tag{2}
\end{equation*}
$$

Exact scaling limit of the crossing probability

Theorem 9 (Jego, Lupu, Q.)
Let $\theta \in(0,1 / 2]$. For all $s>1$, the following crossing probability converges

$$
\begin{equation*}
\mathbb{P}\left(\delta \partial \mathbb{D} \stackrel{\mathcal{L}_{\mathbb{D}}^{\theta}}{\longleftrightarrow} \delta^{s} \partial \mathbb{D}\right) \underset{\delta \rightarrow 0}{\longrightarrow} f_{\infty}(s) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{\infty}(s)=\frac{\sin (\pi \theta)}{\pi} \int_{s-1}^{\infty} t^{\theta-1}(t+1)^{-1} d t \tag{2}
\end{equation*}
$$

We can observe that

$$
\begin{equation*}
f_{\infty}(s) \sim \frac{\sin (\pi \theta)}{\pi(1-\theta)} s^{\theta-1}, \quad \text { as } \quad s \rightarrow \infty \tag{3}
\end{equation*}
$$

A fixed-point equation

If f_{∞} exists, then it should satisfy
$f_{\infty}(s)=1-\left(1-\frac{1}{s}\right)^{\theta}+\theta(s-1)^{\theta} \int_{1}^{\infty}(s+t-1)^{-\theta-1} f_{\infty}(t) d t, \quad s \geq 1$.

- One loop crossing $\delta \partial \mathbb{D} \leftrightarrow \delta^{s} \partial \mathbb{D}: 1-\left(1-\frac{1}{s}\right)^{\theta}$
- The first loop crosses exactly $\delta \partial \mathbb{D} \leftrightarrow \delta^{1+(s-1) / t} \partial \mathbb{D}$, and the rest is crossed by a cluster in $\delta \mathbb{D}$.

A fixed-point equation

If f_{∞} exists, then it should satisfy

$$
\begin{equation*}
f_{\infty}(s)=1-\left(1-\frac{1}{s}\right)^{\theta}+\theta(s-1)^{\theta} \int_{1}^{\infty}(s+t-1)^{-\theta-1} f_{\infty}(t) d t, \quad s \geq 1 . \tag{4}
\end{equation*}
$$

- One loop crossing $\delta \partial \mathbb{D} \leftrightarrow \delta^{s} \partial \mathbb{D}: 1-\left(1-\frac{1}{s}\right)^{\theta}$
- The first loop crosses exactly $\delta \partial \mathbb{D} \leftrightarrow \delta^{1+(s-1) / t} \partial \mathbb{D}$, and the rest is crossed by a cluster in $\delta \mathbb{D}$.

For all $\alpha \in(0,1-\theta)$, the equation (4) admits a unique solution belonging to

$$
\mathcal{F}_{\alpha}:=\left\{f:[1, \infty) \rightarrow[0,1] \text { measurable },\|f\|_{\alpha}:=\sup _{s \geq 1} s^{\alpha}|f(s)|<\infty\right\} .
$$

A fixed-point equation

If f_{∞} exists, then it should satisfy

$$
\begin{equation*}
f_{\infty}(s)=1-\left(1-\frac{1}{s}\right)^{\theta}+\theta(s-1)^{\theta} \int_{1}^{\infty}(s+t-1)^{-\theta-1} f_{\infty}(t) d t, \quad s \geq 1 . \tag{4}
\end{equation*}
$$

- One loop crossing $\delta \partial \mathbb{D} \leftrightarrow \delta^{s} \partial \mathbb{D}: 1-\left(1-\frac{1}{s}\right)^{\theta}$
- The first loop crosses exactly $\delta \partial \mathbb{D} \leftrightarrow \delta^{1+(s-1) / t} \partial \mathbb{D}$, and the rest is crossed by a cluster in $\delta \mathbb{D}$.

For all $\alpha \in(0,1-\theta)$, the equation (4) admits a unique solution belonging to

$$
\mathcal{F}_{\alpha}:=\left\{f:[1, \infty) \rightarrow[0,1] \text { measurable },\|f\|_{\alpha}:=\sup _{s \geq 1} s^{\alpha}|f(s)|<\infty\right\} .
$$

Tightness + Uniqueness \Longrightarrow Existence of f_{∞}.

Polar sets of a cluster

Let $D \subset \mathbb{C}$ be a bounded open simply connected domain and let $A \subset D$ be a Borel set. We will say that A is polar for the clusters of \mathcal{L}_{D}^{θ} if

$$
\mathbb{P}\left(\exists \mathcal{C} \text { cluster of } \mathcal{L}_{D}^{\theta}: \overline{\mathcal{C}} \cap A \neq \varnothing\right)=0
$$

Let $K: \mathbb{C} \times \mathbb{C} \rightarrow[0, \infty]$ be a measurable function and let
$\operatorname{Cap}_{K}(A):=\left(\inf \left\{\int K(x, y) \mu(d x) \mu(d y): \mu \text { probability measure on } A\right\}\right)^{-1}$
be the capacity of A with respect to the kernel K.
Theorem 10 (Jego-Lupu-Q.)
Let $\theta \in(0,1 / 2], D \subset \mathbb{C}$ be a bounded open simply connected domain and let $A \subset D$ be a closed set. If A is polar for the clusters of \mathcal{L}_{D}^{θ}, then $\operatorname{Cap}_{\log ^{\alpha}}(A)=0$ for all $\alpha>1-\theta$. Conversely, if A is not polar for the clusters of \mathcal{L}_{D}^{θ}, then $\operatorname{Cap}_{\log ^{\alpha}}(A)>0$ for all $\alpha<1-\theta$.
Kakutani's theorem: A closed set A is polar for Brownian motion iff $\operatorname{Cap}_{\log ^{\alpha}}(A)=0$ for $\alpha=1$.

Minkowski content

Theorem 11 (Jego, Lupu, Q.)
Let $\theta \in(0,1 / 2]$. A cluster \mathcal{C}_{k} in a Brownian loop soup $\mathcal{L}_{\mathbb{D}}^{\theta}$ a.s. has Minkowski gauge function $t^{2} G(t)$ for some function
$G(t)=|\log t|^{1-\theta+o(1)}$.
The Minkowski content μ_{k} of \mathcal{C}_{k} under the gauge function $t^{2} G(t)$ is a radon measure.
For all bounded measurable function $f: \mathbb{C} \rightarrow \mathbb{R}$,

$$
\sum_{j=1}^{k} \sigma_{\mathcal{C}_{j}}\left(\mu_{j}, f\right) \underset{k \rightarrow \infty}{\longrightarrow}\left(h_{\theta}, f\right)
$$

Thank you for your attention!

