Field Theory of the Massive Ising Model

S. C. Park, KIAS

School of Mathematics, KIAS
Random Conformal Geometry and Related Fields, Jeju

Planar Ising Model

- Spin-Ising model: randomly assign ± 1 spins σ_{v} on vertices (or faces) v of discretisation $\Omega^{\delta}=\Omega \cap \delta e^{i \pi / 4} \mathbb{Z}^{2}$ of (smooth) simply connected $\Omega \subset \mathbb{C}$
- Define probability measure through low-temperature expansion at any inverse temperature $\beta>0$: weight σ by $\exp [-2 \beta L(\sigma)]$, where $L(\sigma)$ is the domain wall length \leftrightarrow high-temperature expansion
- spins σ on faces, disorders μ on vertices \leftrightarrow spins on vertices
- boundary condition: plus \leftrightarrow free

Planar Ising Model

- Spin-Ising model: randomly assign ± 1 spins σ_{v} on vertices (or faces) v of discretisation $\Omega^{\delta}=\Omega \cap \delta e^{i \pi / 4} \mathbb{Z}^{2}$ of (smooth) simply connected $\Omega \subset \mathbb{C}$
- Define probability measure through low-temperature expansion at any inverse temperature $\beta>0$: weight σ by $\exp [-2 \beta L(\sigma)]$, where $L(\sigma)$ is the domain wall length \leftrightarrow high-temperature expansion
- spins σ on faces, disorders μ on vertices \leftrightarrow spins on vertices
- boundary condition: plus \leftrightarrow free

Classical Results

- Onsager ('44): exact solution; phase transition at $\beta_{c}=\frac{1}{2} \ln (1+\sqrt{2})$
- Yang ('52): exact formula for $\mathbb{E}_{\mathbb{C}^{\delta}}^{+, \beta}\left[\sigma_{0}\right] \asymp\left(\beta-\beta_{c}\right)_{+}^{1 / 8}$
- Wu: at β_{c}, for $r>0$,

$$
\delta^{-1 / 4} \mathbb{E}_{\mathbb{C}^{\delta}}^{+}\left[\sigma_{0} \sigma_{r}\right] \xrightarrow{\delta \downarrow 0} \frac{\mathscr{C}_{\sigma}^{2}}{r^{1 / 4}},
$$

where $\mathscr{C}_{\sigma}=2^{1 / 6} e^{3 \zeta^{\prime}(-1) / 2}$.

- Wu, McCoy, Tracy, Barouch ('76): at $\beta=\beta_{c}-\frac{m}{\sqrt{2}} \delta$ for $m \in \mathbb{R}$

$$
\delta^{-1 / 4} \mathbb{E}_{\mathbb{C}^{\delta}}^{+}\left[\sigma_{0} \sigma_{z}\right] \xrightarrow{\delta \downarrow 0} \mathscr{C}_{\sigma}^{2} \mathbb{I I}^{m}(|z|),
$$

where $\mathbb{I I}^{m}$ is given explicitly in terms of a Painlevé III transcendent
and it has an exponential length scale $2|m|$

- Sato, Miwa, Jimbo ('77): isomonodromic deformation

Classical Results

- Onsager ('44): exact solution; phase transition at $\beta_{c}=\frac{1}{2} \ln (1+\sqrt{2})$
- Yang ('52): exact formula for $\mathbb{E}_{\mathbb{C}^{\delta}}^{+, \beta}\left[\sigma_{0}\right] \asymp\left(\beta-\beta_{c}\right)_{+}^{1 / 8}$
- Wu: at β_{c}, for $r>0$,

$$
\delta^{-1 / 4} \mathbb{E}_{\mathbb{C}^{\delta}}^{+}\left[\sigma_{0} \sigma_{r}\right] \xrightarrow{\delta \downarrow 0} \frac{\mathscr{C}_{\sigma}^{2}}{r^{1 / 4}},
$$

where $\mathscr{C}_{\sigma}=2^{1 / 6} e^{3 \zeta^{\prime}(-1) / 2}$.

- Wu, McCoy, Tracy, Barouch ('76): at $\beta=\beta_{c}-\frac{m}{\sqrt{2}} \delta$ for $m \in \mathbb{R}$

$$
\delta^{-1 / 4} \mathbb{E}_{\mathbb{C}^{\delta}}^{+}\left[\sigma_{0} \sigma_{z}\right] \xrightarrow{\delta \downarrow 0} \mathscr{C}_{\sigma}^{2} \mathbb{I I}^{m}(|z|),
$$

where $\mathbb{I I}^{m}$ is given explicitly in terms of a Painlevé III transcendent and it has an exponential length scale $2|m|$.

- Sato, Miwa, Jimbo ('77): isomonodromic deformation

Critical Convergence

Theorem

For the model at β_{c} on Ω^{δ}, write $\varepsilon_{\left(v_{1} v_{2}\right)}:=\sqrt{2} \sigma_{v_{1}} \sigma_{v_{2}}-1$ for the centred energy density at the edge $\left(v_{1} v_{2}\right)$. Then as $\delta \downarrow 0$,

- $\delta^{-n} \mathbb{E}_{\Omega^{\delta}}^{+}\left[\varepsilon_{z_{1}} \cdots \varepsilon_{z_{n}}\right] \rightarrow \mathscr{C}_{\varepsilon}^{n}\left\langle\varepsilon_{z_{1}} \cdots \varepsilon_{z_{n}}\right\rangle_{\Omega}^{+}$(Hongler '10 + Hongler, Smirnov '13);
- $\delta^{-n / 8} \mathbb{E}_{\Omega^{\delta}}^{+}\left[\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right] \rightarrow \mathscr{C}_{\sigma}^{n}\left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+}$(Chelkak, Hongler, Izyurov '15);
- $\delta^{-n_{1} / 8-n_{2}} \mathbb{E}_{\Omega^{\delta}}^{+}\left[\sigma_{z_{1}} \cdots \sigma_{z_{n_{1}}} \varepsilon_{z_{1}} \cdots \varepsilon_{z_{n_{2}}}\right] \rightarrow$

$$
\mathscr{C}_{\sigma}^{n_{1}} \mathscr{C}_{\varepsilon}^{n_{2}}\left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n_{1}}} \varepsilon_{z_{1}} \cdots \varepsilon_{z_{n_{2}}}\right\rangle_{\Omega}^{+} \text {(Chelkak, Hongler, Izyurov '21), }
$$

where the limits are smooth function of distinct points $z_{k} \in \Omega$ which are conformally covariant: with explicit function on \mathbb{H},

$$
\langle\cdots\rangle_{\Omega}^{+}=\left(\left|\varphi^{\prime}\left(z_{1}\right) \cdots \varphi^{\prime}\left(z_{n_{1}}\right)\right|\right)^{1 / 8}\left(\left|\varphi^{\prime}\left(z_{1}\right) \cdots \varphi^{\prime}\left(z_{n_{2}}\right)\right|\right)\langle\varphi(\cdots)\rangle_{\mathbb{H}}^{+} .
$$

Massive Convergence

Theorem

For the model at $\beta=\beta_{c}-\frac{m}{\sqrt{2}} \delta$ on Ω^{δ}, write $\varepsilon_{\left(v_{1} v_{2}\right)}:=\sqrt{2}\left(\sigma_{v_{1}} \sigma_{v_{2}}-\mathbb{E}_{\mathbb{C}^{\delta}}^{+}\left[\sigma_{v_{1}} \sigma_{v_{2}}\right]\right)$. Then as $\delta \downarrow 0$,

- $\delta^{-n / 8} \mathbb{E}_{\Omega^{\delta}}^{+}\left[\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right] \rightarrow \mathscr{C}_{\sigma}^{n}\left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}(m<0 ; P . \quad 18)$;
- $\delta^{-n} \mathbb{E}_{\Omega^{\delta}}^{+}\left[\varepsilon_{z_{1}} \cdots \varepsilon_{z_{n}}\right] \rightarrow \mathscr{C}_{\varepsilon}^{n}\left\langle\varepsilon_{z_{1}} \cdots \varepsilon_{z_{n}}\right\rangle_{\Omega}^{+, m}$ (Chelkak, P., Wan '22);
- $\delta^{-n_{1} / 8-n_{2}} \mathbb{E}_{\Omega^{\delta}}^{+}\left[\sigma_{z_{1}} \cdots \sigma_{z_{n_{1}}} \varepsilon_{z_{1}} \cdots \varepsilon_{z_{n_{2}}}\right] \rightarrow$
$\mathscr{C}_{\sigma}^{n_{1}} \mathscr{C}_{\varepsilon}^{n_{2}}\left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n_{1}}} \varepsilon_{z_{1}} \cdots \varepsilon_{z_{n_{2}}}\right\rangle_{\Omega}^{+, m}$ (Chelkak, Izyurov, P. '23),
where the limits are uniquely determined smooth functions of distinct points $z_{k} \in \Omega$, and satisfy massive operator product expansions (OPEs).

Cf. regarding interface: for any m and general Ω,

- FK-Ising interface (fermionic) martingale converges (P. '22);
- Spin-Ising interface (fermionic) martingale converges (Chelkak, P., et
al. ' $23+$).

Massive Convergence

Theorem

For the model at $\beta=\beta_{c}-\frac{m}{\sqrt{2}} \delta$ on Ω^{δ}, write $\varepsilon_{\left(v_{1} v_{2}\right)}:=\sqrt{2}\left(\sigma_{v_{1}} \sigma_{v_{2}}-\mathbb{E}_{\mathbb{C}^{\delta}}^{+}\left[\sigma_{v_{1}} \sigma_{v_{2}}\right]\right)$. Then as $\delta \downarrow 0$,

- $\delta^{-n / 8} \mathbb{E}_{\Omega^{\delta}}^{+}\left[\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right] \rightarrow \mathscr{C}_{\sigma}^{n}\left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}\left(m<0 ; P .{ }^{\prime} 18\right) ;$
- $\delta^{-n} \mathbb{E}_{\Omega^{\delta}}^{+}\left[\varepsilon_{z_{1}} \cdots \varepsilon_{z_{n}}\right] \rightarrow \mathscr{C}_{\varepsilon}^{n}\left\langle\varepsilon_{z_{1}} \cdots \varepsilon_{z_{n}}\right\rangle_{\Omega}^{+, m}$ (Chelkak, P., Wan '22);
- $\delta^{-n_{1} / 8-n_{2}} \mathbb{E}_{\Omega^{\delta}}^{+}\left[\sigma_{z_{1}} \cdots \sigma_{z_{n_{1}}} \varepsilon_{z_{1}} \cdots \varepsilon_{z_{n_{2}}}\right] \rightarrow$

$$
\mathscr{C}_{\sigma}^{n_{1}} \mathscr{C}_{\varepsilon}^{n_{2}}\left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n_{1}}} \varepsilon_{z_{1}} \cdots \varepsilon_{z_{n_{2}}}\right\rangle_{\Omega}^{+, m} \text { (Chelkak, Izyurov, P. '23), }
$$

where the limits are uniquely determined smooth functions of distinct points $z_{k} \in \Omega$, and satisfy massive operator product expansions (OPEs).

Cf. regarding interface: for any m and general Ω,

- FK-Ising interface (fermionic) martingale converges (P. '22);
- Spin-Ising interface (fermionic) martingale converges (Chelkak, P., et al. '23+).

Fermions and Bers-Vekua Theory

- Guided by Kadanoff, Ceva ('71) and Smirnov ('10): write $\psi^{[\eta]}=\sigma_{u} \mu_{v}$ where $i \eta^{-2}$ is the unit complex number pointing from face u to adjacent vertex v
- Define complex fermion $\psi=\psi^{[1]}+i \psi^{[i]}$
- Near-critical complex fermions satisfy the equation (within even correlations)
$\bar{\partial} \psi=-i m \bar{\psi}$.
- Under conformal change of coordinates \oplus, we have covariance rule

$$
\psi \rightarrow(\psi \circ \varphi) \cdot\left(\varphi^{\prime}\right)^{1 / 2} ; \quad m \rightarrow m\left|\varphi^{\prime}\right| .
$$

- Bers-Vekua theory ('60s): generalised analyticity $\partial f=\alpha f$, $\alpha \in C^{\infty}(\Omega)$,

- 1-1 correspondence with suitably defined holomorphic part \underline{f} modulo a

Fermions and Bers-Vekua Theory

- Guided by Kadanoff, Ceva ('71) and Smirnov ('10): write $\psi^{[\eta]}=\sigma_{u} \mu_{v}$ where $i \eta^{-2}$ is the unit complex number pointing from face u to adjacent vertex v
- Define complex fermion $\psi=\psi^{[1]}+i \psi^{[i]}$
- Near-critical complex fermions satisfy the equation (within even correlations)

$$
\bar{\partial} \psi=-i m \bar{\psi}
$$

- Under conformal change of coordinates φ, we have covariance rule

$$
\psi \rightarrow(\psi \circ \varphi) \cdot\left(\varphi^{\prime}\right)^{1 / 2} ; \quad m \rightarrow m\left|\varphi^{\prime}\right| .
$$

- Bers-Vekua theory ('60s): generalised analyticity $\bar{\partial} f=\alpha \bar{f}$, - series expansion in explicit formal powers $Z_{n}^{\eta} \sim \eta z^{n}$. written in terms
of modified Bessel functions $I_{v}(x) \sim x^{v}, K_{v} \sim x^{-v}($ say for $x, v>0)$.
- $1-1$ correspondence with suitably defined holomorphic part f modulo a

Fermions and Bers-Vekua Theory

- Guided by Kadanoff, Ceva ('71) and Smirnov ('10): write $\psi^{[\eta]}=\sigma_{u} \mu_{v}$ where $i \eta^{-2}$ is the unit complex number pointing from face u to adjacent vertex v
- Define complex fermion $\psi=\psi^{[1]}+i \psi^{[i]}$
- Near-critical complex fermions satisfy the equation (within even correlations)

$$
\bar{\partial} \psi=-i m \bar{\psi}
$$

- Under conformal change of coordinates φ, we have covariance rule

$$
\psi \rightarrow(\psi \circ \varphi) \cdot\left(\varphi^{\prime}\right)^{1 / 2} ; \quad m \rightarrow m\left|\varphi^{\prime}\right| .
$$

- Bers-Vekua theory ('60s): generalised analyticity $\bar{\partial} f=\alpha \bar{f}$, $\alpha \in C^{\infty}(\Omega)$,
- series expansion in explicit formal powers $Z_{n}^{\eta} \sim \eta z^{n}$. written in terms of modified Bessel functions $I_{v}(x) \sim x^{v}, K_{v} \sim x^{-v}$ (say for $x, v>0$).
- 1-1 correspondence with suitably defined holomorphic part \underline{f} modulo a $C^{\alpha<1}$ factor e^{s}, non-explicit but uniquely characterisable.

Characterising the Limit (I)

- 2-point fermion correlation $f(z)=\frac{\left\langle\psi_{z} \psi_{v}^{[n]} \sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}}{\left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}}$ (with spin insertions):
- $\bar{\partial} f=-i m \bar{f}$ away from insertions;
- has -1 multiplicative monodromy around z_{1}, \ldots, z_{n}, with behaviour

$$
f(z) \sqrt{z-z_{j}} \xrightarrow{z \rightarrow z_{j}} e^{i \pi / 4} r \in e^{i \pi / 4} \mathbb{R} ;
$$

- has a simple pole at w :

$$
f(z)(z-w) \xrightarrow{z \rightarrow w} \bar{\eta} ;
$$

- has the Riemann-Hilbert boundary condition

$$
f(z) \in \tau_{z}^{-1 / 2 \mathbb{R}}, \quad z \in \partial \Omega
$$

where τ_{z} is the tangent vector as a complex number;

- 2n-point fermion correlations are given as Pfaffian of 2-point correlations:

Characterising the Limit (I)

- 2-point fermion correlation $f(z)=\frac{\left\langle\psi_{z} \psi_{v}^{[n]} \sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}}{\left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}}$ (with spin insertions):
- $\bar{\partial} f=-i m \bar{f}$ away from insertions;
- has -1 multiplicative monodromy around z_{1}, \ldots, z_{n}, with behaviour

$$
f(z) \sqrt{z-z_{j}} \xrightarrow{z \rightarrow z_{j}} e^{i \pi / 4} r \in e^{i \pi / 4} \mathbb{R} ;
$$

- has a simple pole at w :

$$
f(z)(z-w) \xrightarrow{z \rightarrow w} \bar{\eta} ;
$$

- has the Riemann-Hilbert boundary condition
where τ_{z} is the tangent vector as a complex number;
- 2n-point fermion correlations are given as Pfaffian of 2-point correlations:

Characterising the Limit (I)

- 2-point fermion correlation $f(z)=\frac{\left\langle\psi_{z} \psi_{w}^{[\eta]} \sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}}{\left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}}$ (with spin insertions):
- $\bar{\partial} f=-i m \bar{f}$ away from insertions;
- has -1 multiplicative monodromy around z_{1}, \ldots, z_{n}, with behaviour

$$
f(z) \sqrt{z-z_{j}} \xrightarrow{z \rightarrow z_{j}} e^{i \pi / 4} r \in e^{i \pi / 4} \mathbb{R} ;
$$

- has a simple pole at w :

$$
f(z)(z-w) \xrightarrow{z \rightarrow w} \bar{\eta} ;
$$

- has the Riemann-Hilbert boundary condition
where τ_{z} is the tangent vector as a complex number;
- 2n-point fermion correlations are given as Pfaffian of 2-point correlations:

Characterising the Limit (I)

- 2-point fermion correlation $f(z)=\frac{\left\langle\psi_{z} \psi_{w}^{[\eta]} \sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}}{\left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}}$ (with spin insertions):
- $\bar{\partial} f=-i m \bar{f}$ away from insertions;
- has -1 multiplicative monodromy around z_{1}, \ldots, z_{n}, with behaviour

$$
f(z) \sqrt{z-z_{j}} \xrightarrow{z \rightarrow z_{j}} e^{i \pi / 4} r \in e^{i \pi / 4} \mathbb{R} ;
$$

- has a simple pole at w :

$$
f(z)(z-w) \xrightarrow{z \rightarrow w} \bar{\eta} ;
$$

- has the Riemann-Hilbert boundary condition

$$
f(z) \in \tau_{z}^{-1 / 2} \mathbb{R}, \quad z \in \partial \Omega,
$$

where τ_{z} is the tangent vector as a complex number;

Characterising the Limit (I)

- 2-point fermion correlation $f(z)=\frac{\left\langle\psi_{z} \psi_{w}^{[n]} \sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}}{\left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}}$ (with spin insertions):
- $\bar{\partial} f=-i m \bar{f}$ away from insertions;
- has -1 multiplicative monodromy around z_{1}, \ldots, z_{n}, with behaviour

$$
f(z) \sqrt{z-z_{j}} \xrightarrow{z \rightarrow z_{j}} e^{i \pi / 4} r \in e^{i \pi / 4} \mathbb{R} ;
$$

- has a simple pole at w :

$$
f(z)(z-w) \xrightarrow{z \rightarrow w} \bar{\eta} ;
$$

- has the Riemann-Hilbert boundary condition

$$
f(z) \in \tau_{z}^{-1 / 2} \mathbb{R}, \quad z \in \partial \Omega,
$$

where τ_{z} is the tangent vector as a complex number;

- 2n-point fermion correlations are given as Pfaffian of 2-point correlations:

$$
\mathbb{E}\left[\frac{\left\langle\psi_{w_{1}} \cdots \psi_{w_{2 n}} \sigma_{A}\right\rangle_{\Omega}^{+, m}}{\left\langle\sigma_{A}\right\rangle_{\Omega}^{+, m}}\right]=\operatorname{Pf}\left(\mathbb{E}\left[\frac{\left\langle\psi_{w_{j}} \psi_{w_{k}} \sigma_{A}\right\rangle_{\Omega}^{+, m}}{\left\langle\sigma_{A}\right\rangle_{\Omega}^{+, m}}\right]\right)_{j, k=1}^{2 n}
$$

Characterising the Limit (II)

- Merging fermion and spin, we get disorder insertions

$$
\psi_{z} \sigma_{z_{k}}=\mu_{z} e^{i \pi / 4}\left(z-z_{k}\right)^{-1 / 2}+o\left(\left(z-z_{k}\right)^{-1 / 2}\right) ;
$$

- Merging disorder and fermion, we get spin derivatives

$$
\psi_{z} \mu_{z_{k}}=\mu_{z} Z_{-1 / 2}^{e^{-i \pi / 4}}\left(z-z_{k}\right)+4 \partial_{z_{k}} \sigma_{z_{k}}\left(z-z_{k}\right)^{1 / 2}+O\left(\left(z-z_{k}\right)^{3 / 2}\right)
$$

- Pure spin correlation $\left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}$:
- from $\frac{\left\langle\psi_{z} \psi_{w} \sigma_{z_{1} \cdots} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}}{\left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}}$, we have $\partial_{z_{k}} \log \left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}$;
- only thing to fix is normalisation: uniquely fixed by
\star as $z_{k} \rightarrow \partial \Omega$, n-point correlations break up into multiple of $(n-1)$ - and 1-point correlations;
- This characterisation can be used to construct $\langle\cdot\rangle_{\Omega}^{+, \tilde{m}}$ for generic (say, smooth) functions $\tilde{m}: \Omega \cup \partial \Omega \rightarrow \mathbb{R}$.

Characterising the Limit (II)

- Merging fermion and spin, we get disorder insertions

$$
\psi_{z} \sigma_{z_{k}}=\mu_{z} e^{i \pi / 4}\left(z-z_{k}\right)^{-1 / 2}+o\left(\left(z-z_{k}\right)^{-1 / 2}\right)
$$

- Merging disorder and fermion, we get spin derivatives

$$
\psi_{z} \mu_{z_{k}}=\mu_{z} Z_{-1 / 2}^{e^{-i \pi / 4}}\left(z-z_{k}\right)+4 \partial_{z_{k}} \sigma_{z_{k}}\left(z-z_{k}\right)^{1 / 2}+O\left(\left(z-z_{k}\right)^{3 / 2}\right)
$$

- Pure spin correlation $\left\langle\sigma_{Z_{1}}\right.$
$-\operatorname{from} \frac{\left\langle\psi_{z} \psi_{w} \sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}}{\left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}}$, we have $\partial_{z_{k}} \log \left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}$
- only thing to fix is normalisation: uniquely fixed by
* as $z_{k} \rightarrow \partial \Omega, n$-point correlations break up into multiple of $(n-1)$ - and 1-point correlations;

Characterising the Limit (II)

- Merging fermion and spin, we get disorder insertions

$$
\psi_{z} \sigma_{z_{k}}=\mu_{z} e^{i \pi / 4}\left(z-z_{k}\right)^{-1 / 2}+o\left(\left(z-z_{k}\right)^{-1 / 2}\right)
$$

- Merging disorder and fermion, we get spin derivatives

$$
\psi_{z} \mu_{z_{k}}=\mu_{z} Z_{-1 / 2}^{e^{-i \pi / 4}}\left(z-z_{k}\right)+4 \partial_{z_{k}} \sigma_{z_{k}}\left(z-z_{k}\right)^{1 / 2}+O\left(\left(z-z_{k}\right)^{3 / 2}\right)
$$

- Pure spin correlation $\left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}$:
- from $\frac{\left\langle\psi_{z} \psi_{w} \sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}}{\left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}}$, we have $\partial_{z_{k}} \log \left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}$;
- only thing to fix is normalisation: uniquely fixed by

Characterising the Limit (II)

- Merging fermion and spin, we get disorder insertions

$$
\psi_{z} \sigma_{z_{k}}=\mu_{z} e^{i \pi / 4}\left(z-z_{k}\right)^{-1 / 2}+o\left(\left(z-z_{k}\right)^{-1 / 2}\right)
$$

- Merging disorder and fermion, we get spin derivatives

$$
\psi_{z} \mu_{z_{k}}=\mu_{z} Z_{-1 / 2}^{e^{-i \pi / 4}}\left(z-z_{k}\right)+4 \partial_{z_{k}} \sigma_{z_{k}}\left(z-z_{k}\right)^{1 / 2}+O\left(\left(z-z_{k}\right)^{3 / 2}\right)
$$

- Pure spin correlation $\left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}$:
- from $\frac{\left\langle\psi_{z} \psi_{w} \sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}}{\left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}}$, we have $\partial_{z_{k}} \log \left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}$;
- only thing to fix is normalisation: uniquely fixed by
* as $z_{k} \rightarrow \partial \Omega$, n-point correlations break up into multiple of $(n-1)$ - and 1-point correlations;
\star Wu's asymptotic, i.e. $\sim 1 /\left|z_{1}-z_{2}\right|^{1 / 4}$ as $z_{1} \rightarrow z_{2}$ in 2 -point correlation.

Characterising the Limit (II)

- Merging fermion and spin, we get disorder insertions

$$
\psi_{z} \sigma_{z_{k}}=\mu_{z} e^{i \pi / 4}\left(z-z_{k}\right)^{-1 / 2}+o\left(\left(z-z_{k}\right)^{-1 / 2}\right)
$$

- Merging disorder and fermion, we get spin derivatives

$$
\psi_{z} \mu_{z_{k}}=\mu_{z} Z_{-1 / 2}^{e^{-i \pi / 4}}\left(z-z_{k}\right)+4 \partial_{z_{k}} \sigma_{z_{k}}\left(z-z_{k}\right)^{1 / 2}+O\left(\left(z-z_{k}\right)^{3 / 2}\right)
$$

- Pure spin correlation $\left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}$:
- from $\frac{\left\langle\psi_{z} \psi_{w} \sigma_{z_{1} \cdots} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}}{\left\langle\sigma_{z_{1} \cdots} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}}$, we have $\partial_{z_{k}} \log \left\langle\sigma_{z_{1}} \cdots \sigma_{z_{n}}\right\rangle_{\Omega}^{+, m}$;
- only thing to fix is normalisation: uniquely fixed by
* as $z_{k} \rightarrow \partial \Omega$, n-point correlations break up into multiple of $(n-1)$ - and 1-point correlations;
\star Wu's asymptotic, i.e. $\sim 1 /\left|z_{1}-z_{2}\right|^{1 / 4}$ as $z_{1} \rightarrow z_{2}$ in 2-point correlation.
- This characterisation can be used to construct $\langle\cdot\rangle_{\Omega}^{+, \tilde{m}}$ for generic (say, smooth) functions $\tilde{m}: \Omega \cup \partial \Omega \rightarrow \mathbb{R}$.

Massive OPEs

Uniformly away from boundary and other insertions, we get, as $z \rightarrow w$,

$$
\begin{aligned}
& \psi_{z} \psi_{w}=2 Z_{-1}^{1}(z-w)+O(z-w) \\
& \psi_{z} \psi_{w}^{\star}=-2 i \varepsilon_{w}+O(z-w) \\
& \psi_{z} \psi_{w}^{[\eta]}=Z_{-1}^{\bar{\eta}}(z-w)-i \eta \varepsilon_{w}+O(z-w) \\
& \psi_{z} \sigma_{w}=\mu_{z} Z_{-1 / 2}^{i \pi / 4}(z-w)+4 \partial_{w} \mu_{w}(z-w)^{1 / 2}+O\left((z-w)^{3 / 2}\right) \\
& \varepsilon_{z} \sigma_{w}=\frac{i}{2} \frac{\sigma_{w}}{|z-w|}+O(1) \\
& \sigma_{z} \sigma_{w}=\mathbb{I I}^{m}(|z-w|)+\frac{1}{2} \varepsilon_{w}|z-w|^{3 / 4}+o\left(|z-w|^{3 / 4}\right), \\
& \text { where } Z_{n}^{\eta} \text { are explicit (in terms of modified Bessel functions) and } \mathbb{I I}^{m}(|\cdot|) \\
& \text { is the full plane correlation given in terms of the Painlevé III transcendent. }
\end{aligned}
$$

Massive OPEs

Uniformly away from boundary and other insertions, we get, as $z \rightarrow w$,

$$
\begin{aligned}
\psi_{z} \psi_{w} & =2 Z_{-1}^{1}(z-w)+O(z-w) \\
\psi_{z} \psi_{w}^{\star} & =-2 i \varepsilon_{w}+O(z-w) \\
\psi_{z} \psi_{w}^{[\eta]} & =Z_{-1}^{\bar{\eta}}(z-w)-i \eta \varepsilon_{w}+O(z-w) \\
\psi_{z} \sigma_{w} & =\mu_{z} Z_{-1 / 2}^{e^{i \pi / 4}(z-w)+4 \partial_{w} \mu_{w}(z-w)^{1 / 2}+O\left((z-w)^{3 / 2}\right)} \\
\varepsilon_{z} \sigma_{w} & =\frac{i}{2} \frac{\sigma_{w}}{|z-w|}+O(1) \\
\sigma_{z} \sigma_{w} & =\mathbb{I}^{m}(|z-w|)+\frac{1}{2} \varepsilon_{w}|z-w|^{3 / 4}+o\left(|z-w|^{3 / 4}\right),
\end{aligned}
$$

where Z_{n}^{η} are explicit (in terms of modified Bessel functions) and $\mathbb{I \mathbb { I } ^ { m } (| \cdot |)}$ is the full plane correlation given in terms of the Painlevé III transcendent.

Massless Sine-Gordon Theory

- Massless Sine-Gordon: construct a random field ϕ with measure

$$
\mathbb{P}_{\mathrm{SG}}[\phi] \propto \exp \left[\mu \int_{\Omega}: \cos (\sqrt{\beta} \phi):\right] \mathbb{P}_{\mathrm{GFF}}[\phi]
$$

- Coleman ('75): should be bosonisation of massive Thirring model (\ni massive free fermions)
- Extensive literature on construction starting with Fröhlich ('75)
- Emergent length scale (exponential decay): cf. Bernard, LeClair ('94), Zamolodchikov ('95),
- W/e will focus on $\beta=4 \pi$ case with $\mu=m$ ($\leftrightarrow m$-massive Ising) on nice simply connected domains Ω

Massless Sine-Gordon Theory

- Massless Sine-Gordon: construct a random field ϕ with measure

$$
\mathbb{P}_{\mathrm{SG}}[\phi] \propto \exp \left[\mu \int_{\Omega}: \cos (\sqrt{\beta} \phi):\right] \mathbb{P}_{\mathrm{GFF}}[\phi]
$$

- Coleman ('75): should be bosonisation of massive Thirring model (Э massive free fermions)
- Extensive literature on construction starting with Fröhlich ('75)
- Emergent length scale (exponential decay): cf. Bernard, LeClair ('94), Zamolodchikov ('95),
- We will focus on $\beta=4 \pi$ case with $\mu=m$ ($\leftrightarrow m$-massive Ising) on nice simply connected domains Ω

Massless Sine-Gordon Theory

- Massless Sine-Gordon: construct a random field ϕ with measure

$$
\mathbb{P}_{\mathrm{SG}}[\phi] \propto \exp \left[\mu \int_{\Omega}: \cos (\sqrt{\beta} \phi):\right] \mathbb{P}_{\mathrm{GFF}}[\phi]
$$

- Coleman ('75): should be bosonisation of massive Thirring model (\ni massive free fermions)
- Extensive literature on construction starting with Fröhlich ('75)
- Emergent length scale (exponential decay): cf. Bernard, LeClair ('94), Zamolodchikov ('95), ...
- We will focus on $\beta=4 \pi$ case with $\mu=m$ ($\leftrightarrow m$-massive Ising) on nice simply connected domains Ω

Massless Sine-Gordon Theory

- Massless Sine-Gordon: construct a random field ϕ with measure

$$
\mathbb{P}_{\mathrm{SG}}[\phi] \propto \exp \left[\mu \int_{\Omega}: \cos (\sqrt{\beta} \phi):\right] \mathbb{P}_{\mathrm{GFF}}[\phi]
$$

- Coleman ('75): should be bosonisation of massive Thirring model (\ni massive free fermions)
- Extensive literature on construction starting with Fröhlich ('75)
- Emergent length scale (exponential decay): cf. Bernard, LeClair ('94), Zamolodchikov ('95), ...
- We will focus on $\beta=4 \pi$ case with $\mu=m$ ($\leftrightarrow m$-massive Ising) on nice simply connected domains Ω

Correlation Construction

- Work with regularised GFF ϕ_{ε} with correlation $C_{\varepsilon}(x, y)=\int_{\varepsilon^{2}}^{\infty} p_{\Omega}(s, x, y) d s ;$
- Work with truncated mass, i.e. $\mu(z)=m \rho(z) \in C_{c}^{\infty}(\Omega)$;
- Work with renormalisations : $\cos \left(\sqrt{4 \pi} \phi_{\varepsilon}\right):_{\varepsilon}=\varepsilon^{-1} \cos \left(\sqrt{4 \pi} \phi_{\varepsilon}\right)$, etc.;
- Send to limit smeared correlations, i.e area integrals of fields against $f \in C_{c}^{\infty}(\Omega)$, extract integral kernels after the limit, then send $\rho \rightarrow 1$

Theorem (P., Virtanen, Webb '23)

The limits of Sine-Gordon smeared correlations exist, and the integral kernels, written as pointwise correlations of fields, may be identified with massive Ising ${ }_{m} \times$ Ising $_{m}$ ' correlations, under bosonisation rules, e.g.

Correlation Construction

- Work with regularised GFF ϕ_{ε} with correlation

$$
C_{\varepsilon}(x, y)=\int_{\varepsilon^{2}}^{\infty} p_{\Omega}(s, x, y) d s
$$

- Work with truncated mass, i.e. $\mu(z)=m \rho(z) \in C_{c}^{\infty}(\Omega)$;
- Work with renormalisations : $\cos \left(\sqrt{4 \pi} \phi_{\varepsilon}\right):_{\varepsilon}=\varepsilon^{-1} \cos \left(\sqrt{4 \pi} \phi_{\varepsilon}\right)$, etc.;
- Send to limit smeared correlations, i.e. area integrals of fields against $f \in C_{c}^{\infty}(\Omega)$, extract integral kernels after the limit, then send $\rho \rightarrow 1$.

Theorem (P., Virtanen, Webb '23)

The limits of Sine-Gordon smeared correlations exist, and the integral kernels, written as pointwise correlations of fields, may be identified with massive Ising ${ }_{m} \times$ Ising $_{m}$ ' correlations, under bosonisation rules, e.g.

Correlation Construction

- Work with regularised GFF ϕ_{ε} with correlation

$$
C_{\varepsilon}(x, y)=\int_{\varepsilon^{2}}^{\infty} p_{\Omega}(s, x, y) d s
$$

- Work with truncated mass, i.e. $\mu(z)=m \rho(z) \in C_{c}^{\infty}(\Omega)$;
- Work with renormalisations : $\cos \left(\sqrt{4 \pi} \phi_{\varepsilon}\right):_{\varepsilon}=\varepsilon^{-1} \cos \left(\sqrt{4 \pi} \phi_{\varepsilon}\right)$, etc.;
- Send to limit smeared correlations, i.e. area integrals of fields against $f \in C_{c}^{\infty}(\Omega)$, extract integral kernels after the limit, then send $\rho \rightarrow 1$.

Theorem (P., Virtanen, Webb '23)
 The limits of Sine-Gordon smeared correlations exist, and the integral kernels, written as pointwise correlations of fields, may be identified with massive Ising ${ }_{m} \times$ Ising $_{m}$ ' correlations, under bosonisation rules, e.g.

Correlation Construction

- Work with regularised GFF ϕ_{ε} with correlation

$$
C_{\varepsilon}(x, y)=\int_{\varepsilon^{2}}^{\infty} p_{\Omega}(s, x, y) d s
$$

- Work with truncated mass, i.e. $\mu(z)=m \rho(z) \in C_{c}^{\infty}(\Omega)$;
- Work with renormalisations : $\cos \left(\sqrt{4 \pi} \phi_{\varepsilon}\right):_{\varepsilon}=\varepsilon^{-1} \cos \left(\sqrt{4 \pi} \phi_{\varepsilon}\right)$, etc.;
- Send to limit smeared correlations, i.e. area integrals of fields against $f \in C_{c}^{\infty}(\Omega)$, extract integral kernels after the limit, then send $\rho \rightarrow 1$.

Correlation Construction

- Work with regularised GFF ϕ_{ε} with correlation

$$
C_{\varepsilon}(x, y)=\int_{\varepsilon^{2}}^{\infty} p_{\Omega}(s, x, y) d s ;
$$

- Work with truncated mass, i.e. $\mu(z)=m \rho(z) \in C_{c}^{\infty}(\Omega)$;
- Work with renormalisations : $\cos \left(\sqrt{4 \pi} \phi_{\varepsilon}\right):_{\varepsilon}=\varepsilon^{-1} \cos \left(\sqrt{4 \pi} \phi_{\varepsilon}\right)$, etc.;
- Send to limit smeared correlations, i.e. area integrals of fields against $f \in C_{c}^{\infty}(\Omega)$, extract integral kernels after the limit, then send $\rho \rightarrow 1$.

Theorem (P., Virtanen, Webb '23)

The limits of Sine-Gordon smeared correlations exist, and the integral kernels, written as pointwise correlations of fields, may be identified with massive Ising ${ }_{m} \times$ Ising $_{m}$ ' correlations, under bosonisation rules, e.g.:

$$
\sigma \sigma^{\prime} \leftrightarrow \sqrt{2}: \cos (\sqrt{\pi} \phi):, \quad \psi \psi^{\prime} \leftrightarrow 4 \sqrt{\pi} i \partial \phi, \quad \varepsilon+\varepsilon^{\prime} \leftrightarrow: \cos (\sqrt{4 \pi} \phi):
$$

Massive Bosonisation

- Construct continuum $\operatorname{lsing}_{m \rho(z)}$ correlations, then expand both correlations in the powers of m :
- Explicit identification of (critical!) correlations near $m=0$ and analyticity around every $m \in \mathbb{R}$.

What's More?

- Massive CFT?
- Cardy, Mussardo ('90) conjectures that there is a pair of Viraroso algebras acting on massive Ising fields.
- Hongler, Kytölä, Viklund ('22) constructs Virasoro representations in the critical discrete model.
- Interface-FT correspondence: what do discrete martingales tell us?
- General mass: easier on Chelkak's s-embedding ('20) in \mathbb{R}^{2+1}
- mass m becomes the scaled mean curvature of the embedded surface.
- (near-)criticality should correspond to slope uniformly bounded away from 1 (Mahfouf '22)

What's More?

- Massive CFT?
- Cardy, Mussardo ('90) conjectures that there is a pair of Viraroso algebras acting on massive Ising fields.
- Hongler, Kytölä, Viklund ('22) constructs Virasoro representations in the critical discrete model.
- Interface-FT correspondence: what do discrete martingales tell us?
- General mass: easier on Chelkak's s-embedding ('20) in \mathbb{R}^{2+1}
- mass m becomes the scaled mean curvature of the embedded surface.
- (near-)criticality should correspond to slope uniformly bounded away from 1 (Mahfouf '22).

What's More?

- Massive CFT?
- Cardy, Mussardo ('90) conjectures that there is a pair of Viraroso algebras acting on massive Ising fields.
- Hongler, Kytölä, Viklund ('22) constructs Virasoro representations in the critical discrete model.
- Interface-FT correspondence: what do discrete martingales tell us?
- General mass: easier on Chelkak's s-embedding ('20) in \mathbb{R}^{2+1}
- mass m becomes the scaled mean curvature of the embedded surface.
- (near-)criticality should correspond to slope uniformly bounded away from 1 (Mahfouf '22).

Thank you!

