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Planar Ising Model

z

Ω
σz

Spin-Ising model: randomly assign ±1 spins σv on vertices (or faces)
v of discretisation Ωδ =Ω∩δe iπ/4Z2 of (smooth) simply connected
Ω⊂ C
Define probability measure through low-temperature expansion at any
inverse temperature β > 0: weight σ by exp[−2βL(σ)], where L(σ) is
the domain wall length ↔ high-temperature expansion

▶ spins σ on faces, disorders µ on vertices ↔ spins on vertices
▶ boundary condition: plus ↔ free
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Classical Results

Onsager (’44): exact solution; phase transition at βc =
1
2 ln(1+

√
2)

Yang (’52): exact formula for E+,β

Cδ
[σ0]≍ (β −βc)

1/8
+

Wu: at βc , for r > 0,

δ
−1/4E+

Cδ
[σ0σr ]

δ↓0−−→ C 2
σ

r1/4 ,

where Cσ = 21/6e3ζ ′(−1)/2.

Wu, McCoy, Tracy, Barouch (’76): at β = βc − m√
2
δ for m ∈ R

δ
−1/4E+

Cδ
[σ0σz ]

δ↓0−−→ C 2
σ IIm(|z |),

where IIm is given explicitly in terms of a Painlevé III transcendent
and it has an exponential length scale 2|m|.

▶ Sato, Miwa, Jimbo (’77): isomonodromic deformation
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Critical Convergence

Theorem
For the model at βc on Ωδ , write ε(v1v2) :=

√
2σv1σv2 −1 for the centred

energy density at the edge (v1v2). Then as δ ↓ 0,
δ−nE+

Ωδ
[εz1 · · ·εzn ]→ Cε

n ⟨εz1 · · ·εzn⟩
+
Ω (Hongler ’10 + Hongler,

Smirnov ’13);
δ−n/8E+

Ωδ
[σz1 · · ·σzn ]→ C n

σ ⟨σz1 · · ·σzn⟩
+
Ω (Chelkak, Hongler, Izyurov

’15);

δ−n1/8−n2E+
Ωδ

[
σz1 · · ·σzn1

εz1 · · ·εzn2
]
→

C n1
σ C n2

ε

〈
σz1 · · ·σzn1

εz1 · · ·εzn2
〉+
Ω

(Chelkak, Hongler, Izyurov ’21),

where the limits are smooth function of distinct points zk ∈ Ω which are
conformally covariant: with explicit function on H,

⟨· · · ⟩+Ω = (|ϕ ′(z1) · · ·ϕ ′(zn1)|)
1/8 (|ϕ ′(z1) · · ·ϕ ′(zn2)|)⟨ϕ(· · ·)⟩

+
H .



Massive Convergence
Theorem
For the model at β = βc − m√

2
δ on Ωδ , write

ε(v1v2) :=
√

2
(

σv1σv2 −E+
Cδ
[σv1σv2 ]

)
. Then as δ ↓ 0,

δ−n/8E+
Ωδ

[σz1 · · ·σzn ]→ C n
σ ⟨σz1 · · ·σzn⟩

+,m
Ω (m < 0; P. ’18);

δ−nE+
Ωδ

[εz1 · · ·εzn ]→ Cε
n ⟨εz1 · · ·εzn⟩

+,m
Ω (Chelkak, P., Wan ’22);

δ−n1/8−n2E+
Ωδ

[
σz1 · · ·σzn1

εz1 · · ·εzn2
]
→

C n1
σ C n2

ε

〈
σz1 · · ·σzn1

εz1 · · ·εzn2
〉+,m

Ω
(Chelkak, Izyurov, P. ’23),

where the limits are uniquely determined smooth functions of distinct
points zk ∈ Ω, and satisfy massive operator product expansions (OPEs).

Cf. regarding interface: for any m and general Ω,
FK-Ising interface (fermionic) martingale converges (P. ’22);
Spin-Ising interface (fermionic) martingale converges (Chelkak, P., et
al. ’23+).
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Fermions and Bers-Vekua Theory
Guided by Kadanoff, Ceva (’71) and Smirnov (’10): write ψ [η] = σuµv

where iη−2 is the unit complex number pointing from face u to
adjacent vertex v

Define complex fermion ψ = ψ [1]+ iψ [i ]

Near-critical complex fermions satisfy the equation (within even
correlations)

∂ψ =−imψ.

Under conformal change of coordinates ϕ , we have covariance rule

ψ → (ψ ◦ϕ) · (ϕ ′)1/2; m→m|ϕ ′|.

Bers-Vekua theory (’60s): generalised analyticity ∂ f = αf ,
α ∈ C∞(Ω),

▶ series expansion in explicit formal powers Zη
n ∼ ηzn. written in terms

of modified Bessel functions Iν(x)∼ xν ,Kν ∼ x−ν (say for x ,ν > 0).
▶ 1-1 correspondence with suitably defined holomorphic part f modulo a

Cα<1 factor es , non-explicit but uniquely characterisable.
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Characterising the Limit (I)

2-point fermion correlation f (z) =

〈
ψzψ

[η]
w σz1 ···σzn

〉+,m

Ω

⟨σz1 ···σzn⟩+,m

Ω

(with spin

insertions):
▶ ∂ f =−imf̄ away from insertions;
▶ has −1 multiplicative monodromy around z1, . . . ,zn, with behaviour

f (z)
√
z− zj

z→zj−−−→ e iπ/4r ∈ e iπ/4R;
▶ has a simple pole at w :

f (z)(z−w)
z→w−−−→ η̄ ;

▶ has the Riemann-Hilbert boundary condition

f (z) ∈ τ
−1/2
z R, z ∈ ∂Ω,

where τz is the tangent vector as a complex number;
2n-point fermion correlations are given as Pfaffian of 2-point
correlations:

E

[
⟨ψw1 · · ·ψw2nσA⟩+,m

Ω

⟨σA⟩+,m
Ω

]
= Pf

(
E

[〈
ψwj ψwk

σA

〉+,m

Ω

⟨σA⟩+,m
Ω

])2n

j ,k=1
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Characterising the Limit (II)
Merging fermion and spin, we get disorder insertions

ψzσzk = µze
iπ/4(z− zk)

−1/2+o
(
(z− zk)

−1/2
)
;

Merging disorder and fermion, we get spin derivatives

ψzµzk = µzZ
e−iπ/4

−1/2 (z− zk)+4∂zk σzk (z− zk)
1/2+O

(
(z− zk)

3/2
)
;

Pure spin correlation ⟨σz1 · · ·σzn⟩
+,m
Ω :

▶ from ⟨ψzψwσz1 ···σzn⟩+,m

Ω

⟨σz1 ···σzn⟩+,m

Ω

, we have ∂zk log ⟨σz1 · · ·σzn⟩
+,m
Ω ;

▶ only thing to fix is normalisation: uniquely fixed by
⋆ as zk → ∂Ω, n-point correlations break up into multiple of (n−1)- and

1-point correlations;
⋆ Wu’s asymptotic, i.e. ∼ 1/|z1−z2|1/4 as z1 → z2 in 2-point correlation.

This characterisation can be used to construct ⟨·⟩+,m̃
Ω for generic (say,

smooth) functions m̃ : Ω∪∂Ω→ R.
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Massive OPEs

Uniformly away from boundary and other insertions, we get, as z → w ,

ψzψw = 2Z 1
−1(z−w)+O(z−w)

ψzψ
⋆
w =−2iεw +O(z−w)

ψzψ
[η]
w = Z η̄

−1(z−w)− iηεw +O(z−w)

ψzσw = µzZ
e iπ/4

−1/2(z−w)+4∂wµw (z−w)1/2+O((z−w)3/2)

εzσw =
i

2
σw

|z−w |
+O(1)

σzσw = IIm(|z−w |)+ 1
2

εw |z−w |3/4+o(|z−w |3/4),

where Zη
n are explicit (in terms of modified Bessel functions) and IIm(| · |)

is the full plane correlation given in terms of the Painlevé III transcendent.
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Massless Sine-Gordon Theory

Massless Sine-Gordon: construct a random field φ with measure

PSG[φ ] ∝ exp

[
µ

∫
Ω
: cos

(√
βφ

)
:

]
PGFF[φ ]

Coleman (’75): should be bosonisation of massive Thirring model (∋
massive free fermions)

Extensive literature on construction starting with Fröhlich (’75)
Emergent length scale (exponential decay): cf. Bernard, LeClair (’94),
Zamolodchikov (’95), ...

We will focus on β = 4π case with µ =m (↔ m-massive Ising) on
nice simply connected domains Ω
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nice simply connected domains Ω



Correlation Construction

Work with regularised GFF φε with correlation
Cε(x ,y) =

∫
∞

ε2 pΩ(s,x ,y)ds;

Work with truncated mass, i.e. µ(z) =mρ(z) ∈ C∞
c (Ω);

Work with renormalisations : cos(
√

4πφε) :ε= ε−1 cos(
√

4πφε), etc.;

Send to limit smeared correlations, i.e. area integrals of fields against
f ∈ C∞

c (Ω), extract integral kernels after the limit, then send ρ → 1.

Theorem (P., Virtanen, Webb ’23)
The limits of Sine-Gordon smeared correlations exist, and the integral
kernels, written as pointwise correlations of fields, may be identified with
massive Isingm×Isingm’ correlations, under bosonisation rules, e.g.:

σσ
′ ↔

√
2 : cos(

√
πφ) :, ψψ

′ ↔ 4
√

π i∂φ , ε + ε
′ ↔: cos(

√
4πφ) :
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Massive Bosonisation

Construct continuum Isingmρ(z) correlations, then expand both
correlations in the powers of m:
Explicit identification of (critical!) correlations near m = 0 and
analyticity around every m ∈ R.

Isingm=0 GFF

Isingmρ(z)

Isingm

SGµ=mρ(z)

SGµ=m

bosonise



What’s More?

Massive CFT?
▶ Cardy, Mussardo (’90) conjectures that there is a pair of Viraroso

algebras acting on massive Ising fields.
▶ Hongler, Kytölä, Viklund (’22) constructs Virasoro representations in

the critical discrete model.

Interface-FT correspondence: what do discrete martingales tell us?

General mass: easier on Chelkak’s s-embedding (’20) in R2+1

▶ mass m becomes the scaled mean curvature of the embedded surface.
▶ (near-)criticality should correspond to slope uniformly bounded away

from 1 (Mahfouf ’22).
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Thank you!


