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Planar Ising Model

QN &e™/*72 of (smooth) simply connected

randomly assign 41 spins 6, on vertices (or faces)
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Planar Ising Model

Q

@ Spin-Ising model: randomly assign +1 spins G, on vertices (or faces)
v of discretisation Q% = QN §e™/47Z? of (smooth) simply connected
QcC

@ Define probability measure through low-temperature expansion at any
inverse temperature 3 > 0: weight 6 by exp[—2BL(0)], where L(o) is
the domain wall length <> high-temperature expansion

» spins o on faces, disorders [l on vertices <> spins on vertices
» boundary condition: plus <> free



Classical Results

o Onsager ('44): exact solution; phase transition at B = 1In(1+/2)

@ Yang ('52): exact formula for Eggﬁ [oo] < (B —BC)L/S
e Wu: at f, for r >0,
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o Onsager ('44): exact solution; phase transition at B = 1In(1+/2)
@ Yang ('52): exact formula for Eggﬁ [oo] < (B —Bc)fr/s
e Wu: at f, for r >0,
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where €5 = 21/63¢'(-1)/2,

e Wu, McCoy, Tracy, Barouch ('76): at f = B — 6 formeR
_ 610
§V4EY, [o0,] 2% €2117(|2)),
where II"™ is given explicitly in terms of a Painlevé Il transcendent

and it has an exponential length scale 2|m]|.
» Sato, Miwa, Jimbo ('77): isomonodromic deformation



Critical Convergence

For the model at B on Q°, write Eva) = =2 20,0, — 1 for the centred
energy density at the edge (viv2). Then as 6 | 0,

° 6*”E$5 [€2, - &5,] — Ce" (€2, -+ €, (Hongler '10 + Hongler,
Smirnov '13);

° 6_”/8}3& [Gyy -0z = CP(Cyy -0z, (Chelkak, Hongler, Izyurov
'15);

° 67n1/87n2E$(s [Gzl 500 Gan & .gznz] —

+
CotCe? <Gzl---Gzn1 821”'82"2>Q (Chelkak, Hongler, Izyurov '21),

where the limits are smooth function of distinct points z; € Q which are
conformally covariant: with explicit function on H,

()6 = (19'(z0)- 0/ (2 )2 (19 (21) -+ @/ (2m2) ) (- D)




Massive Convergence
For the model at B = B — \%5 on Q% write
E(aw) = V2 (GV10V2 —]EE(‘S [ov, O'V2]). Then as 8 | 0,

o § "R [0 05, = G20z 0,) 0" (M<O; P 18);

° 5_"E35 (€7, €] = C&" (€ ---szn>;;’m (Chelkak, P., Wan '22);

° 57"1/87"2E$5 [Gzl ©+ Og, & - .gznz] =

+,m
gmgm <Gz1"’Gzn1 821...32n2>9 (Chelkak, Izyurov, P. "23),

where the limits are uniquely determined smooth functions of distinct
points zj € Q, and satisfy massive operator product expansions (OPEs).
W




Massive Convergence
For the model at B = B — \%5 on Q% write

E(aw) = V2 (GV10V2 —]EgéS [ov, O'V2]). Then as 8 | 0,

° 5*”/8191;55 (G -+ Oz] = €2 (Csy - 05) ™ (M<0; P.'18);
° 5‘"[[*335 (€2 €,] = €™ (€2 - €,,)5" (Chelkak, P., Wan '22);
o 5-m/S-mEY, [621...62n1821...82n2] Y

Co e <Gzl---Gzn1 821---8zn2>;7m (Chelkak, Izyurov, P. '23),

where the limits are uniquely determined smooth functions of distinct
points zj € Q, and satisfy massive operator product expansions (OPEs).
v

Cf. regarding interface: for any m and general Q,
e FK-Ising interface (fermionic) martingale converges (P. '22);

@ Spin-Ising interface (fermionic) martingale converges (Chelkak, P., et
al. '23+).



Fermions and Bers-Vekua Theory

o Guided by Kadanoff, Ceva ('71) and Smirnov ('10): write y[" = o, u,
where in~2 is the unit complex number pointing from face u to
adjacent vertex v

o Define complex fermion y = ylt + jyl]
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Fermions and Bers-Vekua Theory

Guided by Kadanoff, Ceva ('71) and Smirnov ('10): write y[" = o, u,
where in~2 is the unit complex number pointing from face u to
adjacent vertex v

Define complex fermion y = yl 4 jyl]
Near-critical complex fermions satisfy the equation (within even
correlations) B
dy = —imy.
Under conformal change of coordinates ¢, we have covariance rule

v — (yoo) ()% m— mle.

Bers-Vekua theory ('60s): generalised analyticity df = af,
o e C*(Q),
» series expansion in explicit formal powers Z}] ~ nz". written in terms
of modified Bessel functions /,(x) ~ x", K, ~ x~" (say for x,v > 0).
» 1-1 correspondence with suitably defined holomorphic part f modulo a
C*<1 factor e°, non-explicit but uniquely characterisable.
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Characterising the Limit (1)
Mg ..\
<szw % 6129 (with spin

@ 2-point fermion correlation f(z) =

(02020)g
insertions):
» Of = —imf away from insertions;
» has —1 multiplicative monodromy around z,...,z,, with behaviour

f(z)\/z—2z E7E, gin/dy ¢ /4R,
> has a simple pole at w:
f(2)(z—w) =5 7;
» has the Riemann-Hilbert boundary condition
f(z) et '’R, z€aQ,
where T, is the tangent vector as a complex number;
@ 2n-point fermion correlations are given as Pfaffian of 2-point

correlations:
+.m 2n
(Vs Vi, 08) " (W, W Oa)
E [ L 2 =Pf|E E T

(oa)y ™ (ca)g

Jik=1
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Characterising the Limit (I1)

@ Merging fermion and spin, we get disorder insertions
Y0, = pze™4(z — 2) V240 ((z—2)V2);
@ Merging disorder and fermion, we get spin derivatives
oy 125 5) 40— 22 0 (25 92),
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Characterising the Limit (I1)

@ Merging fermion and spin, we get disorder insertions

V,0,, = e z—2z) V2 +o ((z—zk)’1/2> ;

@ Merging disorder and fermion, we get spin derivatives
—in/
Yok, = Ko 281 )5 (2= 24) +40;,0,, (2= 20)?+ 0 ((Z - Zk)3/2) ;

o Pure spin correlation (o, ---0,,)5"™:
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» only thing to fix is normalisation: uniquely fixed by

* as zy — 9L, n-point correlations break up into multiple of (n—1)- and
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1-point correlations;
* Wu's asymptotic, i.e. ~1/|z; —z|'/* as z; — z5 in 2-point correlation



Characterising the Limit (I1)

@ Merging fermion and spin, we get disorder insertions

V,0,, = e z—2z) V2 +o ((z—zk)’1/2> ;

@ Merging disorder and fermion, we get spin derivatives

Vibts, = o251 (2= 2) +49, 0, (= 202+ 0 (2= 2)7)

o Pure spin correlation (o, ---0,,)5"™:
.m

<WZWWO'ZI "'Uzn>§
<o‘zl ~-~o'Zn>;‘m

» only thing to fix is normalisation: uniquely fixed by

» from , we have 9,, log (0, -+~ 0, 5™

* as zy — 9L, n-point correlations break up into multiple of (n—1)- and

1-point correlations;

* Wu's asymptotic, i.e. ~1/|z; —z|'/* as z; — z5 in 2-point correlation

@ This characterisation can be used to construct <>;§”~7 for generic (say,

smooth) functions m: QUJIN — R.
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Massive OPEs

Uniformly away from boundary and other insertions, we get, as z — w,

YzYw = 2ZE1(Z —w)+0(z—w)
(VAT —2isW +O0(z—w)

vl = 27 (z— w) — e, + O(z—w)
Y20 = uzze"i’//‘;(z W)+ 49wt (z— W)V 1 O((z— w)*2)
&0y = < 5 |Z—W’ +O( )

1
0,0, =1I"(|z—w|)+ §8W|z— W]3/4+o(\z— W|3/4),

where Z;! are explicit (in terms of modified Bessel functions) and I1™(|-|)
is the full plane correlation given in terms of the Painlevé Il transcendent.
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Massless Sine-Gordon Theory

@ Massless Sine-Gordon: construct a random field ¢ with measure

Psg[@] o< exp [H/Q : cos <\/E¢> :} Pere(9]

Coleman ('75): should be bosonisation of massive Thirring model (5
massive free fermions)

Extensive literature on construction starting with Frohlich ('75)

Emergent length scale (exponential decay): cf. Bernard, LeClair ('94),
Zamolodchikov ('95), ...

e We will focus on B =4m case with u = m (<> m-massive Ising) on
nice simply connected domains Q2



Correlation Construction

e Work with regularised GFF ¢ with correlation
CS(X7y) = f; pQ(S,X,y)dS;
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Correlation Construction

e Work with regularised GFF ¢ with correlation
Ce(x,y) = Je2 pa(s, x, y)ds;
e Work with truncated mass, i.e. u(z)=mp(z) € CZ(Q);
e Work with renormalisations : cos(v/47@e) :e= € L cos(V4rmde), etc.;

@ Send to limit smeared correlations, i.e. area integrals of fields against
f € CZ(Q), extract integral kernels after the limit, then send p — 1.

Theorem (P., Virtanen, Webb '23)

The limits of Sine-Gordon smeared correlations exist, and the integral
kernels, written as pointwise correlations of fields, may be identified with
massive Isingm X Ising," correlations, under bosonisation rules, e.g.:

06’ V2:cos(VTP):, Wy < 4VTidp, e+€ :cos(VaAng):




Massive Bosonisation

@ Construct continuum lsing,,,,) correlations, then expand both

correlations in the powers of m:

e Explicit identification of (critical!) correlations near m =0 and

analyticity around every m € R.

ISingm:O

|

[sing,, (-

|

Ising,;,

bosonise

GFF

|

SGu:mp(:)

|

SG;L:m




What's More?

o Massive CFT?
» Cardy, Mussardo ('90) conjectures that there is a pair of Viraroso
algebras acting on massive Ising fields.
» Hongler, Kytold, Viklund ('22) constructs Virasoro representations in
the critical discrete model.
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What's More?

o Massive CFT?
» Cardy, Mussardo ('90) conjectures that there is a pair of Viraroso
algebras acting on massive Ising fields.
» Hongler, Kytold, Viklund ('22) constructs Virasoro representations in
the critical discrete model.

@ Interface-FT correspondence: what do discrete martingales tell us?

o General mass: easier on Chelkak's s-embedding ('20) in R?*!

» mass m becomes the scaled mean curvature of the embedded surface.
» (near-)criticality should correspond to slope uniformly bounded away
from 1 (Mahfouf '22).



Thank you!



