Multiple SLE, Bessel processes and Random Matrices

Vlad Margarint

joint work with J. Chen; K. Luh and A. Campbell
University of Colorado Boulder Random Conformal Geometry and Related Fields in Jeju

June 2023

The Loewner Differential Equation and SLE

- For a non-self crossing curve $\gamma(t):[0, \infty) \rightarrow \overline{\mathbb{H}}$ with $\gamma(0)=0$ and $\gamma(\infty)=\infty$, we consider the simply connected domain $\mathbb{H} \backslash \gamma([0, t])$.

- The forward Loewner Differential Equation

$$
\dot{g}_{t}(z)=\frac{2}{g_{t}(z)-U_{t}}, \quad g_{0}(z)=z
$$

- Oded Schramm: $U_{t}=\sqrt{\kappa} B_{t}$, with $\kappa \geq 0$.
- SLE curves: $\gamma(t):=\lim _{y \rightarrow 0+} \hat{g}_{t}^{-1}$ (iy). (Rohde-Schramm, Lawler-Schramm-Werner).

Multiple SLE model

- Multiple SLE: Alberts, Ang, Bauer, Beffara, Bernard, Binder, Byun, Cardy, Del Monaco, Dubédat, Duplantier, Hotta, Izyurov, Kang, Karrila, Katori, Koshida, Kozdron, Kytölä, Lawler, Lenells, Makarov, Miller, Olsiewski Healey, Peltola, Schleissinger, Sun, Viklund, Wang, Wu, Yu, Zhan, ...
- Random Matrices appeared already in the very nice talk of Sheffield.
- Brownian Motion \rightarrow Dyson Brownian Motion(DBM), $\beta=8 / \kappa$.

$$
d \lambda_{t}^{i}=\frac{\sqrt{2}}{\sqrt{N \beta}} d B_{t}^{i}+\frac{1}{N} \sum_{j \neq i} \frac{d t}{\lambda_{t}^{j}-\lambda_{t}^{i}}, i=1, \cdots, N
$$

Multiple SLE

- Multiple SLE simultaneous growth

$$
\partial_{t} g_{t}^{N}(z)=\frac{1}{N} \sum_{j=1}^{N} \frac{2}{g_{t}^{N}(z)-\lambda_{t}^{j}}
$$

- Feature of DBM: Very fast convergence to local equilibrium. Locally, the information from the initial conditions is lost very fast.
- This property was used by Erdős, Yau, and collaborators in the three-step-strategy proof of universality in Random Matrices. Initial progress was done by Johansson.

RMT and SLE

Theorem (Chen-M.)

For $N=2$ drivers, perturbations of initial value/ parameter $\kappa \in(0,4]$, convergence a.s /with high probability in the Carathéodory sense.

Theorem (Campbell-Luh-M.)

Let $\beta=1$ or $\beta=2$, and let us consider Dyson Brownian motion beginning at the origin. Let K_{T} be the multiple SLE hull at time $T>0$. Then, for any $\varepsilon>0$, for the multiple SLE maps for N curves, we have that

$$
\sup _{t \in[0, T], z \in G}\left|g_{t}^{N}(z)-g_{t}^{\infty}(z)\right|=O\left(\frac{1}{N^{1 / 3-\varepsilon}}\right),
$$

with overwhelming probability, for a given $G \subset \mathbb{H} \backslash K_{T}$.

- E holds with o.p. if, for every $p>0, \mathbb{P}(E) \geq 1-O\left(N^{-p}\right)$.
- Uses modern RMT techniques such as Stieltjes transforms, self-consistent equations, etc.

Idea of the proof of the first result

- For $\kappa, \kappa^{*} \in(0,4]$, we consider

$$
\partial_{t} g_{t}(z)=\frac{1}{g_{t}(z)-\lambda_{t}^{1}}+\frac{1}{g_{t}(z)-\lambda_{t}^{2}}
$$

and

$$
\partial_{t} g_{t}^{*}(z)=\frac{1}{g_{t}^{*}(z)-\lambda_{t}^{1 *}}+\frac{1}{g_{t}^{*}(z)-\lambda_{t}^{2 *}}
$$

- The (rescaled) gaps between the drivers are Bessel processes of dimensions $d=1+\frac{8}{\kappa}$, and $d^{*}=1+\frac{8}{\kappa^{*}}$.
- One can show that

$$
\mathbb{P}\left(\left\|g_{t}(z)-g_{t}^{*}(z)\right\|_{[0, T] \times G}>\varphi\left(\kappa^{*}-\kappa\right)\right)<\zeta\left(\kappa^{*}-\kappa\right),
$$

for some explicit functions $\varphi(\cdot)$ and $\zeta(\cdot)$ such that $\lim _{x \rightarrow 0} \varphi(x)=0$, and $\lim _{x \rightarrow 0} \zeta(x)=0$.

Idea of the proof of the second result

First, Del Monaco and Schleissinger:

$$
\frac{\partial}{\partial t} g_{t}^{\infty}(z)=M_{t}^{\infty}\left(g_{t}(z)\right), \quad g_{0}(z)=z
$$

where M_{t}^{∞} is a solution to the complex Burgers equation

$$
\left\{\begin{aligned}
\frac{\partial M_{t}^{\infty}(z)}{\partial t} & =-2 M_{t}^{\infty}(z) \frac{\partial M_{t}^{\infty}(z)}{\partial z}, t>0 \\
M_{0}^{\infty}(z) & =\int_{\mathbb{R}} \frac{2}{z-x} d \mu_{0}(x)
\end{aligned}\right.
$$

- Let $M_{t}^{N}(\bullet)=\frac{1}{N} \sum_{j=1}^{N} \frac{2}{\bullet-\lambda_{t}^{j}}$.
- Let us consider the time interval $[0,1]$ and a uniform partition with $t_{k}=\frac{k}{n}, k=0,1, \ldots, n$. Let $t \in\left(t_{1}, t_{2}\right)$.
- The proof is based on controlling

$$
\begin{aligned}
& \sup _{\bullet G G} \\
& \sup _{\bullet G G}
\end{aligned} \left\lvert\, \begin{aligned}
& M_{t}^{\infty}(\bullet)-M_{t}^{N}(\bullet)\left|\leq \sup _{\bullet \in G}\right| M_{t}^{\infty}(\bullet)-M_{t_{1}}^{\infty}(\bullet) \mid+ \\
& M_{t_{1}}^{\infty}(\bullet)-M_{t_{1}}^{N}(\bullet)\left|+\sup _{\bullet \in G}\right| M_{t_{1}}^{N}(\bullet)-M_{t}^{N}(\bullet) \mid, \text { for } G \subset \mathbb{H} .
\end{aligned}\right.
$$

Idea of the proof of the second result

- Let $\beta=1$. We have that $M_{t}^{N}(\bullet)=\frac{-2}{N} \operatorname{tr}\left(A_{t}-\bullet \cdot I\right)^{-1}$, where $A_{t}=\sqrt{t} A$, with A a GOE.
- For M_{t}^{∞}, we have $M_{t}^{\infty}(\bullet)-S^{N}\left(z-2 t M_{t}^{\infty}(\bullet)\right)=0$, with $S^{N}(\bullet)=-\frac{2}{N} \operatorname{tr} Q(\bullet)$, where $Q(\bullet)$ is a certain resolvent matrix.
- By a union bound, we have that, for any $\epsilon>0$

$$
\begin{aligned}
& \mathbb{P}\left(\bigcup_{t_{k}}\left|M_{t_{k}}^{\infty}(\bullet)-M_{t_{k}}^{N}(\bullet)\right|=\Omega\left(\frac{C}{N^{1 / 3-\epsilon}}\right)\right) \\
& \leq \sum_{k=1}^{n} \mathbb{P}\left(\left|M_{t_{k}}^{\infty}(\bullet)-M_{t_{k}}^{N}(\bullet)\right|=\Omega\left(\frac{C}{N^{1 / 3-\epsilon}}\right)\right) \\
& \leq n e^{-C N} .
\end{aligned}
$$

- Note $g=\Omega(f) \leftrightarrow f=O(g)$.

Future directions

Medium term goals: Analysis and Geometry of the Multiple SLE curves; Study of the fixed N, asymptotic case, etc. Approximations schemes (working on this over the summer REU/G).

- Interplay between RMT/DBM (gaps, etc.) and Loewner theory.

Figure: Multiple SLE for $\mathrm{N}=3$. Credits to K. Luh

Figure: Approximation Scheme. Credits to K. Luh

Thank you very much KIAS and the organizers for the great support and thank you all for your attention!

