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Outline

1) The double random current model and main results

I definition as an (enhanced) percolation model

I the associated height function – nesting field

I two-valued sets of the Gaussian free field (GFF)

I Main theorem: joint convergence of the nesting field together with the
contours of the critical DRC (both outer and inner boundaries) to a
continuum GFF together with its certain two-valued sets

2) About the proof:

I a discussion in the discrete and convergence of the nesting field to the
GFF

I tightness of interfaces, and some properties of subsequential limits

I identification of the limit through properties of two-valued sets
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1) The double random current model
and main results
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Currents

A current on a graph G = (V,E) is a pair n = (nodd,neven) satisfying

I nodd ⊆ E is an even subgraph of G,

I neven ⊆ E \ nodd.

A connected component of

I nodd ∪ neven is called a cluster,

I nodd is called an interface.
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Double random currents

Let Ω be the set of currents.

For β > 0, define the double random current probability measure on Ω by

PG,β(n) ∝ 2k(n) sinh(2β)|nodd|
(

cosh(2β)− 1
)|neven|

,

where k(n) is the number of clusters of n.

We mostly focus on the critical model on the square lattice

β = βc = 1
2 ln(
√

2 + 1),

and usually drop β them from the notation.
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Double random currents

Double random currents are derived from the Ising model and posses a
special combinatorial structure which is expressed in the celebrated
switching lemma of Griffiths, Hurst and Sherman ’70.

They were used by

I Aizenman ’82 to prove triviality of the Ising field in dimension d > 4,
I Aizenman, Barsky and Fernandez ’87 to obtain sharpness of phase

transition for a general family of translation invariant spins systems,
I Aizenman, Duminil-Copin and Sidoravicius ’14 to prove continuity of

phase transition for Ising models on a large family of lattices including
Z3,

I Aizenman and Duminil-Copin ’20 to prove triviality in dimension
d = 4
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Inner and outer boundaries
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Nesting field
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Nesting field

Independent spins for each cluster.
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Nesting field

Heights change only across contours.
Sign of increment given by spin when crossing from outside to inside.
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Nesting field

Heights change only across contours. Sign of increment given by spin.
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Nesting field

For nested contours in the same cluster, increments alternate with each layer.
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The Dirichlet Gaussian free field (GFF)
Let D ⊂ C be a domain with boundary and let

GD(x, y) =

∫ ∞
0

pD
t (x, y)dt

be the Green’s function of Brownian motion killed upon hitting ∂D.

The Gaussian free field with Dirichlet b.c. h is a random distribution
satisfying

I h(f ) is a mean-zero Gaussian for all test functions f ,

I

E[h(f )h(g)] =

∫
D

∫
D

f (x)g(y)GD(x, y)dxdy

for all f , g.

The value at a point does not make sense!
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Two-valued sets of the GFF
Introduced by Aru, Sepúlveda and Werner ’17 and studied by Aru,
Sepúlveda ’18.

Heuristics

Let a, b > 0. Heuristically, the two-valued level set A−a,b of the GFF h, is
the set of points in D that are connected to the boundary ∂D by a path of
points where h takes values in [−a, b].

Its boundary ∂A−a,b \ ∂D is a two-dimensional time analog of the first
escape time of Brownian motion from [a, b].

A−a,b exists iff a + b ≥ 2λ, where

λ =
√
π/8.

Let L−a,b be the collection of boundaries of the connected components of
D \ A−a,b.
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Coupling of CLE4 and GFF

Theorem (Miller & Sheffield ’11)

CLE4 has the same distribution as L−2λ,2λ. Moreover, the nesting field of
the CLE4 has the same distribution as the GFF.
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Convergence of DRC with free boundary conditions

Fix a simply connected bounded Jordan domain D ⊂ C, and let
Dδ = D ∩ δZ2 be its approximation.

Let nδ and hδ be the associated critical double random current and its
nesting field.

Let Bδ be the collection of outer boundaries of nδ .

For each loop `δ ∈ Bδ , let Aδ(`δ) be the collection of loops corresponding to
the inner boundary of the cluster whose outer boundary is `δ .

Let Aδ := ∪`δ∈BδAδ(`δ).

For a loop `, let O(`) be the domain encircled by `.
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Convergence of DRC with free boundary conditions

Theorem (Duminil-Copin & L. & Qian ’21)

As δ → 0, the law of (hδ,Bδ,Aδ) under PDδ converges to ( 1
2
√

2λ
h,B,A),

where

I h is a GFF in D.

I B = CLE4(h) = L−2λ,2λ(h).

I If the outer boundary `δ of a cluster converges to a loop ` ∈ B with
boundary value 2λ (resp. −2λ), then Aδ(`δ) converges to
L−2λ,(2

√
2−2)λ(h|O(`)) (resp. L(2−2

√
2)λ,2λ(h|O(`))).

Moreover
I If a loop `δ in Aδ converges to `, then the outer boundaries of the

outermost clusters enclosed by `δ converge to a CLE4(h|O(`)).

The gap 2λ does not exist on the discrete level!
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Convergence of DRC with free boundary conditions
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Duality

Let G† to be the dual graph and dual (including the vertex corresponding to
the unbounded face of G).

The dual double random current model is the probability measure PG†,β† ,
with

exp(−2β†) = tanh(β).

The critical temperature is self-dual:

β†c = βc.

The nesting field is analogous but
takes values in Z + 1

2 .
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Convergence of DRC with wired boundary conditions

Let D and Dδ be as before.

Let (Dδ)† be the dual graph (the outer ghost vertex has large degree).

Let nδ and hδ be the critical double random current and its nesting field on
(Dδ)†.

Let Âδ be the collection of loops in the inner boundary of the cluster of the
ghost vertex.
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Convergence of DRC with wired boundary conditions

Theorem (Duminil-Copin & L. & Qian ’21)

As δ → 0, the law of (hδ, Âδ) under P(Dδ)† converges to ( 1
2
√

2λ
h, Â), where

I h is a GFF in D.

I Â = L−√2λ,
√

2λ(h).

Moreover,

I In each inner boundary loop `δ ∈ Âδ , the nδ has free boundary
conditions, and the previous theorem applies.
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Convergence of DRC with wired boundary conditions
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2) About the proof

26 / 43



Connection to dimers

PG,β(n) ∝ 2k(n) sinh(2β)|nodd|
(

cosh(2β)− 1
)|neven|
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Connection to dimers

Note that the set of faces of G embeds naturally in the set of faces of GD.

Theorem (Duminil-Copin & L., 2016)

Under this mapping, the height function on GD restricted to the faces of G
becomes the double random current nesting field.
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Connection to dimers

Dubédat (2011) provided a mapping between the double Ising model on a
graph G and dimers on a related graph CG.

Boutillier and de Tilière (2012) provided a different proof of the same
mapping and showed convergence to full plane GFF.

The weights satisfy y = 2x
1−x2 , w = 2x

1+x2 , z = 1−x2

1+x2 , where x = tanhβ.
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Connection to dimers
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Scaling limit of the height function

Theorem (Duminil-Copin & L. & Qian, ’21)

As δ → 0, the critical double random current nesting field drawn according
to PDδ or P(Dδ)+ converges to 1

2
√

2λ
h where h is a GFF in D.

Proof

I Express the inverse Kasteleyn matrix K−1 on CG in terms of the spin
fermionic observable of Chelkak and Smirnov ’09, and Hongler and
Smirnov ’10.

I Use the scaling limit of fermionic observables to identify the moments
of the height function at macroscopic distances (like in Kenyon ’99).

I Use crossing estimates to control the moments at short distances.
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Master coupling
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Master coupling
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Master coupling
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Identification of the limit – wired boundary conditions

Theorem (Duminil-Copin & L. & Qian, ’21)

As δ → 0, the law of (hδ, Âδ) under P(Dδ)† converges to( 1
2
√

2λ
h,L−√2λ,

√
2λ(h)

)
.
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Identification of the limit – free boundary conditions
Proposition (Duminil-Copin & L. & Qian ’21)

The family (hδ,Bδ,Aδ)δ>0 is tight and for every subsequential limit
(h,B,A), a.s.

1. h is a GFF in D.

2. The sets A and B consist of simple loops which do not cross each other.
Every loop in A is encircled by some loop in B. The set A is not equal to
{∂D}.

3. Almost surely, any two loops in B do not intersect each other.

4. (Local set) The gasket of A is a thin local set of h with boundary values
belonging to

{−2
√

2λ, 0, 2
√

2λ}.

More precisely, for each loop ` ∈ B, for all γ ∈ A(`), h restricted to
O(γ) is equal to an independent GFF with boundary condition 0 or
±2
√

2λ.

5. The loops in A that have boundary value 0 do not touch the loops in B.
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Identification of the limit – free boundary conditions
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Identification of the limit – free boundary conditions
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Identification of the limit – free boundary conditions
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Thank you for your attention!

42 / 43



Future directions

For β > 0 and U ∈ R, Ahskin–Teller currents are given by

PG,β(n) ∝ 2k(n)(e2U sinh(2β)
)|nodd|(e2U cosh(2β)− 1

)|neven|
,

Conjecture (L. ’21)

Consider the critical Ashkin–Teller model of the square lattice model given
by

sinh(2β) = e−2U, β ≥ U.

Then, analogous theorems as for U = 0, hold but with
√

2 replaced by
√

g in
all the statements, where g satisfies

sin
(π

8
g
)

= coth(2β)/2.
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