Multiplicative chaos measures from thick points of log-correlated fields

Janne Junnila
Random Conformal Geometry and Related Fields in Jeju (June 2023) Joint work with G. Lambert and C. Webb (arXiv:2209.06548)

Log-correlated Gaussian fields

- A Gaussian random field X is called log-correlated if its covariance (kernel) is of the form

$$
C_{X}(x, y)=C(x, y)=\log |x-y|^{-1}+g(x, y)
$$

for some continuous function g.

Log-correlated Gaussian fields

- A Gaussian random field X is called log-correlated if its covariance (kernel) is of the form

$$
C_{X}(x, y)=C(x, y)=\log |x-y|^{-1}+g(x, y)
$$

for some continuous function g.

- Example I:The zero-boundary GFF h on a simply connected domain $U \subset \mathbb{R}^{2}$, where $C_{h}=2 \pi G_{U}$ is the Green's function.

Log-correlated Gaussian fields

- A Gaussian random field X is called log-correlated if its covariance (kernel) is of the form

$$
C_{X}(x, y)=C(x, y)=\log |x-y|^{-1}+g(x, y)
$$

for some continuous function g.

- Example I:The zero-boundary GFF h on a simply connected domain $U \subset \mathbb{R}^{2}$, where $C_{h}=2 \pi G_{U}$ is the Green's function.
- Example 2: The field

$$
X_{S^{1}}(z)=\sqrt{2} \operatorname{Re}\left(\sum_{k=1}^{\infty} \frac{Z_{k}}{\sqrt{k}} z^{k}\right)
$$

on the unit circle $\{z \in \mathbb{C}:|z|=1\}$, where Z_{k} are i.i.d. standard complex Gaussians. In this case we have exactly

$$
C_{X_{51}}(z, w)=\log |z-w|^{-1}
$$

Log-correlated Gaussian fields

- A Gaussian random field X is called log-correlated if its covariance (kernel) is of the form

$$
C_{X}(x, y)=C(x, y)=\log |x-y|^{-1}+g(x, y)
$$

for some continuous function g.

- Example I:The zero-boundary GFF h on a simply connected domain $U \subset \mathbb{R}^{2}$, where $C_{h}=2 \pi G_{U}$ is the Green's function.
- Example 2: The field

$$
X_{S^{1}}(z)=\sqrt{2} \operatorname{Re}\left(\sum_{k=1}^{\infty} \frac{Z_{k}}{\sqrt{k}} z^{k}\right)
$$

on the unit circle $\{z \in \mathbb{C}:|z|=1\}$, where Z_{k} are i.i.d. standard complex Gaussians. In this case we have exactly
$C_{X_{S 1}}(z, w)=\log |z-w|^{-1}$.

- X is not a pointwise defined function, but can be given sense as a random Schwartz distribution.

Gaussian multiplicative chaos

What is GMC?

Gaussian multiplicative chaos

What is GMC?

- A random measure μ formally of the form $\mu(d x):=e^{\gamma X(x)-\frac{\gamma^{2}}{2} \mathbb{E}\left[X(x)^{2}\right]} d x$, where X is a log-correlated Gaussian field and $\gamma \in(0, \sqrt{2 d})$ is a parameter.

Gaussian multiplicative chaos

What is GMC?

- A random measure μ formally of the form $\mu(d x):=e^{\gamma X(x)-\frac{\gamma^{2}}{2} \mathbb{E}\left[X(x)^{2}\right]} d x$, where X is a log-correlated Gaussian field and $\gamma \in(0, \sqrt{2 d})$ is a parameter.
- Rigorous definition requires a limiting procedure:
$\mu(d x):=\lim _{t \rightarrow \infty} \mu_{t}(x) d x:=\lim _{t \rightarrow \infty} e^{\gamma X_{t}(x)-\frac{\gamma^{2}}{2} \mathbb{E}\left[X_{t}(x)^{2}\right]} d x$, where $X_{t} \rightarrow X$ is a smoothened version of X.

Gaussian multiplicative chaos

What is GMC?

- A random measure μ formally of the form $\mu(d x):=e^{\gamma X(x)-\frac{\gamma^{2}}{2} \mathbb{E}\left[X(x)^{2}\right]} d x$, where X is a log-correlated Gaussian field and $\gamma \in(0, \sqrt{2 d})$ is a parameter.
- Rigorous definition requires a limiting procedure:
$\mu(d x):=\lim _{t \rightarrow \infty} \mu_{t}(x) d x:=\lim _{t \rightarrow \infty} e^{\gamma X_{t}(x)-\frac{\gamma^{2}}{2} \mathbb{E}\left[X_{t}(x)^{2}\right]} d x$, where $X_{t} \rightarrow X$ is a smoothened version of X.
- Appears e.g. in Liouville quantum gravity or as a limit of characteristic polynomials of random matrices.

Existence in the L^{2}-phase $\gamma \in(0, \sqrt{d})$

For a given test function f we may compute

$$
\begin{aligned}
\mathbb{E}\left[\left|\mu_{t}(f)\right|^{2}\right] & =\int f(x) f(y) \mathbb{E}\left[e^{\gamma X_{t}(x)+\gamma X_{t}(y)-\frac{\gamma^{2}}{2} \mathbb{E}\left[X_{t}(x)^{2}\right]-\frac{\gamma^{2}}{2} \mathbb{E}\left[X_{t}(y)^{2}\right]}\right] d x d y \\
& =\int f(x) f(y) e^{\gamma^{2} \mathbb{E}\left[X_{t}(x) X_{t}(y)\right]} d x d y \lesssim \int|x-y|^{-\gamma^{2}} d x d y .
\end{aligned}
$$

Existence in the L^{2}-phase $\gamma \in(0, \sqrt{d})$

For a given test function f we may compute

$$
\begin{aligned}
\mathbb{E}\left[\left|\mu_{t}(f)\right|^{2}\right] & =\int f(x) f(y) \mathbb{E}\left[e^{\gamma X_{t}(x)+\gamma X_{t}(y)-\frac{\gamma^{2}}{2} \mathbb{E}\left[X_{t}(x)^{2}\right]-\frac{\gamma^{2}}{2} \mathbb{E}\left[X_{t}(y)^{2}\right]}\right] d x d y \\
& =\int f(x) f(y) e^{\gamma^{2} \mathbb{E}\left[X_{t}(x) X_{t}(y)\right]} d x d y \leqq \int|x-y|^{-\gamma^{2}} d x d y .
\end{aligned}
$$

- Thus $\mathbb{E}\left[\left|\mu_{t}(f)\right|^{2}\right]$ is bounded uniformly in t if $\gamma<\sqrt{d}$.

Existence in the L^{2}-phase $\gamma \in(0, \sqrt{d})$

For a given test function f we may compute

$$
\begin{aligned}
\mathbb{E}\left[\left|\mu_{t}(f)\right|^{2}\right] & =\int f(x) f(y) \mathbb{E}\left[e^{\gamma X_{t}(x)+\gamma X_{t}(y)-\frac{\gamma^{2}}{2} \mathbb{E}\left[X_{t}(x)^{2}\right]-\frac{\gamma^{2}}{2} \mathbb{E}\left[X_{t}(y)^{2}\right]}\right] d x d y \\
& =\int f(x) f(y) e^{\gamma^{2} \mathbb{E}\left[X_{t}(x) X_{t}(y)\right]} d x d y \leqq \int|x-y|^{-\gamma^{2}} d x d y .
\end{aligned}
$$

- Thus $\mathbb{E}\left[\left|\mu_{t}(f)\right|^{2}\right]$ is bounded uniformly in t if $\gamma<\sqrt{d}$.
- If $\mu_{t}(f)$ is a martingale we automatically obtain convergence in $L^{2}(\Omega)$.

The L^{1}-phase $(\gamma \in(0, \sqrt{2 d}))$ and barriers (Berestycki's argument)

- Assume for simplicity that $X_{t}(x)$ is a Brownian motion in t.

The L^{1}-phase $(\gamma \in(0, \sqrt{2 d})$) and barriers (Berestycki's argument)

- Assume for simplicity that $X_{t}(x)$ is a Brownian motion in t.
- Fix $\varepsilon>0$ and let $A_{t_{0}, t}(x)=\left\{X_{s}(x)<(\gamma+\varepsilon) s\right.$ for all $\left.s \in\left[t_{0}, t\right]\right\}$.
- Assume for simplicity that $X_{t}(x)$ is a Brownian motion in t.
- Fix $\varepsilon>0$ and let $A_{t_{0}, t}(x)=\left\{X_{s}(x)<(\gamma+\varepsilon) s\right.$ for all $\left.s \in\left[t_{0}, t\right]\right\}$.
- Note that by Girsanov
$\mathbb{E}\left[e^{\gamma X_{t}(x)-\frac{\gamma^{2}}{2} t} \mathbf{1}_{A_{t_{0}, t}(x)^{c}}\right]=\mathbb{P}\left[X_{s}(x)+\gamma s \geq(\gamma+\varepsilon) s\right.$ for some $\left.\left.s \in\left[t_{0}, t\right]\right]\right]$, so that

$$
\lim _{t_{0} \rightarrow \infty} \sup _{t>t_{0}} \mathbb{E}\left[\int e^{\gamma X_{t}(x)-\frac{\gamma^{2}}{2} t} \mathbf{1}_{A_{t_{0}, t}(x)^{c}}\right]=0 .
$$

- Assume for simplicity that $X_{t}(x)$ is a Brownian motion in t.
- Fix $\varepsilon>0$ and let $A_{t_{0}, t}(x)=\left\{X_{s}(x)<(\gamma+\varepsilon) s\right.$ for all $\left.s \in\left[t_{0}, t\right]\right\}$.
- Note that by Girsanov
$\mathbb{E}\left[e^{\gamma X_{t}(x)-\frac{\gamma^{2}}{2} t} \mathbf{1}_{A_{t_{0}, t}(x)^{c}}\right]=\mathbb{P}\left[X_{s}(x)+\gamma s \geq(\gamma+\varepsilon) s\right.$ for some $\left.\left.s \in\left[t_{0}, t\right]\right]\right]$,
so that

$$
\lim _{t_{0} \rightarrow \infty} \sup _{t>t_{0}} \mathbb{E}\left[\int e^{\gamma X_{t}(x)-\frac{\gamma^{2}}{2} t} \mathbf{1}_{A_{t_{0}, t}(x)^{c}}\right]=0
$$

- Moreover, as long as $\gamma<\sqrt{2 d}$, it turns out that one can choose ε so that $\sup _{t>t_{0}} \mathbb{E}\left[\left|\int e^{\gamma X_{t}(x)-\frac{\gamma^{2}}{2} t} \mathbf{1}_{A_{t_{0}, t}(x)}\right|^{2}\right]=C\left(t_{0}\right)<\infty$.

The L^{1}-phase $(\gamma \in(0, \sqrt{2 d})$) and barriers (Berestycki's argument)

- Assume for simplicity that $X_{t}(x)$ is a Brownian motion in t.
- Fix $\varepsilon>0$ and let $A_{t_{0}, t}(x)=\left\{X_{s}(x)<(\gamma+\varepsilon) s\right.$ for all $\left.s \in\left[t_{0}, t\right]\right\}$.
- Note that by Girsanov
$\mathbb{E}\left[e^{\gamma X_{t}(x)-\frac{\gamma^{2}}{2} t} \mathbf{1}_{A_{t_{0}, t}(x)^{c}}\right]=\mathbb{P}\left[X_{s}(x)+\gamma s \geq(\gamma+\varepsilon) s\right.$ for some $\left.\left.s \in\left[t_{0}, t\right]\right]\right]$,
so that

$$
\lim _{t_{0} \rightarrow \infty} \sup _{t>t_{0}} \mathbb{E}\left[\int e^{\gamma X_{t}(x)-\frac{\gamma^{2}}{2} t} \mathbf{1}_{A_{t_{0}, t}(x)}\right]=0
$$

- Moreover, as long as $\gamma<\sqrt{2 d}$, it turns out that one can choose ε so that $\sup _{t>t_{0}} \mathbb{E}\left[\left|\int e^{\gamma X_{t}(x)-\frac{\nu^{2}}{2} t} \mathbf{1}_{A_{t_{0}, t}(x)}\right|^{2}\right]=C\left(t_{0}\right)<\infty$.
- These two estimates together show that $\int e^{\gamma X_{t}(x)-\frac{\gamma^{2}}{2} t} d x$ is uniformly integrable and we get a non-trivial limit.

Thick points

- The above computation implies that μ gives no mass to the set $\left\{x: \lim \sup _{t \rightarrow \infty} \frac{X_{t}(x)}{t}>\gamma+\varepsilon\right\}$.

Thick points

- The above computation implies that μ gives no mass to the set $\left\{x: \lim \sup _{t \rightarrow \infty} \frac{X_{t}(x)}{t}>\gamma+\varepsilon\right\}$.
- On the other hand it turns out that μ also gives no mass to the set $\left\{x: \lim \sup _{t \rightarrow \infty} \frac{X_{t}(x)}{t}<\gamma-\varepsilon\right\}$.

Thick points

- The above computation implies that μ gives no mass to the set $\left\{x: \lim \sup _{t \rightarrow \infty} \frac{X_{t}(x)}{t}>\gamma+\varepsilon\right\}$.
- On the other hand it turns out that μ also gives no mass to the set $\left\{x: \lim \sup _{t \rightarrow \infty} \frac{X_{t}(x)}{t}<\gamma-\varepsilon\right\}$.
- The set $T_{\gamma}=\left\{x: \lim \sup _{t \rightarrow \infty} \frac{X_{t}(x)}{t}=\gamma\right\}$ is known as the set of γ-thick points and μ gives full mass to T_{γ}.

GMC from level sets of thick points

- It turns out that one can construct the GMC measure μ directly from thick points:

$$
\frac{\mathbf{1}\left\{x: X_{t}(x)>\gamma t\right\}}{\mathbb{P}\left[X_{t}(x)>\gamma t\right]} d x \rightarrow d \mu(x) .
$$

- Our goal: Prove this under general assumptions, with applications in random matrices in mind.
- Similar results have appeared before, e.g. Biskup-Louidor for discrete GFF, Jego for thick points of Brownian motion.

Fluctuations of thick points of CUE characteristic polynomial

- CUE ensemble: $U_{N} \in \mathbb{C}^{N \times N}$ a random unitary matrix sampled according to the Haar measure.

Fluctuations of thick points of CUE characteristic polynomial

- CUE ensemble: $U_{N} \in \mathbb{C}^{N \times N}$ a random unitary matrix sampled according to the Haar measure.
- Let $p_{N}(\theta)=\operatorname{det}\left(1-U_{N} e^{-i \theta}\right)$ be the characteristic polynomial of U_{N}.

Fluctuations of thick points of CUE characteristic polynomial

- CUE ensemble: $U_{N} \in \mathbb{C}^{N \times N}$ a random unitary matrix sampled according to the Haar measure.
- Let $p_{N}(\theta)=\operatorname{det}\left(1-U_{N} e^{-i \theta}\right)$ be the characteristic polynomial of U_{N}.

Conjecture (Fyodorov-Keating)

$$
\frac{\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathbf{1}\left\{\log \left|p_{N}(\theta)\right|>\gamma \log N\right\} d \theta}{N^{-\gamma^{2}} \frac{1}{\sqrt{\pi \log N}} \frac{G(1+\gamma)^{2}}{2 \gamma G(1+2 \gamma)} \frac{1}{\Gamma\left(1-\gamma^{2}\right)}}
$$

converges in distribution to a r.v. with density

$$
\mathcal{P}_{\gamma}(x)=\gamma^{-2} x^{-1-\gamma^{2}} e^{-x^{-\gamma^{-2}}} \mathbf{1}\{x>0\} .
$$

Here G is the Barnes G-function,

$$
\left.G(1+z)=(2 \pi)^{z / 2} \exp \left(-\frac{z+z^{2}\left(1+\gamma_{E M}\right)}{2}\right) \prod_{k=1}^{\infty}\left[\left(1+\frac{z}{k}\right)^{k} \exp \left(\frac{z^{2}}{2 k}-z\right)\right)\right] .
$$

From CUE to GMC

- Relationship to log-correlated fields: $\log \left|p_{N}(\theta)\right|$ corresponds to an approximation of the log-correlated field $X_{S^{1}}\left(e^{i \theta}\right)$ with variance $\sim \log N$, and $\left|p_{N}(\theta)\right|^{\gamma} / \mathbb{E}\left[\left|p_{N}(\theta)\right|^{\gamma}\right]$ corresponds to an approximation of the GMC measure.

From CUE to GMC

- Relationship to log-correlated fields: $\log \left|p_{N}(\theta)\right|$ corresponds to an approximation of the log-correlated field $X_{S^{1}}\left(e^{i \theta}\right)$ with variance $\sim \log N$, and $\left|p_{N}(\theta)\right|^{\gamma} / \mathbb{E}\left[\left|p_{N}(\theta)\right|^{\gamma}\right]$ corresponds to an approximation of the GMC measure.
- Convergence of $\left|p_{N}(\theta)\right|^{\gamma} / \mathbb{E}\left[\left|p_{N}(\theta)\right|^{\gamma}\right]$ to $G M C$ was proven by Webb (L^{2}-phase) and Nikula-Saksman-Webb (L^{1}-phase).

From CUE to GMC

- Relationship to log-correlated fields: $\log \left|p_{N}(\theta)\right|$ corresponds to an approximation of the log-correlated field $X_{S^{1}}\left(e^{i \theta}\right)$ with variance $\sim \log N$, and $\left|p_{N}(\theta)\right|^{\gamma} / \mathbb{E}\left[\left|p_{N}(\theta)\right|^{\gamma}\right]$ corresponds to an approximation of the GMC measure.
- Convergence of $\left|p_{N}(\theta)\right|^{\gamma} / \mathbb{E}\left[\left|p_{N}(\theta)\right|^{\gamma}\right]$ to $G M C$ was proven by Webb (L^{2}-phase) and Nikula-Saksman-Webb (L^{1}-phase).
- The explicit formula for the density \mathcal{P}_{γ} of the total mass was proven by Remy (LCFT inspired) and also follows from an alternate description of the limit by Chhaibi-Najnudel.

From CUE to GMC

- Relationship to log-correlated fields: $\log \left|p_{N}(\theta)\right|$ corresponds to an approximation of the log-correlated field $X_{S^{1}}\left(e^{i \theta}\right)$ with variance $\sim \log N$, and $\left|p_{N}(\theta)\right|^{\gamma} / \mathbb{E}\left[\left|p_{N}(\theta)\right|^{\gamma}\right]$ corresponds to an approximation of the GMC measure.
- Convergence of $\left|p_{N}(\theta)\right|^{\gamma} / \mathbb{E}\left[\left|p_{N}(\theta)\right|^{\gamma}\right]$ to $G M C$ was proven by Webb (L^{2}-phase) and Nikula-Saksman-Webb (L^{1}-phase).
- The explicit formula for the density \mathcal{P}_{γ} of the total mass was proven by Remy (LCFT inspired) and also follows from an alternate description of the limit by Chhaibi-Najnudel.
- Thus the conjecture follows if one can show that the level set measure $1\left\{\log \left|p_{N}(\theta)\right|>\gamma \log N\right\}$ converges to GMC (after renormalisation).

Barriers and "mesoscopically Gaussian" log-correlated fields

- Take an approximation X_{N} of a log-correlated field X, for instance the logarithm of a CUE characteristic polynomial $X_{N}(x)=-\operatorname{Re}\left(\sum_{k \geq 1} \frac{\operatorname{Tr} U_{N}^{k}}{k / \sqrt{2}} e^{-i k x}\right)$.

Barriers and "mesoscopically Gaussian" log-correlated fields

- Take an approximation X_{N} of a log-correlated field X, for instance the logarithm of a CUE characteristic polynomial $X_{N}(x)=-\operatorname{Re}\left(\sum_{k \geq 1} \frac{\operatorname{Tr} U_{\mathrm{N}}^{k}}{k / \sqrt{2}} e^{-i k x}\right)$.
- Try to apply barrier arguments to X_{N} by employing a second layer of approximations $X_{N, \delta}=X_{N} * \rho_{\delta}$, e.g.
$X_{N, \delta}(x)=-\operatorname{Re}\left(\sum_{k \leq 1 / \delta} \frac{\operatorname{Tr} U_{N}^{k}}{k / \sqrt{2}} e^{-i k x}\right)$, where
$\delta \in\left\{e^{-k}: k \in\left[L_{0}, \log \left(N^{1-\eta}\right)\right]\right\}$ stays in mesoscopic range for the barrier ($\eta>0$ is some small enough constant).

Barriers and "mesoscopically Gaussian" log-correlated fields

- Take an approximation X_{N} of a log-correlated field X, for instance the logarithm of a CUE characteristic polynomial $X_{N}(x)=-\operatorname{Re}\left(\sum_{k \geq 1} \frac{\operatorname{Tr} U_{N}^{k}}{k / \sqrt{2}} e^{-i k x}\right)$.
- Try to apply barrier arguments to X_{N} by employing a second layer of approximations $X_{N, \delta}=X_{N} * \rho_{\delta}$, e.g.
$X_{N, \delta}(x)=-\operatorname{Re}\left(\sum_{k \leq 1 / \delta} \frac{\operatorname{Tr} U_{N}^{k}}{k / \sqrt{2}} e^{-i k x}\right)$, where
$\delta \in\left\{e^{-k}: k \in\left[L_{0}, \log \left(N^{1-\eta}\right)\right]\right\}$ stays in mesoscopic range for the barrier ($\eta>0$ is some small enough constant).
- Capture approximate Gaussianity on mesoscopic scales by suitable assumptions on the Laplace transform $\mathbb{E}\left[e^{\zeta_{1} X_{N}\left(x_{1}\right)+\zeta_{2} X_{N}\left(x_{2}\right)+\sum_{j=1}^{q} \xi_{j} X_{N, \delta_{j}}\left(z_{j}\right)}\right]=\Psi_{N, \delta}^{\left(\zeta_{1}, \zeta_{2}, \xi\right)}\left(x_{1}, x_{2} ; z\right) \times$ $e^{\frac{\zeta_{1}^{2}+\zeta_{2}^{2}}{2}} \log N+\zeta_{1} \zeta_{2} C_{X}\left(x_{1}, x_{2}\right)+\zeta_{1} \int C_{X}\left(x_{1}, u\right) \mathrm{f}_{\delta, z}(u) d u+\zeta_{2} \int C_{X}\left(x_{2}, u\right) \mathrm{f}_{\delta, z}(u) d u+\frac{1}{2} \mathbb{E}\left\langle X, \mathrm{f}_{\delta, z}\right\rangle^{2}$ where $f_{\delta, z}=\sum_{j=1}^{q} \xi_{j} \rho_{\delta_{j}, z_{j}}$.

The main theorem

Let us define

$$
d v_{N}(x)=\frac{\mathbf{1}\left\{X_{N}(x) \geq \gamma \log N+u\right\}}{\mathbb{P}\left[X_{N}(x) \geq \gamma \log N\right]} d x, \quad d \mu_{N}(x)=\frac{e^{\gamma X_{N}(x)}}{\mathbb{E}\left[e^{\gamma X_{N}(x)}\right]} d x .
$$

where u is some arbitrary continuous function (e.g. $u=0$).

Theorem (Sketch)

Assume that $\Psi_{N, \delta}^{\left(\zeta_{1}, \zeta_{2}, \xi^{\prime}\right)}\left(x_{1}, x_{2} ; z\right)$ satisfies certain decorrelation properties, roughly meaning that $\Psi_{N, \delta}^{\left(\zeta_{1}, \zeta_{2}, \xi\right)}\left(x_{1}, x_{2} ; z\right)=\Psi\left(\zeta_{1}, x_{1}\right) \Psi\left(\zeta_{2}, x_{2}\right)(1+o(1))$ for $\left|x_{1}-x_{2}\right|, \delta_{1}, \ldots, \delta_{q}>N^{-1+\eta}$ for some $\eta>0$. Then

$$
\lim _{N \rightarrow \infty} \mathbb{E}_{N}\left[\left|v_{N}(f)-\mu_{N}\left(e^{-\gamma u} f\right)\right|\right]=0
$$

In particular, if μ_{N} converges to GMC measure μ, so does v_{N}.

Applications

- Convolutions: Take $X_{N}=X * \varphi_{1 / N}$ and $X_{N, \delta}=X * \varphi_{\delta}$ for $\delta<1 / N$, checking the assumptions is rather straightforward.

Applications

- Convolutions: Take $X_{N}=X * \varphi_{1 / N}$ and $X_{N, \delta}=X * \varphi_{\delta}$ for $\delta<1 / N$, checking the assumptions is rather straightforward.
- Checking the conditions for CUE is more involved:
- Using the Heine-Szegö identity one can compute the Laplace transform as a certain Toeplitz determinant.
- Asymptotics of such a determinant have been previously analysed by Deift-Its-Krasovsky based on orthogonal polynomials and Riemann-Hilbert problems, but we need some technical tweaks to their approach.

Thanks!

