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Log-correlated Gaussian fields

• A Gaussian random field 𝑋 is called log-correlated if its

covariance (kernel) is of the form

𝐶𝑋(𝑥, 𝑦) = 𝐶(𝑥, 𝑦) = log |𝑥 − 𝑦|−1 + 𝑔(𝑥, 𝑦)

for some continuous function 𝑔.

• Example 1: The zero-boundary GFF ℎ on a simply connected

domain 𝑈 ⊂ ℝ2, where 𝐶ℎ = 2𝜋𝐺𝑈 is the Green’s function.

• Example 2: The field

𝑋𝑆1(𝑧) = √2Re (
∞
∑
𝑘=1

𝑍𝑘
√𝑘
𝑧𝑘)

on the unit circle {𝑧 ∈ ℂ ∶ |𝑧| = 1}, where 𝑍𝑘 are i.i.d. standard

complex Gaussians. In this case we have exactly

𝐶𝑋𝑆1 (𝑧, 𝑤) = log |𝑧 − 𝑤|
−1.

• 𝑋 is not a pointwise defined function, but can be given

sense as a random Schwartz distribution.
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Gaussian multiplicative chaos

What is GMC?

• A random measure 𝜇 formally of the form

𝜇(𝑑𝑥) ≔ 𝑒𝛾𝑋(𝑥)−
𝛾2
2 𝔼[𝑋(𝑥)

2] 𝑑𝑥, where 𝑋 is a log-correlated

Gaussian field and 𝛾 ∈ (0, √2𝑑) is a parameter.

• Rigorous definition requires a limiting procedure:

𝜇(𝑑𝑥) ≔ lim𝑡→∞ 𝜇𝑡(𝑥) 𝑑𝑥 ≔ lim𝑡→∞ 𝑒𝛾𝑋𝑡(𝑥)−
𝛾2
2 𝔼[𝑋𝑡(𝑥)

2] 𝑑𝑥, where
𝑋𝑡 → 𝑋 is a smoothened version of 𝑋.

• Appears e.g. in Liouville quantum gravity or as a limit of

characteristic polynomials of random matrices.
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Existence in the 𝐿2-phase 𝛾 ∈ (0, √𝑑)

For a given test function 𝑓 we may compute

𝔼[|𝜇𝑡(𝑓)|2] = ∫𝑓(𝑥)𝑓(𝑦)𝔼[𝑒𝛾𝑋𝑡(𝑥)+𝛾𝑋𝑡(𝑦)−
𝛾2
2 𝔼[𝑋𝑡(𝑥)

2]− 𝛾
2
2 𝔼[𝑋𝑡(𝑦)

2]] 𝑑𝑥 𝑑𝑦

= ∫𝑓(𝑥)𝑓(𝑦)𝑒𝛾2𝔼[𝑋𝑡(𝑥)𝑋𝑡(𝑦)] 𝑑𝑥𝑑𝑦 ≲ ∫ |𝑥 − 𝑦|−𝛾2 𝑑𝑥𝑑𝑦.

• Thus 𝔼[|𝜇𝑡(𝑓)|2] is bounded uniformly in 𝑡 if 𝛾 < √𝑑.

• If 𝜇𝑡(𝑓) is a martingale we automatically obtain convergence in

𝐿2(𝛺).
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The 𝐿1-phase (𝛾 ∈ (0, √2𝑑)) and barriers (Berestycki’s argument)

• Assume for simplicity that 𝑋𝑡(𝑥) is a Brownian motion in 𝑡.

• Fix 𝜀 > 0 and let 𝐴𝑡0,𝑡(𝑥) = {𝑋𝑠(𝑥) < (𝛾 + 𝜀)𝑠 for all 𝑠 ∈ [𝑡0, 𝑡]}.
• Note that by Girsanov

𝔼[𝑒𝛾𝑋𝑡(𝑥)−
𝛾2
2 𝑡1𝐴𝑡0,𝑡(𝑥)𝑐] = ℙ[𝑋𝑠(𝑥)+𝛾𝑠 ≥ (𝛾+𝜀)𝑠 for some 𝑠 ∈ [𝑡0, 𝑡]]],

so that

lim
𝑡0→∞

sup
𝑡>𝑡0
𝔼[∫ 𝑒𝛾𝑋𝑡(𝑥)−

𝛾2
2 𝑡1𝐴𝑡0,𝑡(𝑥)𝑐] = 0.

• Moreover, as long as 𝛾 < √2𝑑, it turns out that one can choose 𝜀

so that sup𝑡>𝑡0 𝔼[|∫ 𝑒
𝛾𝑋𝑡(𝑥)−

𝛾2
2 𝑡1𝐴𝑡0,𝑡(𝑥)|

2
] = 𝐶(𝑡0) < ∞.

• These two estimates together show that ∫ 𝑒𝛾𝑋𝑡(𝑥)−
𝛾2
2 𝑡 𝑑𝑥 is

uniformly integrable and we get a non-trivial limit.
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Thick points

• The above computation implies that 𝜇 gives no mass to the set

{𝑥 ∶ lim sup𝑡→∞
𝑋𝑡(𝑥)
𝑡 > 𝛾 + 𝜀}.

• On the other hand it turns out that 𝜇 also gives no mass to the

set {𝑥 ∶ lim sup𝑡→∞
𝑋𝑡(𝑥)
𝑡 < 𝛾 − 𝜀}.

• The set 𝑇𝛾 = {𝑥 ∶ lim sup𝑡→∞
𝑋𝑡(𝑥)
𝑡 = 𝛾} is known as the set of

𝛾-thick points and 𝜇 gives full mass to 𝑇𝛾.
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𝑡 = 𝛾} is known as the set of

𝛾-thick points and 𝜇 gives full mass to 𝑇𝛾.
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GMC from level sets of thick points

• It turns out that one can construct the GMC measure 𝜇 directly
from thick points:

1{𝑥 ∶ 𝑋𝑡(𝑥) > 𝛾𝑡}
ℙ[𝑋𝑡(𝑥) > 𝛾𝑡]

𝑑𝑥 → 𝑑𝜇(𝑥).

• Our goal: Prove this under general assumptions, with

applications in random matrices in mind.

• Similar results have appeared before, e.g. Biskup–Louidor for

discrete GFF, Jego for thick points of Brownian motion.
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Fluctuations of thick points of CUE characteristic polynomial

• CUE ensemble: 𝑈𝑁 ∈ ℂ𝑁×𝑁 a random unitary matrix sampled

according to the Haar measure.

• Let 𝑝𝑁(𝜃) = det(1 − 𝑈𝑁𝑒−𝑖𝜃) be the characteristic polynomial of

𝑈𝑁.

Conjecture (Fyodorov–Keating)

1
2𝜋 ∫
2𝜋

0
1{log |𝑝𝑁(𝜃)| > 𝛾 log𝑁}𝑑𝜃

𝑁−𝛾2 1
√𝜋 log𝑁

𝐺(1+𝛾)2
2𝛾𝐺(1+2𝛾)

1
𝛤(1−𝛾2)

converges in distribution to a r.v. with density

𝒫𝛾(𝑥) = 𝛾−2𝑥−1−𝛾
2𝑒−𝑥−𝛾

−2
1{𝑥 > 0}.

Here 𝐺 is the Barnes 𝐺-function,

𝐺(1 + 𝑧) = (2𝜋)𝑧/2 exp(−
𝑧 + 𝑧2(1 + 𝛾𝐸𝑀)
2

)
∞

∏
𝑘=1
[(1 +
𝑧
𝑘
)
𝑘
exp (
𝑧2

2𝑘
− 𝑧))] .
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From CUE to GMC

• Relationship to log-correlated fields: log |𝑝𝑁(𝜃)| corresponds to
an approximation of the log-correlated field 𝑋𝑆1(𝑒𝑖𝜃) with
variance ∼ log𝑁, and |𝑝𝑁(𝜃)|𝛾/𝔼[|𝑝𝑁(𝜃)|𝛾] corresponds to an

approximation of the GMC measure.

• Convergence of |𝑝𝑁(𝜃)|𝛾/𝔼[|𝑝𝑁(𝜃)|𝛾] to GMC was proven by

Webb (𝐿2-phase) and Nikula–Saksman–Webb (𝐿1-phase).

• The explicit formula for the density 𝒫𝛾 of the total mass was

proven by Remy (LCFT inspired) and also follows from an

alternate description of the limit by Chhaibi–Najnudel.

• Thus the conjecture follows if one can show that the level

set measure 1{log |𝑝𝑁(𝜃)| > 𝛾 log𝑁} converges to GMC

(after renormalisation).
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Barriers and “mesoscopically Gaussian” log-correlated fields

• Take an approximation 𝑋𝑁 of a log-correlated field 𝑋, for
instance the logarithm of a CUE characteristic polynomial

𝑋𝑁(𝑥) = −Re (∑𝑘≥1
Tr𝑈𝑘𝑁
𝑘/√2 𝑒
−𝑖𝑘𝑥).

• Try to apply barrier arguments to 𝑋𝑁 by employing a second

layer of approximations 𝑋𝑁,𝛿 = 𝑋𝑁 ∗ 𝜌𝛿, e.g.
𝑋𝑁,𝛿(𝑥) = −Re (∑𝑘≤1/𝛿

Tr𝑈𝑘𝑁
𝑘/√2 𝑒
−𝑖𝑘𝑥), where

𝛿 ∈ {𝑒−𝑘 ∶ 𝑘 ∈ [𝐿0, log(𝑁1−𝜂)]} stays in mesoscopic range for the

barrier (𝜂 > 0 is some small enough constant).

• Capture approximate Gaussianity on mesoscopic scales by

suitable assumptions on the Laplace transform

𝔼[𝑒𝜁1𝑋𝑁(𝑥1)+𝜁2𝑋𝑁(𝑥2)+∑
𝑞
𝑗=1 𝜉𝑗𝑋𝑁,𝛿𝑗(𝑧𝑗)] = 𝛹(𝜁1,𝜁2,𝜉)𝑁,𝛿 (𝑥1, 𝑥2; 𝑧)×

𝑒
𝜁21+𝜁
2
2
2 log𝑁+𝜁1𝜁2𝐶𝑋(𝑥1,𝑥2)+𝜁1 ∫𝐶𝑋(𝑥1,𝑢)f𝛿,𝑧(𝑢) 𝑑𝑢+𝜁2 ∫𝐶𝑋(𝑥2,𝑢)f𝛿,𝑧(𝑢) 𝑑𝑢+ 12𝔼⟨𝑋,f𝛿,𝑧⟩

2

where 𝑓𝛿,𝑧 = ∑
𝑞
𝑗=1 𝜉𝑗𝜌𝛿𝑗,𝑧𝑗 .
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The main theorem

Let us define

𝑑𝜈𝑁(𝑥) =
1{𝑋𝑁(𝑥) ≥ 𝛾 log𝑁 + 𝑢}
ℙ[𝑋𝑁(𝑥) ≥ 𝛾 log𝑁]

𝑑𝑥, 𝑑𝜇𝑁(𝑥) =
𝑒𝛾𝑋𝑁(𝑥)

𝔼[𝑒𝛾𝑋𝑁(𝑥)]
𝑑𝑥.

where 𝑢 is some arbitrary continuous function (e.g. 𝑢 = 0).

Theorem (Sketch)

Assume that 𝛹(𝜁1,𝜁2,𝜉)𝑁,𝛿 (𝑥1, 𝑥2; 𝑧) satisfies certain decorrelation properties,

roughly meaning that 𝛹(𝜁1,𝜁2,𝜉)𝑁,𝛿 (𝑥1, 𝑥2; 𝑧) = 𝛹(𝜁1, 𝑥1)𝛹(𝜁2, 𝑥2)(1 + 𝑜(1))
for |𝑥1 − 𝑥2|, 𝛿1,… , 𝛿𝑞 > 𝑁−1+𝜂 for some 𝜂 > 0. Then

lim
𝑁→∞
𝔼𝑁[|𝜈𝑁(𝑓) − 𝜇𝑁(𝑒−𝛾𝑢𝑓)|] = 0.

In particular, if 𝜇𝑁 converges to GMC measure 𝜇, so does 𝜈𝑁.
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Applications

• Convolutions: Take 𝑋𝑁 = 𝑋 ∗ 𝜑1/𝑁 and 𝑋𝑁,𝛿 = 𝑋 ∗ 𝜑𝛿 for
𝛿 < 1/𝑁, checking the assumptions is rather straightforward.

• Checking the conditions for CUE is more involved:

• Using the Heine–Szegö identity one can compute the Laplace

transform as a certain Toeplitz determinant.

• Asymptotics of such a determinant have been previously analysed

by Deift–Its–Krasovsky based on orthogonal polynomials and

Riemann–Hilbert problems, but we need some technical tweaks

to their approach.
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Thanks!
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