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Log-correlated Gaussian fields

* A Gaussian random field X is called log-correlated if its
covariance (kernel) is of the form

Cx(x,y) = C(x, y) =loglx - yI™! + g(x, y)
for some continuous function g.
* Example |: The zero-boundary GFF h on a simply connected

domain U ¢ R?, where C;, = 2nGy; is the Green’s function.
* Example 2: The field

Xq(z) = V2 Re ( k; f/%zk)

on the unit circle {z € C : |z| = 1}, where Z, are i.i.d. standard
complex Gaussians. In this case we have exactly
CXSl (z,w) =log|z — w|™.
* X is not a pointwise defined function, but can be given
sense as a random Schwartz distribution. '
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Gaussian multiplicative chaos

What is GMC?

* A random measure u formally of the form
2
p(dx) = VXS EX)] gy where X is a log-correlated
Gaussian field and y € (0, V2d) is a parameter.

* Rigorous definition requires a limiting procedure:

VX EX

p(dx) = lim,_,  p,(x) dx = lim,_, I dx, where

X; — X is a smoothened version of X.

* Appears e.g. in Liouville quantum gravity or as a limit of
characteristic polynomials of random matrices.
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Existence in the [*-phase y € (0, 7))

For a given test function f we may compute
E[(F)P] = | 60 f)ELer X o) BRI S BX O dxc dy

e Thus IE[Iyt(f)Iz] is bounded uniformly in t if y < Vd.

* If u,(f) is a martingale we automatically obtain convergence in
2(Q).
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2
q _r q
* These two estimates together show that f "= Tt dy s
uniformly integrable and we get a non-trivial limit.
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Thick points

* The above computation implies that y gives no mass to the set
o 8 X, (x)
{x :lim sup, “H= >y + e}
* On the other hand it turns out that y also gives no mass to the

set {x : limsup,_ X‘t(x) <y-—éeh

@ =y} is known as the set of

y-thick points and y gives full mass to T,.

* ThesetT, = {x :limsup



GMC from level sets of thick points

* It turns out that one can construct the GMC measure y directly
from thick points:

1{x : X,(x) > yt}
P[X,(x) > yt]

dx — du(x).

* Our goal: Prove this under general assumptions, with
applications in random matrices in mind.

* Similar results have appeared before, e.g. Biskup—Louidor for
discrete GFF, Jego for thick points of Brownian motion.
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« CUE ensemble: Uy, € CN*N a random unitary matrix sampled
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Conjecture (Fyodorov—Keating)

7 f;ﬂ 1{log|pn(0)| > ylog N}d6

N1 G(1+y)? 1
\/7-[ logN 2yG(1+2)/) F(l—yz)

converges in distribution to a r.v. with density
I (Y S
?y(x) =y“x Ve 1{x > 0}.

Here G is the Barnes G-function,
2

G(1+z):(2n)z/2exp<—z+zz(12+)/EM)>H[(1+i)kexp<;k—z))]. ;

k=1
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* Relationship to log-correlated fields: log | py (6)| corresponds to
an approximation of the log-correlated field X (e) with
variance ~ log N, and |pn(0)|Y/E[|pn(0)]] corresponds to an
approximation of the GMC measure.

+ Convergence of |pn(0)"/E[|pn(0)]"] to GMC was proven by
Webb (I?-phase) and Nikula—Saksman—Webb (L!-phase).

* The explicit formula for the density 7, of the total mass was
proven by Remy (LCFT inspired) and also follows from an
alternate description of the limit by Chhaibi—Najnudel.

* Thus the conjecture follows if one can show that the level
set measure 1{log |py(0)| > ylog N} converges to GMC
(after renormalisation).
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* Take an approximation X, of a log-correlated field X, for
instance the logarithm of a CUE characteristic polynomial
k q
Xn(x)=-Re ( Zkzl {r/ﬁ;%’e_lkx).
* Try to apply barrier arguments to X, by employing a second

layer of approximations Xy 5 = Xy * ps, €.8.

T Uk )
Xyo(x) = _Re(zkgl/s kr/\ge ’kx),where

defek ke [L,, log(N'")]} stays in mesoscopic range for the

barrier (7 > 0 is some small enough constant).
* Capture approximate Gaussianity on mesoscopic scales by
suitable assumptions on the Laplace transform

IE[GCIXN(x1)+(2XN(x2)+Z?:1 EjXN,dj(zj)] — T]Efg(zyf) (xl’ xz; Z)X

3+
e 2

2
92 log N+, 8,Co (x0,2) 4, | Cx ey, (w) du+l, [ Cy ey 1), (u) dut JE(X 5 )

— V4
Where fB,z - Zj:l gjpsj,zj- 9



The main theorem

Let us define

1{Xy(x) > ylog N + u} eV Xn()

dvy(x) = P[Xy(x) = ylog N] dx, duy(x) = E

X 9%

where u is some arbitrary continuous function (e.g. u = 0).
Theorem (Sketch)

Assume that ‘I’IEIC, 15’(2’5) (x1, x,; 2) satisfies certain decorrelation properties,
roughly meaning that ‘I’ﬁgg’o (x1,%532) = V() %)V (L5, x,)(1 + 0(1))
for [x; — x,1,8y,...,6, > N1 for some n > 0. Then

Jim Ex[lvy(f) - (e l] = 0.

In particular, if uy converges to GMC measure p, so does vy;.
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Applications

* Convolutions: Take X = X * ¢,y and Xy 5 = X * ¢ for
8 < 1/N, checking the assumptions is rather straightforward.
¢ Checking the conditions for CUE is more involved:
* Using the Heine—Szego identity one can compute the Laplace
transform as a certain Toeplitz determinant.
* Asymptotics of such a determinant have been previously analysed
by Deift—Its—Krasovsky based on orthogonal polynomials and
Riemann—Hilbert problems, but we need some technical tweaks

to their approach.



Thanks!



