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Critical Ising correlations in planar domains

This talk is about correlations of primary fields in the scaling limit of
the critical planar Ising model:

(O ...0,)a;
where
> Q) is a finitely-connected domain (equipped with boundary
conditions)
> z1,...,2, € Q are distinct;

> O, € {0217/’in762i5wzi’ ;L}

» for now, (O, ...0;,)q is just a family of special (multi-valued)
real analytic functions ((0,, ... 0., )3 are single-valued).
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Critical Ising model on a lattice approximation Q° to Q: assign spins
at random to the vertices of Q9:

1
o : Vertices(Q°) — {#1} random, P(c) = Ze_ﬂH(”),

H(o) = - > 020y, Bzﬁczélog(\/iju 1).

(zy) €Edges(029)

Theorem (Chelkak, Hongler, K.I.’21): )

For natural observables O € {0, , [12;,€2,, %, %} in critical Ising
model on Q° we have

[T(Cio2)Eas[02, ... 02 1 22840, ... 0. )a,  as Q= Q.
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Theorem (Chelkak, Hongler, K.I1.”21):)

For natural observables (’)gl_ € {02, tzys €2, U, WL, i critical Ising
model on Q° we have
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» C; are (lattice-dependent) constants

> A=A + Al are scaling dimensions.
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Scaling limits of correlations in the usual Ising model
Theorem (Chelkak, Hongler, K.I1.”21):)

For natural observables (’)gl_ € {02, tzys €2, U, WL, i critical Ising
model on Q° we have

n
v 0—0
[[(Ci62)Eqs (02, ... 02 1 =5 (0., ... O.)a, Q= Q.
i=1
Lattice counterparts (’)gi :
> o, isjust a spin at z;,
1
> o, = az_.%az_s_% — 5= 0.80.43 —Eca[az_%az+g}, z a centre
of a horisontal edge;

> Ly Hus = €XP(=28 3 1)y T20y # 0), 7 1wt o uz on the dual
graph

> Y. =0, sp, s +io. sp, s (same thing as
Smirnov-Hongler—... observable in contour representation)
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What do we know about (O,,...O, )q?

» Conformal covariance:

n

ATTToNA]
(O - 0200 = [[ ¢/ (z)2 ¢ (2)2 (Opiar) - - O
i=1
» Holomorphicity: 0,,(0s, ... 0, )a = 0if O, = ¥.,;
» Behavior as z; — z;: first two terms of expansions;

» Behavior as z; — 0€2: Riemann boundary conditions for O, = 1., or
0., =97,.

These properties are enough to identify (O, ..., )q uniquely. The
result is not very explicit.
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Conformal field theory

On the other hand: (O,, ...0,, )q are (conjectured to be)
correlations in a (minimal) Conformal field theory, hence

» they should satisfy the BPZ equations.

> the expansions as z; — z; is known to all orders in terms of
Virasoro descendants ~~ Conformal bootstrap.

» ultimately, the correlations can be computed explicitly

. in several different ways...
. with results that are not obviously equal to each other...

To be sure that we did not make any mistakes, we have checked (on a computer)
that the two expressions agree up to order twenty in a Taylor expansion in g. More
such mysterious theta function identities involving integrals over theta functions to
rational powers follow by equating our expressions for higher Ising correlation
functions with the expressions computed in ref. [28].

(G. Felder, BRST approach to minimal models, 1989)
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Compactified free field: ® = ¢ + £, where
» ¢ and ¢ are independent;

> ¢ is the Gaussian free field in £2: mean zero, covariance
Gq = 2m(A™1), zero boundary conditions;

» the instanton component £ is a random harmonic function with
piecewise constant boundary conditions:
> £(2) € V21Z, and constant along “wired” part of each boundary
component;
> ¢(2) € V2m(Z + %) and constant on each “free” boundary arc;

1

> ¢ jumps by +v/27 - 5 at wired/free boundary change;

> ¢ is normalized (e.g., £ = 0 on a distinguished “wired” arc);

> P(&) ~ exp(—ﬁ(V{, V&)reg) (a reguralized Dirichlet energy).
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Why “compactified™

Consider ® = %e‘/ﬁ@ S %T instead.
» All our correlations will be invariant under ® — ® 4 \/iﬂ', SO

naturally defined in terms of ®.

» The boundary conditions can be stated as:

d =4 on wired /free part of 992,

s sl

turns by 7 and back on free arcs

> Also, |[V®|2 = |[VO[%.

» GFF ¢ is heuristically a “standard Gaussian on Hy(Q2)”, i.e.,
sampled with probability proportional to e~ 1= (V#:Ve)”,

> Also, (V®,V®) = (Vp, Vo) + (VE,VE) for ¢ € Hp(2) and ¢
harmonic.

» Therefore, ® is a “random %']T -valued function with probability

(VS VD)»

proportional to e~ = with boundary consitions as above.
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Bosonization identity

Theorem (Bayraktaroglu, K. I., Virtanen, Webb, '23)

To each Ising field O,,, there corresponds a field @Z in a bosonic

theory, defined in terms of the compactified Gaussian free field ®,

such that . R
(0,,...0,)8=(0,,...0.,)q.

» known to the physicists (Di Francesco-Saleur—Zuber’ 87)

» possibly provable by exact bosonization on the lattice
(Dubédat’11-15; Duminil-Copin-Lis’17 +
Beresticky—Laslier—Ray’20, Basok’23+)

» caveat about boundary conditions: free + locally monochromatic
(spin constant on each connected component of C \ Q7).

> the right-hand side is as explicit as it gets (e.g., can be written in
terms of harmonic measures of components via theta functions).
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Example: freshman’s dream

< 1 B 1 N 1 )2
(21 —22)(23 —24) (21— 23)(22 —24) (21— 24)(22 — 23)

1
= T6<w21 w22¢23¢24>]¥{ = 4<89021 850228‘)02389024>H
1 1 1

(21 — 22)%(23 — 24)? - (21— 23)%(22 — 24)? (21 — 24)%(22 — 23)?

More generally

1 1
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Examples: spin correlations

n 1 1
(02 -+ 02, ) = 2% (: cos ﬁ‘ﬁ('zl) Drricos ﬁ@(zn) OH
_ 2—%<: ev3P(z1) + e vaP(=) L o) + o vaP(en) D
_ 2,% Z <: 681 %g@(m) Cs esnﬁ‘P(zn) :>H
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" .y R 1
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1:[ (2Imz;) 1 Z 2 — Zj

se{£1}n i<y



BPZ equations

Theorem (BPZ’84; K.I., Webb’23)
The Ising correlations satisfy the BPZ equations

L{O,,...0,)m =0,
where
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BPZ equations

Theorem (BPZ’84; K.I., Webb’23)
The Ising correlations satisfy the BPZ equations

L{O,,...0,)m =0,
where

a /
L= 3 82 T 821 Al

2(2A1 + 1) 1 31 — 21 + (Ei — 21)2

., A; Al
+Z( Z2; — 21 7'—21 * (z; — 21)? * (Zi — 21)?

(Same methods give analogs for multiply-connected domains)

).
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Operator product expansions

What is the asymptotics of (O, ... O, )q as z1 — 22?7 For example:

(TIRES e%(zl — )72 (02 +4(21 — 22)(L_102,) + O(21 — 22)°) .

What about higher-order terms?
» To express them, we will need to generate more fields, such as
eg. L_1L 1L 5L _~o.
» They are called Virasoro descendants of the primary fields
O,y €, 9, P .
> We don’t need anything else.
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(Holomorphic) stress-energy tensor T, defined in terms of correlations:

wzww = ZL + 4(Z - U})Tw + O(Z — w)2.

—w



Stress-energy tensor
(Holomorphic) stress-energy tensor T, defined in terms of correlations:
2

zZ—w

+4(z —w)(TpO,, ... 0, Yo + Oz — w)?.

W00y ... O, Y = (0, ...0.)a
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(Holomorphic) stress-energy tensor T, defined in terms of correlations:

2
87‘(’2 5151/&1/@ z — ) dZ



Stress-energy tensor

(Holomorphic) stress-energy tensor T, defined in terms of correlations:

8mi

(10, ... 0.) = — §£<w2ww w0z, )a(z — w)Pdz.
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Chelkak—Glazman—Smirnov’16: T, as a limit of a lattice field;



Stress-energy tensor
(Holomorphic) stress-energy tensor T, defined in terms of correlations:

2
z Yw - d
— oy Putale - w) 2,
Chelkak—Glazman—Smirnov’16: T, as a limit of a lattice field;

Virasoro algebra generators ... L_1, Lo, L1, ...

T.0, = Z(z —w) 27 (L,0),

keZ



Stress-energy tensor
(Holomorphic) stress-energy tensor T, defined in terms of correlations:

2
z Yw - d
— oy Putale - w) 2,
Chelkak—Glazman—Smirnov’16: T, as a limit of a lattice field;

Virasoro algebra generators ... L_1, Lo, L1, ...



Stress-energy tensor
(Holomorphic) stress-energy tensor T, defined in terms of correlations:

2
z Yw - d
— oy Putale - w) 2,
Chelkak—Glazman—Smirnov’16: T, as a limit of a lattice field;

Virasoro algebra generators ... L_1, Lo, L1, ...; can iterate, e.g.,

(L_3L_50)y 2 A % 515( w) (z —w )74T<Tzawdz
a zZ,w



Stress-energy tensor

(Holomorphic) stress-energy tensor T, defined in terms of correlations:

2
z Yw - d
— oy Putale - w) 2,
Chelkak—Glazman—Smirnov’16: T, as a limit of a lattice field;

Virasoro generators ...L_q, Lg, Ly,satisfy Virasoro commutation rela-
tions: 1
[Ln; L] = (n —m) Ly + ﬁ5,L7_m(n3 —n).

» Hongler-Kytola—Viklund’13 — 22 — ...: Ly can be defined in the
discrete; hence L_g, ...L_y, O are also scaling limits of lattice
fields



OPE for Ising correlations

Theorem (BPZ’84; K.I., Webb’23)

Each pair of primary fields O, € {0, iz, 2,0, 0%} and
Ouw € {0w, thws Ew, Yuw, Vi } has an OPE of the form

0.0, =Y (z—w)"(z—m)"05™),

n,m
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OPE for Ising correlations

Theorem (BPZ’84; K.I., Webb’23)

Each pair of primary fields O, € {0, iz, 2,0, 0%} and
Ouw € {0w, thws Ew, Yuw, Vi } has an OPE of the form

0.0, =Y (z—w)"(z—m)"05™),

n,m

wheren € (N+a)U(N+b), m € (N+c¢)U (N+d), for some
a,b,c,d € R.
Moreover, the coefficients satisfy the recursion
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OPE for Ising correlations

Theorem (BPZ’84; K.I., Webb’23)

Each pair of primary fields O, € {0, iz, 2,0, 0%} and
Ouw € {0w, thws Ew, Yuw, Vi } has an OPE of the form

0.0, =Y (z—w)"(z—m)"05™),

n,m

wheren € (N+a)U(N+b), m € (N+c¢)U (N+d), for some
a,b,c,d € R.
Moreover, the coefficients satisfy the recursion

2(2A, + 1)
{n(n -1+ s

3 (2(2A2 +1)

(n - A 0™
= 3 L_y— L2_1> Or=2m) L o(n —1)L_,0—1m),

This recursion + conjugate one + beginning of the OPE known from
Chelkak—Hongler—K.1.’21 determines the coefficients uniquely.
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Example

020w = Z(z - w)n(z - E)mogunvm)

n,m

Plug A1 = Ay = == into the characteristic equation

1
16
2285 + 1)
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Example

020w = Z(z - w)n(z - E)mogunvm)

n,m

Plug A1 = Ay = == into the characteristic equation

1

16
3 1

n(n_1)+1(n_f6)_0



Example

020w = Z(z - w)n(z - E)mogunvm)

n,m

Plug A1 = Ay = == into the characteristic equation
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Example

020w = Z(z - w)n(z - E)mogunvm)

n,m

1 3
n,m S (—8 +ZZO> @] (8 +ZZO> .



Example

oo\»—A
ool

0,00 = (2—w) 3(EZ-W) 3 + (2 —w) F-mi+ ...

1 3
n,m S (—8 +ZEO> U (8 +ZZO> .



Example

0,0y = (z—w)_%(z—ﬁ) 8 +(z—w)%(z—@)%%u
)R- LDy~ (- w) R - @) F (T,
+ }(z —w)S (Z—W) L 160 ++~(2—w)5(Z—W) 5 L_1e4 +



Example
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(0.,...0.)4 =(0;,...0. )a.
Step 1: using OPE, reduce to the case O, € {0, uz, }-
Step 2: Prove, for O,, € {04, iz, },
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(0.,...0.)4 =(0;,...0. )a.
Step 1: using OPE, reduce to the case O, € {0, uz, }-
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(<¢Z¢wozl ...02n>9>2 _ g 102(2)02w)0;, ... 0., )a
(0., ...0.)a (0., ...0.)a
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Bosonization identity: sketch of the proof

<<¢Z¢w021'~~0zn>9>2:_ < ()3?( ) z1 - @zn>ﬂ

(0., ...0. ) (0., ...0. ) ’

0., € {04, 14z, }, turns out to be a limiting form of

Theorem (D. Hejhal, independently J. Fay, 1973)

Given a spin line bundle x on a compact Riemann surface €2, one has

0, 6z9
AQ,X(zw (z,w +Z : ] ())( 0 ;i (2)u;(w),

> AQ,X(Z’w) is the Szegd kernel of x;

> [B(z,w) is the Abelian differential of the second kind;

> ui(2),...,uq(2) are Abelian differentials of the first kind;
> 0[x](0) is the theta-function with characteristic x.
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at z; and its “mirror image” (more handles at endpoints of free arcs)
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Thank you!



