Properties of critical Ising correlations:
 bosonization, BPZ equations, OPE to all orders

Konstantin Izyurov (with B. Bayraktaroglu, T. Virtanen, C. Webb)

Jeju

June 9th, 2023.

Critical Ising correlations in planar domains

This talk is about correlations of primary fields in the scaling limit of the critical planar Ising model:

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}
$$

where

Critical Ising correlations in planar domains

This talk is about correlations of primary fields in the scaling limit of the critical planar Ising model:

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}
$$

where

- Ω is a finitely-connected domain (equipped with boundary conditions)

Critical Ising correlations in planar domains

This talk is about correlations of primary fields in the scaling limit of the critical planar Ising model:

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}
$$

where

- Ω is a finitely-connected domain (equipped with boundary conditions)
- $z_{1}, \ldots, z_{n} \in \Omega$ are distinct;

Critical Ising correlations in planar domains

This talk is about correlations of primary fields in the scaling limit of the critical planar Ising model:

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}
$$

where

- Ω is a finitely-connected domain (equipped with boundary conditions)
- $z_{1}, \ldots, z_{n} \in \Omega$ are distinct;
- $\mathcal{O}_{z_{i}} \in\left\{\sigma_{z_{i}}, \mu_{z_{i}}, \varepsilon_{z_{i}}, \psi_{z_{i}}, \psi_{z_{i}}^{\star}\right\}$.

Critical Ising correlations in planar domains

This talk is about correlations of primary fields in the scaling limit of the critical planar Ising model:

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}
$$

where

- Ω is a finitely-connected domain (equipped with boundary conditions)
- $z_{1}, \ldots, z_{n} \in \Omega$ are distinct;
- $\mathcal{O}_{z_{i}} \in\left\{\sigma_{z_{i}}, \mu_{z_{i}}, \varepsilon_{z_{i}}, \psi_{z_{i}}, \psi_{z_{i}}^{\star}\right\}$.
- for now, $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$ is just a family of special (multi-valued) real analytic functions $\left(\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}^{2}\right.$ are single-valued).

Multiply-connected domain with boundary conditions

Scaling limits of correlations in the usual Ising model

Critical Ising model on a lattice approximation Ω^{δ} to Ω : assign spins at random to the vertices of Ω^{δ} :

$$
\begin{gathered}
\sigma: \operatorname{Vertices}\left(\Omega^{\delta}\right) \rightarrow\{ \pm 1\} \text { random, } \mathbb{P}(\sigma)=\frac{1}{Z} e^{-\beta \mathcal{H}(\sigma)}, \\
\mathcal{H}(\sigma)=-\sum_{(x y) \in \operatorname{Edges}\left(\Omega^{\delta}\right)} \sigma_{x} \sigma_{y}, \quad \beta=\beta_{c}=\frac{1}{2} \log (\sqrt{2}+1) .
\end{gathered}
$$

Scaling limits of correlations in the usual Ising model

Critical Ising model on a lattice approximation Ω^{δ} to Ω : assign spins at random to the vertices of Ω^{δ} :

$$
\begin{gathered}
\sigma: \operatorname{Vertices}\left(\Omega^{\delta}\right) \rightarrow\{ \pm 1\} \text { random, } \mathbb{P}(\sigma)=\frac{1}{Z} e^{-\beta \mathcal{H}(\sigma)}, \\
\mathcal{H}(\sigma)=-\sum_{(x y) \in \operatorname{Edges}\left(\Omega^{\delta}\right)} \sigma_{x} \sigma_{y}, \quad \beta=\beta_{c}=\frac{1}{2} \log (\sqrt{2}+1) .
\end{gathered}
$$

Theorem (Chelkak, Hongler, K.I.'21):)
For natural observables $\mathcal{O}_{z_{i}}^{\delta} \in\left\{\sigma_{z_{i}}, \mu_{z_{i}}, \varepsilon_{z_{i}}, \psi_{z_{i}}, \psi_{z_{i}}^{\star}\right\}$ in critical Ising model on Ω^{δ} we have

$$
\prod_{i=1}^{n}\left(C_{i} \delta^{-\tilde{\Delta}_{i}}\right) \mathbb{E}_{\Omega^{\delta}}\left[\mathcal{O}_{z_{1}}^{\delta} \ldots \mathcal{O}_{z_{n}}^{\delta}\right] \xrightarrow{\delta \rightarrow 0}\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}, \quad \text { as } \Omega^{\delta} \rightarrow \Omega
$$

Scaling limits of correlations in the usual Ising model

Theorem (Chelkak, Hongler, K.I.'21):)
For natural observables $\mathcal{O}_{z_{i}}^{\delta} \in\left\{\sigma_{z_{i}}, \mu_{z_{i}}, \varepsilon_{z_{i}}, \psi_{z_{i}}, \psi_{z_{i}}^{\star}\right\}$ in critical Ising model on Ω^{δ} we have

$$
\prod_{i=1}^{n}\left(C_{i} \delta^{-\tilde{\Delta}_{i}}\right) \mathbb{E}_{\Omega^{\delta}}\left[\mathcal{O}_{z_{1}}^{\delta} \ldots \mathcal{O}_{z_{n}}^{\delta}\right] \xrightarrow{\delta \rightarrow 0}\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}, \quad \Omega^{\delta} \rightarrow \Omega
$$

- C_{i} are (lattice-dependent) constants
- $\tilde{\Delta}_{i}=\Delta_{i}+\Delta_{i}^{\prime}$ are scaling dimensions.

Scaling limits of correlations in the usual Ising model
Theorem (Chelkak, Hongler, K.I.'21):)
For natural observables $\mathcal{O}_{z_{i}}^{\delta} \in\left\{\sigma_{z_{i}}, \mu_{z_{i}}, \varepsilon_{z_{i}}, \psi_{z_{i}}, \psi_{z_{i}}^{\star}\right\}$ in critical Ising model on Ω^{δ} we have

$$
\prod_{i=1}^{n}\left(C_{i} \delta^{-\tilde{\Delta}_{i}}\right) \mathbb{E}_{\Omega^{\delta}}\left[\mathcal{O}_{z_{1}}^{\delta} \ldots \mathcal{O}_{z_{n}}^{\delta}\right] \xrightarrow{\delta \rightarrow 0}\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}, \quad \Omega^{\delta} \rightarrow \Omega .
$$

$\mathcal{O}_{z_{i}}$	Δ_{i}	Δ_{i}^{\prime}
$\sigma_{z_{i}}$	$\frac{1}{16}$	$\frac{1}{16}$
$\mu_{z_{i}}$	$\frac{1}{16}$	$\frac{1}{16}$
$\varepsilon_{z_{i}}$	$\frac{1}{2}$	$\frac{1}{2}$
$\psi_{z_{i}}$	$\frac{1}{2}$	0
$\psi_{z_{i}}^{\star}$	0	$\frac{1}{2}$

Scaling limits of correlations in the usual Ising model

Theorem (Chelkak, Hongler, K.I.'21):)
For natural observables $\mathcal{O}_{z_{i}}^{\delta} \in\left\{\sigma_{z_{i}}, \mu_{z_{i}}, \varepsilon_{z_{i}}, \psi_{z_{i}}, \psi_{z_{i}}^{\star}\right\}$ in critical Ising model on Ω^{δ} we have

$$
\prod_{i=1}^{n}\left(C_{i} \delta^{-\tilde{\Delta}_{i}}\right) \mathbb{E}_{\Omega^{\delta}}\left[\mathcal{O}_{z_{1}}^{\delta} \ldots \mathcal{O}_{z_{n}}^{\delta} \xrightarrow{\delta \rightarrow 0}\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}, \quad \Omega^{\delta} \rightarrow \Omega .\right.
$$

Lattice counterparts $\mathcal{O}_{z_{i}}^{\delta}$:

- $\sigma_{z_{i}}$ is just a spin at z_{i},

Scaling limits of correlations in the usual Ising model

Theorem (Chelkak, Hongler, K.I.'21):)
For natural observables $\mathcal{O}_{z_{i}}^{\delta} \in\left\{\sigma_{z_{i}}, \mu_{z_{i}}, \varepsilon_{z_{i}}, \psi_{z_{i}}, \psi_{z_{i}}^{\star}\right\}$ in critical Ising model on Ω^{δ} we have

$$
\prod_{i=1}^{n}\left(C_{i} \delta^{-\tilde{\Delta}_{i}}\right) \mathbb{E}_{\Omega^{\delta}}\left[\mathcal{O}_{z_{1}}^{\delta} \ldots \mathcal{O}_{z_{n}}^{\delta}\right] \xrightarrow{\delta \rightarrow 0}\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}, \quad \Omega^{\delta} \rightarrow \Omega
$$

Lattice counterparts $\mathcal{O}_{z_{i}}^{\delta}$:

- $\sigma_{z_{i}}$ is just a spin at z_{i},
$>\varepsilon_{z}=\sigma_{z-\frac{\delta}{2}} \sigma_{z+\frac{\delta}{2}}-\frac{1}{\sqrt{2}}=\sigma_{z-\frac{\delta}{2}} \sigma_{z+\frac{\delta}{2}}-\mathbb{E}_{\mathbb{C}^{\delta}}\left[\sigma_{z-\frac{\delta}{2}} \sigma_{z+\frac{\delta}{2}}\right]$, z a centre of a horisontal edge;

Scaling limits of correlations in the usual Ising model

Theorem (Chelkak, Hongler, K.I.'21):)
For natural observables $\mathcal{O}_{z_{i}}^{\delta} \in\left\{\sigma_{z_{i}}, \mu_{z_{i}}, \varepsilon_{z_{i}}, \psi_{z_{i}}, \psi_{z_{i}}^{\star}\right\}$ in critical Ising model on Ω^{δ} we have

$$
\prod_{i=1}^{n}\left(C_{i} \delta^{-\tilde{\Delta}_{i}}\right) \mathbb{E}_{\Omega^{\delta}}\left[\mathcal{O}_{z_{1}}^{\delta} \ldots \mathcal{O}_{z_{n}}^{\delta}\right] \xrightarrow{\delta \rightarrow 0}\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}, \quad \Omega^{\delta} \rightarrow \Omega
$$

Lattice counterparts $\mathcal{O}_{z_{i}}^{\delta}$:
$-\sigma_{z_{i}}$ is just a spin at z_{i},
$>\varepsilon_{z}=\sigma_{z-\frac{\delta}{2}} \sigma_{z+\frac{\delta}{2}}-\frac{1}{\sqrt{2}}=\sigma_{z-\frac{\delta}{2}} \sigma_{z+\frac{\delta}{2}}-\mathbb{E}_{\mathbb{C}^{\delta}}\left[\sigma_{z-\frac{\delta}{2}} \sigma_{z+\frac{\delta}{2}}\right]$, z a centre of a horisontal edge;
$-\mu_{u_{1}} \mu_{u_{2}}=\exp \left(-2 \beta \sum_{(x y) \cap \gamma} \sigma_{x} \sigma_{y} \neq \emptyset\right), \gamma: u_{1} \leadsto u_{2}$ on the dual graph

Scaling limits of correlations in the usual Ising model

Theorem (Chelkak, Hongler, K.I.'21):)
For natural observables $\mathcal{O}_{z_{i}}^{\delta} \in\left\{\sigma_{z_{i}}, \mu_{z_{i}}, \varepsilon_{z_{i}}, \psi_{z_{i}}, \psi_{z_{i}}^{\star}\right\}$ in critical Ising model on Ω^{δ} we have

$$
\prod_{i=1}^{n}\left(C_{i} \delta^{-\tilde{\Delta}_{i}}\right) \mathbb{E}_{\Omega^{\delta}}\left[\mathcal{O}_{z_{1}}^{\delta} \ldots \mathcal{O}_{z_{n}}^{\delta}\right] \xrightarrow{\delta \rightarrow 0}\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}, \quad \Omega^{\delta} \rightarrow \Omega
$$

Lattice counterparts $\mathcal{O}_{z_{i}}^{\delta}$:
$-\sigma_{z_{i}}$ is just a spin at z_{i},
$\checkmark \varepsilon_{z}=\sigma_{z-\frac{\delta}{2}} \sigma_{z+\frac{\delta}{2}}-\frac{1}{\sqrt{2}}=\sigma_{z-\frac{\delta}{2}} \sigma_{z+\frac{\delta}{2}}-\mathbb{E}_{\mathbb{C}^{\delta}}\left[\sigma_{z-\frac{\delta}{2}} \sigma_{z+\frac{\delta}{2}}\right], z$ a centre of a horisontal edge;

- $\mu_{u_{1}} \mu_{u_{2}}=\exp \left(-2 \beta \sum_{(x y) \cap \gamma} \sigma_{x} \sigma_{y} \neq \emptyset\right), \gamma: u_{1} \nVdash u_{2}$ on the dual graph
$-\psi_{z}=\sigma_{z-\frac{\delta}{2}} \mu_{z-\frac{\mathrm{i} \delta}{2}}+\mathfrak{i} \sigma_{z+\frac{\delta}{2}} \mu_{z+\frac{\mathrm{i} \delta}{2}}$ (same thing as Smirnov-Hongler-... observable in contour representation)

What do we know about $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$?

- Conformal covariance:

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}=\prod_{i=1}^{n} \varphi^{\prime}\left(z_{i}\right)^{\Delta_{i}} \overline{\varphi^{\prime}\left(z_{i}\right)^{\Delta_{i}^{\prime}}}\left\langle\mathcal{O}_{\varphi\left(z_{1}\right)} \ldots \mathcal{O}_{\varphi\left(z_{n}\right)}\right\rangle_{\varphi(\Omega)}
$$

What do we know about $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$?

- Conformal covariance:

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}=\prod_{i=1}^{n} \varphi^{\prime}\left(z_{i}\right)^{\Delta_{i}} \overline{\varphi^{\prime}\left(z_{i}\right)}{ }^{\Delta_{i}^{\prime}}\left\langle\mathcal{O}_{\varphi\left(z_{1}\right)} \ldots \mathcal{O}_{\varphi\left(z_{n}\right)}\right\rangle_{\varphi(\Omega)}
$$

What do we know about $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$?

- Conformal covariance:

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}=\prod_{i=1}^{n} \varphi^{\prime}\left(z_{i}\right)^{\Delta_{i}} \overline{\varphi^{\prime}\left(z_{i}\right)^{\Delta_{i}^{\prime}}}\left\langle\mathcal{O}_{\varphi\left(z_{1}\right)} \ldots \mathcal{O}_{\varphi\left(z_{n}\right)}\right\rangle_{\varphi(\Omega)}
$$

- Holomorphicity: $\bar{\partial}_{z_{i}}\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}=0$ if $\mathcal{O}_{z_{i}}=\psi_{z_{i}} ;$

What do we know about $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$?

- Conformal covariance:

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}=\prod_{i=1}^{n} \varphi^{\prime}\left(z_{i}\right)^{\Delta_{i}} \overline{\varphi^{\prime}\left(z_{i}\right)^{\Delta_{i}^{\prime}}}\left\langle\mathcal{O}_{\varphi\left(z_{1}\right)} \ldots \mathcal{O}_{\varphi\left(z_{n}\right)}\right\rangle_{\varphi(\Omega)}
$$

- Holomorphicity: $\bar{\partial}_{z_{i}}\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}=0$ if $\mathcal{O}_{z_{i}}=\psi_{z_{i}}$;
- Behavior as $z_{i} \rightarrow z_{j}$: first two terms of expansions;

What do we know about $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$?

- Conformal covariance:

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}=\prod_{i=1}^{n} \varphi^{\prime}\left(z_{i}\right)^{\Delta_{i}} \overline{\varphi^{\prime}\left(z_{i}\right)} \Delta^{\Delta_{i}^{\prime}}\left\langle\mathcal{O}_{\varphi\left(z_{1}\right)} \ldots \mathcal{O}_{\varphi\left(z_{n}\right)}\right\rangle_{\varphi(\Omega)}
$$

- Holomorphicity: $\bar{\partial}_{z_{i}}\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}=0$ if $\mathcal{O}_{z_{i}}=\psi_{z_{i}} ;$
- Behavior as $z_{i} \rightarrow z_{j}$: first two terms of expansions;
- Behavior as $z_{i} \rightarrow \partial \Omega$: Riemann boundary conditions for $\mathcal{O}_{z_{i}}=\psi_{z_{i}}$ or $\mathcal{O}_{z_{i}}=\psi_{z_{i}}^{\star}$.

What do we know about $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$?

- Conformal covariance:

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}=\prod_{i=1}^{n} \varphi^{\prime}\left(z_{i}\right)^{\Delta_{i}} \overline{\varphi^{\prime}\left(z_{i}\right)}{ }^{\Delta_{i}^{\prime}}\left\langle\mathcal{O}_{\varphi\left(z_{1}\right)} \ldots \mathcal{O}_{\varphi\left(z_{n}\right)}\right\rangle_{\varphi(\Omega)}
$$

- Holomorphicity: $\bar{\partial}_{z_{i}}\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}=0$ if $\mathcal{O}_{z_{i}}=\psi_{z_{i}}$;
- Behavior as $z_{i} \rightarrow z_{j}$: first two terms of expansions;
- Behavior as $z_{i} \rightarrow \partial \Omega$: Riemann boundary conditions for $\mathcal{O}_{z_{i}}=\psi_{z_{i}}$ or $\mathcal{O}_{z_{i}}=\psi_{z_{i}}^{\star}$.

These properties are enough to identify $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$ uniquely. The result is not very explicit.

Conformal field theory

On the other hand: $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$ are (conjectured to be) correlations in a (minimal) Conformal field theory, hence

Conformal field theory

On the other hand: $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$ are (conjectured to be) correlations in a (minimal) Conformal field theory, hence

- they should satisfy the BPZ equations.

Conformal field theory

On the other hand: $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$ are (conjectured to be) correlations in a (minimal) Conformal field theory, hence

- they should satisfy the BPZ equations.
- the expansions as $z_{i} \rightarrow z_{j}$ is known to all orders in terms of Virasoro descendants \rightsquigarrow Conformal bootstrap.

Conformal field theory

On the other hand: $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$ are (conjectured to be) correlations in a (minimal) Conformal field theory, hence

- they should satisfy the BPZ equations.
- the expansions as $z_{i} \rightarrow z_{j}$ is known to all orders in terms of Virasoro descendants \rightsquigarrow Conformal bootstrap.
- ultimately, the correlations can be computed explicitly

Conformal field theory

On the other hand: $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$ are (conjectured to be) correlations in a (minimal) Conformal field theory, hence

- they should satisfy the BPZ equations.
- the expansions as $z_{i} \rightarrow z_{j}$ is known to all orders in terms of Virasoro descendants \rightsquigarrow Conformal bootstrap.
- ultimately, the correlations can be computed explicitly
... in several different ways...

Conformal field theory

On the other hand: $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$ are (conjectured to be) correlations in a (minimal) Conformal field theory, hence

- they should satisfy the BPZ equations.
- the expansions as $z_{i} \rightarrow z_{j}$ is known to all orders in terms of Virasoro descendants \rightsquigarrow Conformal bootstrap.
- ultimately, the correlations can be computed explicitly
... in several different ways...
... with results that are not obviously equal to each other...

Conformal field theory

On the other hand: $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$ are (conjectured to be) correlations in a (minimal) Conformal field theory, hence

- they should satisfy the BPZ equations.
- the expansions as $z_{i} \rightarrow z_{j}$ is known to all orders in terms of Virasoro descendants \rightsquigarrow Conformal bootstrap.
- ultimately, the correlations can be computed explicitly
... in several different ways...
... with results that are not obviously equal to each other...

To be sure that we did not make any mistakes, we have checked (on a computer) that the two expressions agree up to order twenty in a Taylor expansion in q. More such mysterious theta function identities involving integrals over theta functions to rational powers follow by equating our expressions for higher Ising correlation functions with the expressions computed in ref. [28].

Conformal field theory

On the other hand: $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$ are (conjectured to be) correlations in a (minimal) Conformal field theory, hence

- they should satisfy the BPZ equations.
- the expansions as $z_{i} \rightarrow z_{j}$ is known to all orders in terms of Virasoro descendants \rightsquigarrow Conformal bootstrap.
- ultimately, the correlations can be computed explicitly
... in several different ways...
... with results that are not obviously equal to each other...

To be sure that we did not make any mistakes, we have checked (on a computer) that the two expressions agree up to order twenty in a Taylor expansion in q. More such mysterious theta function identities involving integrals over theta functions to rational powers follow by equating our expressions for higher Ising correlation functions with the expressions computed in ref. [28].
(G. Felder, BRST approach to minimal models, 1989)

Compactified free field in Ω

Compactified free field in Ω

Compactified free field

Compactified free field: $\Phi=\varphi+\xi$, where

- φ and ξ are independent;

Compactified free field

Compactified free field: $\Phi=\varphi+\xi$, where

- φ and ξ are independent;
- φ is the Gaussian free field in Ω : mean zero, covariance $G_{\Omega}=2 \pi\left(\Delta^{-1}\right)$, zero boundary conditions;

Compactified free field

Compactified free field: $\Phi=\varphi+\xi$, where

- φ and ξ are independent;
- φ is the Gaussian free field in Ω : mean zero, covariance $G_{\Omega}=2 \pi\left(\Delta^{-1}\right)$, zero boundary conditions;
- the instanton component ξ is a random harmonic function with piecewise constant boundary conditions:

Compactified free field

Compactified free field: $\Phi=\varphi+\xi$, where

- φ and ξ are independent;
- φ is the Gaussian free field in Ω : mean zero, covariance $G_{\Omega}=2 \pi\left(\Delta^{-1}\right)$, zero boundary conditions;
- the instanton component ξ is a random harmonic function with piecewise constant boundary conditions:
- $\xi(z) \in \sqrt{2} \pi \mathbb{Z}$, and constant along "wired" part of each boundary component;

Compactified free field

Compactified free field: $\Phi=\varphi+\xi$, where

- φ and ξ are independent;
- φ is the Gaussian free field in Ω : mean zero, covariance $G_{\Omega}=2 \pi\left(\Delta^{-1}\right)$, zero boundary conditions;
- the instanton component ξ is a random harmonic function with piecewise constant boundary conditions:
- $\xi(z) \in \sqrt{2} \pi \mathbb{Z}$, and constant along "wired" part of each boundary component;
- $\xi(z) \in \sqrt{2} \pi\left(\mathbb{Z}+\frac{1}{2}\right)$ and constant on each "free" boundary arc;

Compactified free field

Compactified free field: $\Phi=\varphi+\xi$, where

- φ and ξ are independent;
- φ is the Gaussian free field in Ω : mean zero, covariance $G_{\Omega}=2 \pi\left(\Delta^{-1}\right)$, zero boundary conditions;
- the instanton component ξ is a random harmonic function with piecewise constant boundary conditions:
- $\xi(z) \in \sqrt{2} \pi \mathbb{Z}$, and constant along "wired" part of each boundary component;
- $\xi(z) \in \sqrt{2} \pi\left(\mathbb{Z}+\frac{1}{2}\right)$ and constant on each "free" boundary arc;
- ξ jumps by $\pm \sqrt{2} \pi \cdot \frac{1}{2}$ at wired/free boundary change;

Compactified free field

Compactified free field: $\Phi=\varphi+\xi$, where

- φ and ξ are independent;
- φ is the Gaussian free field in Ω : mean zero, covariance $G_{\Omega}=2 \pi\left(\Delta^{-1}\right)$, zero boundary conditions;
- the instanton component ξ is a random harmonic function with piecewise constant boundary conditions:
- $\xi(z) \in \sqrt{2} \pi \mathbb{Z}$, and constant along "wired" part of each boundary component;
- $\xi(z) \in \sqrt{2} \pi\left(\mathbb{Z}+\frac{1}{2}\right)$ and constant on each "free" boundary arc;
- ξ jumps by $\pm \sqrt{2} \pi \cdot \frac{1}{2}$ at wired/free boundary change;
- ξ is normalized (e.g., $\xi \equiv 0$ on a distinguished "wired" arc);

Compactified free field

Compactified free field: $\Phi=\varphi+\xi$, where

- φ and ξ are independent;
- φ is the Gaussian free field in Ω : mean zero, covariance $G_{\Omega}=2 \pi\left(\Delta^{-1}\right)$, zero boundary conditions;
- the instanton component ξ is a random harmonic function with piecewise constant boundary conditions:
- $\xi(z) \in \sqrt{2} \pi \mathbb{Z}$, and constant along "wired" part of each boundary component;
- $\xi(z) \in \sqrt{2} \pi\left(\mathbb{Z}+\frac{1}{2}\right)$ and constant on each "free" boundary arc;
- ξ jumps by $\pm \sqrt{2} \pi \cdot \frac{1}{2}$ at wired/free boundary change;
- ξ is normalized (e.g., $\xi \equiv 0$ on a distinguished "wired" arc);
- $\mathbb{P}(\xi) \sim \exp \left(-\frac{1}{4 \pi}\langle\nabla \xi, \nabla \xi\rangle_{\text {reg }}\right)$ (a reguralized Dirichlet energy).

Why "compactified"?

Consider $\tilde{\Phi}=\frac{1}{\sqrt{2}} e^{\sqrt{2} i \Phi} \in \frac{1}{\sqrt{2}} \mathbb{T}$ instead.

Why "compactified"?

Consider $\tilde{\Phi}=\frac{1}{\sqrt{2}} e^{\sqrt{2} i \Phi} \in \frac{1}{\sqrt{2}} \mathbb{T}$ instead.

- All our correlations will be invariant under $\Phi \mapsto \Phi+\sqrt{2} \pi$, so naturally defined in terms of $\tilde{\Phi}$.

Why "compactified"?

Consider $\tilde{\Phi}=\frac{1}{\sqrt{2}} e^{\sqrt{2} i \Phi} \in \frac{1}{\sqrt{2}} \mathbb{T}$ instead.

- All our correlations will be invariant under $\Phi \mapsto \Phi+\sqrt{2} \pi$, so naturally defined in terms of $\tilde{\Phi}$.
- The boundary conditions can be stated as:

$$
\tilde{\Phi} \equiv \pm \frac{1}{\sqrt{2}} \text { on wired/free part of } \partial \Omega
$$

turns by π and back on free arcs

Why "compactified"?

Consider $\tilde{\Phi}=\frac{1}{\sqrt{2}} e^{\sqrt{2} i \Phi} \in \frac{1}{\sqrt{2}} \mathbb{T}$ instead.

- All our correlations will be invariant under $\Phi \mapsto \Phi+\sqrt{2} \pi$, so naturally defined in terms of $\tilde{\Phi}$.
- The boundary conditions can be stated as:

$$
\begin{gathered}
\tilde{\Phi} \equiv \pm \frac{1}{\sqrt{2}} \text { on wired/free part of } \partial \Omega \\
\text { turns by } \pi \text { and back on free arcs }
\end{gathered}
$$

- Also, $|\nabla \Phi|^{2}=|\nabla \tilde{\Phi}|^{2}$.

Why "compactified"?

Consider $\tilde{\Phi}=\frac{1}{\sqrt{2}} e^{\sqrt{2} i \Phi} \in \frac{1}{\sqrt{2}} \mathbb{T}$ instead.

- All our correlations will be invariant under $\Phi \mapsto \Phi+\sqrt{2} \pi$, so naturally defined in terms of $\tilde{\Phi}$.
- The boundary conditions can be stated as:

$$
\begin{gathered}
\tilde{\Phi} \equiv \pm \frac{1}{\sqrt{2}} \text { on wired/free part of } \partial \Omega \\
\text { turns by } \pi \text { and back on free arcs }
\end{gathered}
$$

- Also, $|\nabla \Phi|^{2}=|\nabla \tilde{\Phi}|^{2}$.
- GFF φ is heuristically a "standard Gaussian on $H_{0}(\Omega)$ ", i.e., sampled with probability proportional to $e^{-\frac{1}{4 \pi}\langle\nabla \varphi, \nabla \varphi\rangle \text { ". }}$

Why "compactified"?

Consider $\tilde{\Phi}=\frac{1}{\sqrt{2}} e^{\sqrt{2} i \Phi} \in \frac{1}{\sqrt{2}} \mathbb{T}$ instead.

- All our correlations will be invariant under $\Phi \mapsto \Phi+\sqrt{2} \pi$, so naturally defined in terms of $\tilde{\Phi}$.
- The boundary conditions can be stated as:

$$
\begin{gathered}
\tilde{\Phi} \equiv \pm \frac{1}{\sqrt{2}} \text { on wired/free part of } \partial \Omega \\
\text { turns by } \pi \text { and back on free arcs }
\end{gathered}
$$

- Also, $|\nabla \Phi|^{2}=|\nabla \tilde{\Phi}|^{2}$.
- GFF φ is heuristically a "standard Gaussian on $H_{0}(\Omega)$ ", i.e., sampled with probability proportional to $e^{-\frac{1}{4 \pi}\langle\nabla \varphi, \nabla \varphi\rangle " \text {. }}$
- Also, $\langle\nabla \Phi, \nabla \Phi\rangle=\langle\nabla \varphi, \nabla \varphi\rangle+\langle\nabla \xi, \nabla \xi\rangle$ for $\varphi \in H_{0}(\Omega)$ and ξ harmonic.

Why "compactified"?

Consider $\tilde{\Phi}=\frac{1}{\sqrt{2}} e^{\sqrt{2} i \Phi} \in \frac{1}{\sqrt{2}} \mathbb{T}$ instead.

- All our correlations will be invariant under $\Phi \mapsto \Phi+\sqrt{2} \pi$, so naturally defined in terms of $\tilde{\Phi}$.
- The boundary conditions can be stated as:

$$
\begin{gathered}
\tilde{\Phi} \equiv \pm \frac{1}{\sqrt{2}} \text { on wired/free part of } \partial \Omega \\
\text { turns by } \pi \text { and back on free arcs }
\end{gathered}
$$

- Also, $|\nabla \Phi|^{2}=|\nabla \tilde{\Phi}|^{2}$.
- GFF φ is heuristically a "standard Gaussian on $H_{0}(\Omega)$ ", i.e., sampled with probability proportional to $e^{-\frac{1}{4 \pi}\langle\nabla \varphi, \nabla \varphi\rangle " \text {. }}$
- Also, $\langle\nabla \Phi, \nabla \Phi\rangle=\langle\nabla \varphi, \nabla \varphi\rangle+\langle\nabla \xi, \nabla \xi\rangle$ for $\varphi \in H_{0}(\Omega)$ and ξ harmonic.
- Therefore, $\tilde{\Phi}$ is a "random $\frac{1}{\sqrt{2}} \mathbb{T}$-valued function with probability

Bosonization identity

Theorem (Bayraktaroglu, K. I., Virtanen, Webb, '23)
To each Ising field $\mathcal{O}_{z_{i}}$, there corresponds a field $\hat{\mathcal{O}}_{z_{i}}$ in a bosonic theory, defined in terms of the compactified Gaussian free field Φ, such that

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}^{2}=\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega} .
$$

Bosonization identity

Theorem (Bayraktaroglu, K. I., Virtanen, Webb, '23)

To each Ising field $\mathcal{O}_{z_{i}}$, there corresponds a field $\hat{\mathcal{O}}_{z_{i}}$ in a bosonic theory, defined in terms of the compactified Gaussian free field Φ, such that

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}^{2}=\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega}
$$

$\mathcal{O}_{z_{i}}$	$\hat{\mathcal{O}}_{z_{i}}$
$\sigma_{z_{i}}$	$\sqrt{2}: \cos \left(\frac{\sqrt{2}}{2} \Phi\left(z_{i}\right)\right):$
$\mu_{z_{i}}$	$\sqrt{2}: \sin \left(\frac{\sqrt{2}}{2} \Phi\left(z_{i}\right)\right):$
$\varepsilon_{z_{i}}$	$-\frac{1}{2}:\left\|\nabla \Phi\left(z_{i}\right)\right\|^{2}:$
$\psi_{z_{i}}$	$2 \sqrt{2} \mathfrak{i} \partial \Phi\left(z_{i}\right)$
$\psi_{z_{i}}^{\star}$	$-2 \sqrt{2} \mathfrak{i} \bar{\partial} \Phi\left(z_{i}\right)$

Bosonization identity

Theorem (Bayraktaroglu, K. I., Virtanen, Webb, '23)
To each Ising field $\mathcal{O}_{z_{i}}$, there corresponds a field $\hat{\mathcal{O}}_{z_{i}}$ in a bosonic theory, defined in terms of the compactified Gaussian free field Φ, such that

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}^{2}=\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega} .
$$

- known to the physicists (Di Francesco-Saleur-Zuber' 87)

Bosonization identity

Theorem (Bayraktaroglu, K. I., Virtanen, Webb, '23)
To each Ising field $\mathcal{O}_{z_{i}}$, there corresponds a field $\hat{\mathcal{O}}_{z_{i}}$ in a bosonic theory, defined in terms of the compactified Gaussian free field Φ, such that

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}^{2}=\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega} .
$$

- known to the physicists (Di Francesco-Saleur-Zuber' 87)
- possibly provable by exact bosonization on the lattice (Dubédat'11-15; Duminil-Copin-Lis'17 + Beresticky-Laslier-Ray'20, Basok'23+)

Bosonization identity

Theorem (Bayraktaroglu, K. I., Virtanen, Webb, '23)
To each Ising field $\mathcal{O}_{z_{i}}$, there corresponds a field $\hat{\mathcal{O}}_{z_{i}}$ in a bosonic theory, defined in terms of the compactified Gaussian free field Φ, such that

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}^{2}=\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega} .
$$

- known to the physicists (Di Francesco-Saleur-Zuber' 87)
- possibly provable by exact bosonization on the lattice (Dubédat'11-15; Duminil-Copin-Lis'17 + Beresticky-Laslier-Ray'20, Basok'23+)
- caveat about boundary conditions: free + locally monochromatic (spin constant on each connected component of $\mathbb{C} \backslash \Omega^{\delta}$).

Bosonization identity

Theorem (Bayraktaroglu, K. I., Virtanen, Webb, '23)

To each Ising field $\mathcal{O}_{z_{i}}$, there corresponds a field $\hat{\mathcal{O}}_{z_{i}}$ in a bosonic theory, defined in terms of the compactified Gaussian free field Φ, such that

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}^{2}=\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega} .
$$

- known to the physicists (Di Francesco-Saleur-Zuber' 87)
- possibly provable by exact bosonization on the lattice (Dubédat'11-15; Duminil-Copin-Lis'17 + Beresticky-Laslier-Ray'20, Basok'23+)
- caveat about boundary conditions: free + locally monochromatic (spin constant on each connected component of $\mathbb{C} \backslash \Omega^{\delta}$).
- the right-hand side is as explicit as it gets (e.g., can be written in terms of harmonic measures of components via theta functions).

Example: freshman's dream

$$
\begin{aligned}
&\left(\frac{1}{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}-\frac{1}{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}+\frac{1}{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)}\right)^{2} \\
&=\frac{1}{16}\left\langle\psi_{z_{1}} \psi_{z_{2}} \psi_{z_{3}} \psi_{z_{4}}\right\rangle_{\mathbb{H}}^{2}=4\left\langle\partial \varphi_{z_{1}} \partial \varphi_{z_{2}} \partial \varphi_{z_{3}} \partial \varphi_{z_{4}}\right\rangle_{\mathbb{H}} \\
&= \frac{1}{\left(z_{1}-z_{2}\right)^{2}\left(z_{3}-z_{4}\right)^{2}}+\frac{1}{\left(z_{1}-z_{3}\right)^{2}\left(z_{2}-z_{4}\right)^{2}}+\frac{1}{\left(z_{1}-z_{4}\right)^{2}\left(z_{2}-z_{3}\right)^{2}}
\end{aligned}
$$

Example: freshman's dream

$$
\begin{aligned}
&\left(\frac{1}{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}-\frac{1}{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}+\frac{1}{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)}\right)^{2} \\
&=\frac{1}{16}\left\langle\psi_{z_{1}} \psi_{z_{2}} \psi_{z_{3}} \psi_{z_{4}}\right\rangle_{\mathbb{H}}^{2}=4\left\langle\partial \varphi_{z_{1}} \partial \varphi_{z_{2}} \partial \varphi_{z_{3}} \partial \varphi_{z_{4}}\right\rangle_{\mathbb{H}} \\
&= \frac{1}{\left(z_{1}-z_{2}\right)^{2}\left(z_{3}-z_{4}\right)^{2}}+\frac{1}{\left(z_{1}-z_{3}\right)^{2}\left(z_{2}-z_{4}\right)^{2}}+\frac{1}{\left(z_{1}-z_{4}\right)^{2}\left(z_{2}-z_{3}\right)^{2}}
\end{aligned}
$$

More generally

$$
\operatorname{Pf}\left[\frac{1}{z_{i}-z_{j}}\right]^{2}=\operatorname{Hf}\left[\frac{1}{\left(z_{i}-z_{j}\right)^{2}}\right]
$$

Example: freshman's dream

$$
\begin{aligned}
&\left(\frac{1}{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}-\frac{1}{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}+\frac{1}{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)}\right)^{2} \\
&=\frac{1}{16}\left\langle\psi_{z_{1}} \psi_{z_{2}} \psi_{z_{3}} \psi_{z_{4}}\right\rangle_{\mathbb{H}}^{2}=4\left\langle\partial \varphi_{z_{1}} \partial \varphi_{z_{2}} \partial \varphi_{z_{3}} \partial \varphi_{z_{4}}\right\rangle_{\mathbb{H}} \\
&= \frac{1}{\left(z_{1}-z_{2}\right)^{2}\left(z_{3}-z_{4}\right)^{2}}+\frac{1}{\left(z_{1}-z_{3}\right)^{2}\left(z_{2}-z_{4}\right)^{2}}+\frac{1}{\left(z_{1}-z_{4}\right)^{2}\left(z_{2}-z_{3}\right)^{2}}
\end{aligned}
$$

More generally

$$
\left(\sum_{p}(-1)^{s_{i j}} \prod_{\{i, j\} \in p} \frac{1}{z_{i}-z_{j}}\right)^{2}=\sum_{p} \prod_{\{i, j\} \in p} \frac{1}{\left(z_{i}-z_{j}\right)^{2}} .
$$

Examples: spin correlations

$$
\left\langle\sigma_{z_{1}} \ldots \sigma_{z_{n}}\right\rangle_{\mathbb{H}}^{2}=2^{\frac{n}{2}}\left\langle: \cos \frac{1}{\sqrt{2}} \varphi\left(z_{1}\right): \cdots: \cos \frac{1}{\sqrt{2}} \varphi\left(z_{n}\right):\right\rangle_{\mathbb{H}}
$$

Examples: spin correlations

$$
\begin{aligned}
& \left\langle\sigma_{z_{1}} \ldots \sigma_{z_{n}}\right\rangle_{\mathbb{H}}^{2}=2^{\frac{n}{2}}\left\langle: \cos \frac{1}{\sqrt{2}} \varphi\left(z_{1}\right): \cdots: \cos \frac{1}{\sqrt{2}} \varphi\left(z_{n}\right):\right\rangle_{\mathbb{H}} \\
= & 2^{-\frac{n}{2}}\left\langle: e^{\frac{i}{\sqrt{2}} \varphi\left(z_{1}\right)}+e^{-\frac{i}{\sqrt{2}} \varphi\left(z_{1}\right)}: \cdots: e^{\frac{i}{\sqrt{2}} \varphi\left(z_{n}\right)}+e^{-\frac{i}{\sqrt{2}} \varphi\left(z_{n}\right)}:\right\rangle_{\mathbb{H}}
\end{aligned}
$$

Examples: spin correlations

$$
\begin{gathered}
\left\langle\sigma_{z_{1}} \ldots \sigma_{z_{n}}\right\rangle_{\mathbb{H}}^{2}=2^{\frac{n}{2}}\left\langle: \cos \frac{1}{\sqrt{2}} \varphi\left(z_{1}\right): \cdots: \cos \frac{1}{\sqrt{2}} \varphi\left(z_{n}\right):\right\rangle_{\mathbb{H}} \\
=2^{-\frac{n}{2}}\left\langle: e^{\frac{i}{\sqrt{2}} \varphi\left(z_{1}\right)}+e^{-\frac{i}{\sqrt{2}} \varphi\left(z_{1}\right)}: \cdots: e^{\frac{i}{\sqrt{2}} \varphi\left(z_{n}\right)}+e^{-\frac{i}{\sqrt{2}} \varphi\left(z_{n}\right)}:\right\rangle_{\mathbb{H}} \\
=2^{-\frac{n}{2}} \sum_{s \in\{ \pm 1\}^{n}}\left\langle: e^{s_{1} \frac{i}{\sqrt{2}} \varphi\left(z_{1}\right)}: \cdots: e^{s_{n} \frac{i}{\sqrt{2}} \varphi\left(z_{n}\right)}:\right\rangle_{\mathbb{H}}
\end{gathered}
$$

Examples: spin correlations

$$
\begin{gathered}
\left\langle\sigma_{z_{1}} \ldots \sigma_{z_{n}}\right\rangle_{\mathbb{H}}^{2}=2^{\frac{n}{2}}\left\langle: \cos \frac{1}{\sqrt{2}} \varphi\left(z_{1}\right): \cdots: \cos \frac{1}{\sqrt{2}} \varphi\left(z_{n}\right):\right\rangle_{\mathbb{H}} \\
=2^{-\frac{n}{2}}\left\langle: e^{\frac{i}{\sqrt{2}} \varphi\left(z_{1}\right)}+e^{-\frac{i}{\sqrt{2}} \varphi\left(z_{1}\right)}: \cdots: e^{\frac{i}{\sqrt{2}} \varphi\left(z_{n}\right)}+e^{-\frac{i}{\sqrt{2}} \varphi\left(z_{n}\right)}:\right\rangle_{\mathbb{H}} \\
=2^{-\frac{n}{2}} \sum_{s \in\{ \pm 1\}^{n}}\left\langle: e^{s_{1} \frac{i}{\sqrt{2}} \varphi\left(z_{1}\right)}: \cdots: e^{s_{n} \frac{i}{\sqrt{2}} \varphi\left(z_{n}\right)}:\right\rangle_{\mathbb{H}} \\
=2^{-\frac{n}{2}} \sum_{s \in\{ \pm 1\}^{n}} \exp \left(\sum_{i \neq j}-\frac{s_{i} s_{j}}{4} \log \left|\frac{z_{i}-\bar{z}_{j}}{z_{i}-z_{j}}\right|-\sum_{i} \frac{1}{4} \log \left|z_{i}-\bar{z}_{i}\right|\right)
\end{gathered}
$$

Examples: spin correlations

$$
\begin{gathered}
\left\langle\sigma_{z_{1}} \ldots \sigma_{z_{n}}\right\rangle_{\mathbb{H}}^{2}=2^{\frac{n}{2}}\left\langle: \cos \frac{1}{\sqrt{2}} \varphi\left(z_{1}\right): \cdots: \cos \frac{1}{\sqrt{2}} \varphi\left(z_{n}\right):\right\rangle_{\mathbb{H}} \\
=2^{-\frac{n}{2}}\left\langle: e^{\frac{i}{\sqrt{2}} \varphi\left(z_{1}\right)}+e^{-\frac{i}{\sqrt{2}} \varphi\left(z_{1}\right)}: \cdots: e^{\frac{i}{\sqrt{2}} \varphi\left(z_{n}\right)}+e^{-\frac{i}{\sqrt{2}} \varphi\left(z_{n}\right)}:\right\rangle_{\mathbb{H}} \\
=2^{-\frac{n}{2}} \sum_{s \in\{ \pm 1\}^{n}}\left\langle: e^{s_{1} \frac{i}{\sqrt{2}} \varphi\left(z_{1}\right)}: \cdots: e^{s_{n} \frac{i}{\sqrt{2}} \varphi\left(z_{n}\right)}:\right\rangle_{\mathbb{H}} \\
=2^{-\frac{n}{2}} \sum_{s \in\{ \pm 1\}^{n}} \exp \left(\sum_{i \neq j}-\frac{s_{i} s_{j}}{4} \log \left|\frac{z_{i}-\bar{z}_{j}}{z_{i}-z_{j}}\right|-\sum_{i} \frac{1}{4} \log \left|z_{i}-\bar{z}_{i}\right|\right) \\
=2^{-\frac{n}{2}} \prod_{i} \frac{1}{\left(2 \operatorname{Im} z_{i}\right)^{\frac{1}{4}}} \sum_{s \in\{ \pm 1\}^{n}} \prod_{i<j}\left|\frac{z_{i}-z_{j}}{z_{i}-\bar{z}_{j}}\right|^{\frac{s_{i} s_{j}}{2}} .
\end{gathered}
$$

BPZ equations

Theorem (BPZ'84; K.I., Webb'23)

The Ising correlations satisfy the BPZ equations

$$
\mathcal{L}\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\mathbb{H}} \equiv 0
$$

where

$$
\begin{aligned}
& \mathcal{L}=\frac{3}{2\left(2 \Delta_{1}+1\right)} \partial_{z_{1}}^{2}+\frac{\bar{\partial}_{z_{1}}}{\bar{z}_{1}-z_{1}}+\frac{\Delta_{1}^{\prime}}{\left(\bar{z}_{i}-z_{1}\right)^{2}} \\
&+\sum_{i=2}^{n}\left(\frac{\partial_{z_{i}}}{z_{i}-z_{1}}+\frac{\bar{\partial}_{z_{i}}}{\bar{z}_{i}-z_{1}}+\frac{\Delta_{i}}{\left(z_{i}-z_{1}\right)^{2}}+\frac{\Delta_{i}^{\prime}}{\left(\bar{z}_{i}-z_{1}\right)^{2}}\right) .
\end{aligned}
$$

BPZ equations

Theorem (BPZ'84; K.I., Webb'23)

The Ising correlations satisfy the BPZ equations

$$
\mathcal{L}\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\mathbb{H}} \equiv 0
$$

where

$$
\begin{aligned}
& \mathcal{L}=\frac{3}{2\left(2 \Delta_{1}+1\right)} \partial_{z_{1}}^{2}+\frac{\bar{\partial}_{z_{1}}}{\bar{z}_{1}-z_{1}}+\frac{\Delta_{1}^{\prime}}{\left(\bar{z}_{i}-z_{1}\right)^{2}} \\
&+\sum_{i=2}^{n}\left(\frac{\partial_{z_{i}}}{z_{i}-z_{1}}+\frac{\bar{\partial}_{z_{i}}}{\bar{z}_{i}-z_{1}}+\frac{\Delta_{i}}{\left(z_{i}-z_{1}\right)^{2}}+\frac{\Delta_{i}^{\prime}}{\left(\bar{z}_{i}-z_{1}\right)^{2}}\right) .
\end{aligned}
$$

(Same methods give analogs for multiply-connected domains)

Operator product expansions

What is the asymptotics of $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$ as $z_{1} \rightarrow z_{2}$? For example:

Operator product expansions

What is the asymptotics of $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$ as $z_{1} \rightarrow z_{2}$? For example:

$$
\begin{aligned}
& \left\langle\psi_{z_{1}} \mu_{z_{2}} \mathcal{O}_{z_{3}} \ldots \mathcal{O}_{z_{n}}\right\rangle \\
& =\quad e^{\frac{i \pi}{4}}\left(z_{1}-z_{2}\right)^{-\frac{1}{2}}\left(\left\langle\sigma_{z_{2}} \mathcal{O}_{z_{3}} \ldots \mathcal{O}_{z_{n}}\right\rangle\right. \\
& \left.\quad+4\left(z_{1}-z_{2}\right) \partial_{z_{2}}\left\langle\sigma_{z_{2}} \mathcal{O}_{z_{3}} \ldots \mathcal{O}_{z_{n}}\right\rangle+O\left(z_{1}-z_{2}\right)^{2}\right)
\end{aligned}
$$

Operator product expansions

What is the asymptotics of $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$ as $z_{1} \rightarrow z_{2}$? For example:

$$
\begin{aligned}
& \left\langle\psi_{z_{1}} \mu_{z_{2}} \mathcal{O}_{z_{3}} \ldots \mathcal{O}_{z_{n}}\right\rangle \\
& =\quad e^{\frac{i \pi}{4}}\left(z_{1}-z_{2}\right)^{-\frac{1}{2}}\left(\left\langle\sigma_{z_{2}} \mathcal{O}_{z_{3}} \ldots \mathcal{O}_{z_{n}}\right\rangle\right. \\
& \left.\quad+4\left(z_{1}-z_{2}\right)\left\langle\partial_{z_{2}} \sigma_{z_{2}} \mathcal{O}_{z_{3}} \ldots \mathcal{O}_{z_{n}}\right\rangle+O\left(z_{1}-z_{2}\right)^{2}\right)
\end{aligned}
$$

Operator product expansions

What is the asymptotics of $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$ as $z_{1} \rightarrow z_{2}$? For example:

$$
\psi_{z_{1}} \mu_{z_{2}}=e^{\frac{i \pi}{4}}\left(z_{1}-z_{2}\right)^{-\frac{1}{2}}\left(\sigma_{z_{2}}+4\left(z_{1}-z_{2}\right) \partial_{z_{2}} \sigma_{z_{2}}+O\left(z_{1}-z_{2}\right)^{2}\right) .
$$

Operator product expansions

What is the asymptotics of $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$ as $z_{1} \rightarrow z_{2}$? For example:

$$
\psi_{z_{1}} \mu_{z_{2}}=e^{\frac{i \pi}{4}}\left(z_{1}-z_{2}\right)^{-\frac{1}{2}}\left(\sigma_{z_{2}}+4\left(z_{1}-z_{2}\right)\left(L_{-1} \sigma_{z_{2}}\right)+O\left(z_{1}-z_{2}\right)^{2}\right) .
$$

Operator product expansions

What is the asymptotics of $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$ as $z_{1} \rightarrow z_{2}$? For example:

$$
\psi_{z_{1}} \mu_{z_{2}}=e^{\frac{i \pi}{4}}\left(z_{1}-z_{2}\right)^{-\frac{1}{2}}\left(\sigma_{z_{2}}+4\left(z_{1}-z_{2}\right)\left(L_{-1} \sigma_{z_{2}}\right)+O\left(z_{1}-z_{2}\right)^{2}\right) .
$$

What about higher-order terms?

Operator product expansions

What is the asymptotics of $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$ as $z_{1} \rightarrow z_{2}$? For example:

$$
\psi_{z_{1}} \mu_{z_{2}}=e^{\frac{i \pi}{4}}\left(z_{1}-z_{2}\right)^{-\frac{1}{2}}\left(\sigma_{z_{2}}+4\left(z_{1}-z_{2}\right)\left(L_{-1} \sigma_{z_{2}}\right)+O\left(z_{1}-z_{2}\right)^{2}\right) .
$$

What about higher-order terms?

- To express them, we will need to generate more fields, such as e.g. $L_{-1} L_{-1} L_{-5} L_{-7} \sigma$.

Operator product expansions

What is the asymptotics of $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$ as $z_{1} \rightarrow z_{2}$? For example:

$$
\psi_{z_{1}} \mu_{z_{2}}=e^{\frac{i \pi}{4}}\left(z_{1}-z_{2}\right)^{-\frac{1}{2}}\left(\sigma_{z_{2}}+4\left(z_{1}-z_{2}\right)\left(L_{-1} \sigma_{z_{2}}\right)+O\left(z_{1}-z_{2}\right)^{2}\right) .
$$

What about higher-order terms?

- To express them, we will need to generate more fields, such as e.g. $L_{-1} L_{-1} L_{-5} L_{-7} \sigma$.
- They are called Virasoro descendants of the primary fields $\sigma, \mu, \varepsilon, \psi, \psi^{\star}$.

Operator product expansions

What is the asymptotics of $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}$ as $z_{1} \rightarrow z_{2}$? For example:

$$
\psi_{z_{1}} \mu_{z_{2}}=e^{\frac{i \pi}{4}}\left(z_{1}-z_{2}\right)^{-\frac{1}{2}}\left(\sigma_{z_{2}}+4\left(z_{1}-z_{2}\right)\left(L_{-1} \sigma_{z_{2}}\right)+O\left(z_{1}-z_{2}\right)^{2}\right) .
$$

What about higher-order terms?

- To express them, we will need to generate more fields, such as e.g. $L_{-1} L_{-1} L_{-5} L_{-7} \sigma$.
- They are called Virasoro descendants of the primary fields $\sigma, \mu, \varepsilon, \psi, \psi^{\star}$.
- We don't need anything else.

Stress-energy tensor

(Holomorphic) stress-energy tensor T_{z} defined in terms of correlations:

Stress-energy tensor

(Holomorphic) stress-energy tensor T_{z} defined in terms of correlations:

$$
\psi_{z} \psi_{w}=\frac{2}{z-w}+4(z-w) T_{w}+O(z-w)^{2} .
$$

Stress-energy tensor

(Holomorphic) stress-energy tensor T_{z} defined in terms of correlations:

$$
\begin{aligned}
\left\langle\psi_{z} \psi_{w} \mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}= & \frac{2}{z-w}\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega} \\
& +4(z-w)\left\langle T_{w} \mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}+O(z-w)^{2} .
\end{aligned}
$$

Stress-energy tensor

(Holomorphic) stress-energy tensor T_{z} defined in terms of correlations:

$$
T_{w}=\frac{1}{8 \pi i} \oint \psi_{z} \psi_{w}(z-w)^{-2} d z
$$

Stress-energy tensor

(Holomorphic) stress-energy tensor T_{z} defined in terms of correlations:

$$
\left\langle T_{w} \mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle=\frac{1}{8 \pi i} \oint_{w}\left\langle\psi_{z} \psi_{w} \mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}(z-w)^{-2} d z
$$

Stress-energy tensor

(Holomorphic) stress-energy tensor T_{z} defined in terms of correlations:

$$
T_{w}=\frac{1}{8 \pi i} \oint \psi_{z} \psi_{w}(z-w)^{-2} d z
$$

Chelkak-Glazman-Smirnov'16: T_{z} as a limit of a lattice field;

Stress-energy tensor

(Holomorphic) stress-energy tensor T_{z} defined in terms of correlations:

$$
T_{w}=\frac{1}{8 \pi i} \oint \psi_{z} \psi_{w}(z-w)^{-2} d z
$$

Chelkak-Glazman-Smirnov'16: T_{z} as a limit of a lattice field;
Virasoro algebra generators $\ldots L_{-1}, L_{0}, L_{1}, \ldots$

$$
T_{z} \mathcal{O}_{w}=\sum_{k \in \mathbb{Z}}(z-w)^{-2-k}\left(L_{k} \mathcal{O}\right)_{w}
$$

Stress-energy tensor

(Holomorphic) stress-energy tensor T_{z} defined in terms of correlations:

$$
T_{w}=\frac{1}{8 \pi i} \oint \psi_{z} \psi_{w}(z-w)^{-2} d z
$$

Chelkak-Glazman-Smirnov'16: T_{z} as a limit of a lattice field;
Virasoro algebra generators $\ldots L_{-1}, L_{0}, L_{1}, \ldots$

Stress-energy tensor

(Holomorphic) stress-energy tensor T_{z} defined in terms of correlations:

$$
T_{w}=\frac{1}{8 \pi i} \oint \psi_{z} \psi_{w}(z-w)^{-2} d z
$$

Chelkak-Glazman-Smirnov'16: T_{z} as a limit of a lattice field;
Virasoro algebra generators $\ldots L_{-1}, L_{0}, L_{1}, \ldots$; can iterate, e.g.,

$$
\left(L_{-3} L_{-5} \sigma\right)_{w}=\frac{1}{(2 \pi \mathfrak{i})^{2}} \oint_{z, w} \oint_{w}(\zeta-w)^{-2}(z-w)^{-4} T_{\zeta} T_{z} \sigma_{w} d z
$$

Stress-energy tensor

(Holomorphic) stress-energy tensor T_{z} defined in terms of correlations:

$$
T_{w}=\frac{1}{8 \pi i} \oint \psi_{z} \psi_{w}(z-w)^{-2} d z
$$

Chelkak-Glazman-Smirnov'16: T_{z} as a limit of a lattice field;
Virasoro generators $\ldots L_{-1}, L_{0}, L_{1}$,satisfy Virasoro commutation relations:

$$
\left[L_{n} ; L_{m}\right]=(n-m) L_{n+m}+\frac{1}{24} \delta_{n,-m}\left(n^{3}-n\right)
$$

- Hongler-Kytölä-Viklund'13-'22-...: L_{k} can be defined in the discrete; hence $L_{-k_{1}} \ldots L_{-k_{l}} \mathcal{O}$ are also scaling limits of lattice fields

OPE for Ising correlations

Theorem (BPZ'84; K.I., Webb'23)

Each pair of primary fields $\mathcal{O}_{z} \in\left\{\sigma_{z}, \mu_{z}, \varepsilon_{z}, \psi_{z}, \psi_{z}^{\star}\right\}$ and $\mathcal{O}_{w} \in\left\{\sigma_{w}, \mu_{w}, \varepsilon_{w}, \psi_{w}, \psi_{w}^{\star}\right\}$ has an OPE of the form

$$
\mathcal{O}_{z} \mathcal{O}_{w}=\sum_{n, m}(z-w)^{n}(\bar{z}-\bar{w})^{m} \mathcal{O}_{w}^{(n, m)},
$$

OPE for Ising correlations

Theorem (BPZ'84; K.I., Webb'23)

Each pair of primary fields $\mathcal{O}_{z} \in\left\{\sigma_{z}, \mu_{z}, \varepsilon_{z}, \psi_{z}, \psi_{z}^{\star}\right\}$ and $\mathcal{O}_{w} \in\left\{\sigma_{w}, \mu_{w}, \varepsilon_{w}, \psi_{w}, \psi_{w}^{\star}\right\}$ has an OPE of the form

$$
\mathcal{O}_{z} \mathcal{O}_{w}=\sum_{n, m}(z-w)^{n}(\bar{z}-\bar{w})^{m} \mathcal{O}_{w}^{(n, m)},
$$

where $n \in(\mathbb{N}+a) \cup(\mathbb{N}+b), m \in(\mathbb{N}+c) \cup(\mathbb{N}+d)$, for some $a, b, c, d \in \mathbb{R}$.

OPE for Ising correlations

Theorem (BPZ'84; K.I., Webb'23)

Each pair of primary fields $\mathcal{O}_{z} \in\left\{\sigma_{z}, \mu_{z}, \varepsilon_{z}, \psi_{z}, \psi_{z}^{\star}\right\}$ and $\mathcal{O}_{w} \in\left\{\sigma_{w}, \mu_{w}, \varepsilon_{w}, \psi_{w}, \psi_{w}^{\star}\right\}$ has an OPE of the form

$$
\mathcal{O}_{z} \mathcal{O}_{w}=\sum_{n, m}(z-w)^{n}(\bar{z}-\bar{w})^{m} \mathcal{O}_{w}^{(n, m)},
$$

where $n \in(\mathbb{N}+a) \cup(\mathbb{N}+b), m \in(\mathbb{N}+c) \cup(\mathbb{N}+d)$, for some $a, b, c, d \in \mathbb{R}$.
Moreover, the coefficients satisfy the recursion

$$
\begin{aligned}
& {\left[n(n-1)+\frac{2\left(2 \Delta_{2}+1\right)}{3}\left(n-\Delta_{1}\right)\right] \mathcal{O}_{w}^{(n, m)}} \\
& \quad=\left(\frac{2\left(2 \Delta_{2}+1\right)}{3} L_{-2}-L_{-1}^{2}\right) \mathcal{O}_{w}^{(n-2, m)}+2(n-1) L_{-1} \mathcal{O}_{w}^{(n-1, m)}
\end{aligned}
$$

OPE for Ising correlations

Theorem (BPZ'84; K.I., Webb'23)

Each pair of primary fields $\mathcal{O}_{z} \in\left\{\sigma_{z}, \mu_{z}, \varepsilon_{z}, \psi_{z}, \psi_{z}^{\star}\right\}$ and
$\mathcal{O}_{w} \in\left\{\sigma_{w}, \mu_{w}, \varepsilon_{w}, \psi_{w}, \psi_{w}^{\star}\right\}$ has an OPE of the form

$$
\mathcal{O}_{z} \mathcal{O}_{w}=\sum_{n, m}(z-w)^{n}(\bar{z}-\bar{w})^{m} \mathcal{O}_{w}^{(n, m)},
$$

where $n \in(\mathbb{N}+a) \cup(\mathbb{N}+b), m \in(\mathbb{N}+c) \cup(\mathbb{N}+d)$, for some $a, b, c, d \in \mathbb{R}$.
Moreover, the coefficients satisfy the recursion

$$
\begin{aligned}
& {\left[n(n-1)+\frac{2\left(2 \Delta_{2}+1\right)}{3}\left(n-\Delta_{1}\right)\right] \mathcal{O}_{w}^{(n, m)}} \\
& \quad=\left(\frac{2\left(2 \Delta_{2}+1\right)}{3} L_{-2}-L_{-1}^{2}\right) \mathcal{O}_{w}^{(n-2, m)}+2(n-1) L_{-1} \mathcal{O}_{w}^{(n-1, m)} .
\end{aligned}
$$

This recursion + conjugate one + beginning of the OPE known from Chelkak-Hongler-K.I.'21 determines the coefficients uniquely.

Example

$$
\sigma_{z} \sigma_{w}=\sum_{n, m}(z-w)^{n}(\bar{z}-\bar{w})^{m} \mathcal{O}_{w}^{(n, m)}
$$

Example

$$
\sigma_{z} \sigma_{w}=\sum_{n, m}(z-w)^{n}(\bar{z}-\bar{w})^{m} \mathcal{O}_{w}^{(n, m)}
$$

Plug $\Delta_{1}=\Delta_{2}=\frac{1}{16}$ into the characteristic equation

$$
n(n-1)+\frac{2\left(2 \Delta_{2}+1\right)}{3}\left(n-\Delta_{1}\right)=0
$$

Example

$$
\sigma_{z} \sigma_{w}=\sum_{n, m}(z-w)^{n}(\bar{z}-\bar{w})^{m} \mathcal{O}_{w}^{(n, m)}
$$

Plug $\Delta_{1}=\Delta_{2}=\frac{1}{16}$ into the characteristic equation

$$
n(n-1)+\frac{3}{4}\left(n-\frac{1}{16}\right)=0
$$

Example

$$
\sigma_{z} \sigma_{w}=\sum_{n, m}(z-w)^{n}(\bar{z}-\bar{w})^{m} \mathcal{O}_{w}^{(n, m)}
$$

Plug $\Delta_{1}=\Delta_{2}=\frac{1}{16}$ into the characteristic equation

$$
n=-\frac{1}{8} \text { or } n=\frac{3}{8} \text {. }
$$

Example

$$
\sigma_{z} \sigma_{w}=\sum_{n, m}(z-w)^{n}(\bar{z}-\bar{w})^{m} \mathcal{O}_{w}^{(n, m)}
$$

$$
n, m \in\left(-\frac{1}{8}+\mathbb{Z}_{\geq 0}\right) \cup\left(\frac{3}{8}+\mathbb{Z}_{\geq 0}\right)
$$

Example

$$
\sigma_{z} \sigma_{w}=(z-w)^{-\frac{1}{8}}(\bar{z}-\bar{w})^{-\frac{1}{8}}+(z-w)^{\frac{3}{8}}(\bar{z}-\bar{w})^{\frac{3}{8}} \frac{\varepsilon_{w}}{2}+\ldots
$$

$$
n, m \in\left(-\frac{1}{8}+\mathbb{Z}_{\geq 0}\right) \cup\left(\frac{3}{8}+\mathbb{Z}_{\geq 0}\right)
$$

Example

$$
\begin{aligned}
& \sigma_{z} \sigma_{w}=(z-w)^{-\frac{1}{8}}(\bar{z}-\bar{w})^{-\frac{1}{8}}+(z-w)^{\frac{3}{8}}(\bar{z}-\bar{w})^{\frac{3}{8}} \frac{\varepsilon_{w}}{2} \\
& \quad-\frac{1}{3}(z-w)^{\frac{15}{8}}(\bar{z}-\bar{w})^{-\frac{1}{8}}\left(L_{-2} \mathbb{I}\right)_{w}-\frac{1}{3}(z-w)^{-\frac{1}{8}}(\bar{z}-\bar{w})^{\frac{15}{8}}\left(\bar{L}_{-2} \mathbb{I}\right)_{w} \\
& \quad+\frac{1}{4}(z-w)^{\frac{11}{8}}(\bar{z}-\bar{w})^{\frac{3}{8}} L_{-1} \varepsilon_{w}++\frac{1}{4}(z-w)^{\frac{3}{8}}(\bar{z}-\bar{w})^{\frac{11}{8}} \bar{L}_{-1} \varepsilon_{w}+\ldots
\end{aligned}
$$

Example

$$
\begin{aligned}
\sigma_{z} \sigma_{w}= & (z-w)^{-\frac{1}{8}}(\bar{z}-\bar{w})^{-\frac{1}{8}}+(z-w)^{\frac{3}{8}}(\bar{z}-\bar{w})^{\frac{3}{8}} \frac{\varepsilon_{w}}{2} \\
& -\frac{1}{3}(z-w)^{\frac{15}{8}}(\bar{z}-\bar{w})^{-\frac{1}{8}} T_{w}-\frac{1}{3}(z-w)^{-\frac{1}{8}}(\bar{z}-\bar{w})^{\frac{15}{8}} \bar{T}_{w} \\
& +\frac{1}{4}(z-w)^{\frac{11}{8}}(\bar{z}-\bar{w})^{\frac{3}{8}} \partial \varepsilon_{w}++\frac{1}{4}(z-w)^{\frac{3}{8}}(\bar{z}-\bar{w})^{\frac{11}{8}} \bar{\partial} \varepsilon_{w}+\ldots
\end{aligned}
$$

Bosonization identity: sketch of the proof

Theorem (Bayraktaroglu, K. I., Virtanen, Webb, '23)

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}^{2}=\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega} .
$$

$\mathcal{O}_{z_{i}}$	$\hat{\mathcal{O}}_{z_{i}}$
$\sigma_{z_{i}}$	$\sqrt{2}: \cos \left(\frac{\sqrt{2}}{2} \Phi\left(z_{i}\right)\right):$
$\mu_{z_{i}}$	$\sqrt{2}: \sin \left(\frac{\sqrt{2}}{2} \Phi\left(z_{i}\right)\right):$
$\varepsilon_{z_{i}}$	$-\frac{1}{2}:\left\|\nabla \Phi\left(z_{i}\right)\right\|^{2}:$
$\psi_{z_{i}}$	$2 \sqrt{2} \mathrm{i} \partial \Phi\left(z_{i}\right)$
$\psi_{z_{i}}^{\star}$	$-2 \sqrt{2} \mathrm{i} \bar{\partial} \Phi\left(z_{i}\right)$

Bosonization identity: sketch of the proof
Theorem (Bayraktaroglu, K. I., Virtanen, Webb, '23)

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}^{2}=\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega} .
$$

Step 1: using OPE, reduce to the case $\mathcal{O}_{z_{i}} \in\left\{\sigma_{z_{i}}, \mu_{z_{i}}\right\}$.

Bosonization identity: sketch of the proof

Theorem (Bayraktaroglu, K. I., Virtanen, Webb, '23)

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}^{2}=\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega} .
$$

Step 1: using OPE, reduce to the case $\mathcal{O}_{z_{i}} \in\left\{\sigma_{z_{i}}, \mu_{z_{i}}\right\}$. Step 2: Prove, for $\mathcal{O}_{z_{i}} \in\left\{\sigma_{z_{i}}, \mu_{z_{i}}\right\}$,

$$
\left(\frac{\left\langle\psi_{z} \psi_{w} \mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}}{\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}}\right)^{2}=-8 \frac{\left\langle\partial \Phi(z) \partial \Phi(w) \hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega}}{\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega}},
$$

Bosonization identity: sketch of the proof

Theorem (Bayraktaroglu, K. I., Virtanen, Webb, '23)

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}^{2}=\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega} .
$$

Step 1: using OPE, reduce to the case $\mathcal{O}_{z_{i}} \in\left\{\sigma_{z_{i}}, \mu_{z_{i}}\right\}$. Step 2: Prove, for $\mathcal{O}_{z_{i}} \in\left\{\sigma_{z_{i}}, \mu_{z_{i}}\right\}$,

$$
\left(\frac{\left\langle\psi_{z} \psi_{w} \mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}}{\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}}\right)^{2}=-8 \frac{\left\langle\partial \Phi(z) \partial \Phi(w) \hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega}}{\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega}}
$$

Step 3: using OPE, deduce $\partial_{z_{1}} \log \left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}=\frac{1}{2} \partial_{z} \log \left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega}$

$$
\begin{gathered}
\psi_{z} \sigma_{w}=e^{\frac{i \pi}{4}}(z-w)^{-\frac{1}{2}} \cdot \mu_{w}+\ldots \\
\psi_{z} \mu_{w}=e^{-\frac{i \pi}{4}}(z-w)^{-\frac{1}{2}} \cdot\left(\sigma_{w}+(z-w) \partial_{w} \sigma_{w}+\ldots\right)
\end{gathered}
$$

Bosonization identity: sketch of the proof

Theorem (Bayraktaroglu, K. I., Virtanen, Webb, '23)

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}^{2}=\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega} .
$$

Step 1: using OPE, reduce to the case $\mathcal{O}_{z_{i}} \in\left\{\sigma_{z_{i}}, \mu_{z_{i}}\right\}$. Step 2: Prove, for $\mathcal{O}_{z_{i}} \in\left\{\sigma_{z_{i}}, \mu_{z_{i}}\right\}$,

$$
\left(\frac{\left\langle\psi_{z} \psi_{w} \mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}}{\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}}\right)^{2}=-8 \frac{\left\langle\partial \Phi(z) \partial \Phi(w) \hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega}}{\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega}}
$$

Step 3: using OPE, deduce $\partial_{z_{1}} \log \left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}=\frac{1}{2} \partial_{z} \log \left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega}$

$$
\begin{gathered}
\psi_{z} \sigma_{w}=e^{\frac{i \pi}{4}}(z-w)^{-\frac{1}{2}} \cdot \mu_{w}+\ldots \\
\psi_{z} \mu_{w}=e^{-\frac{i \pi}{4}}(z-w)^{-\frac{1}{2}} \cdot\left(\sigma_{w}+(z-w) \partial_{w} \sigma_{w}+\ldots\right)
\end{gathered}
$$

Step 4: conclude $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}^{2}=\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega}$.

Bosonization identity: sketch of the proof

Theorem (Bayraktaroglu, K. I., Virtanen, Webb, '23)

$$
\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}^{2}=\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega} .
$$

Step 1: using OPE, reduce to the case $\mathcal{O}_{z_{i}} \in\left\{\sigma_{z_{i}}, \mu_{z_{i}}\right\}$. Step 2: Prove, for $\mathcal{O}_{z_{i}} \in\left\{\sigma_{z_{i}}, \mu_{z_{i}}\right\}$,

$$
\left(\frac{\left\langle\psi_{z} \psi_{w} \mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}}{\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}}\right)^{2}=-8 \frac{\left\langle\partial \Phi(z) \partial \Phi(w) \hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega}}{\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega}}
$$

Step 3: using OPE, deduce $\partial_{z_{1}} \log \left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}=\frac{1}{2} \partial_{z} \log \left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega}$

$$
\begin{gathered}
\psi_{z} \sigma_{w}=e^{\frac{i \pi}{4}}(z-w)^{-\frac{1}{2}} \cdot \mu_{w}+\ldots \\
\psi_{z} \mu_{w}=e^{-\frac{i \pi}{4}}(z-w)^{-\frac{1}{2}} \cdot\left(\sigma_{w}+(z-w) \partial_{w} \sigma_{w}+\ldots\right)
\end{gathered}
$$

Step 4: conclude $\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}^{2}=\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega}$.

Bosonization identity: sketch of the proof

$$
\left(\frac{\left\langle\psi_{z} \psi_{w} \mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}}{\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}}\right)^{2}=-8 \frac{\left\langle\partial \Phi(z) \partial \Phi(w) \hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega}}{\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega}},
$$

Bosonization identity: sketch of the proof

$$
\left(\frac{\left\langle\psi_{z} \psi_{w} \mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}}{\left\langle\mathcal{O}_{z_{1}} \ldots \mathcal{O}_{z_{n}}\right\rangle_{\Omega}}\right)^{2}=-8 \frac{\left\langle\partial \Phi(z) \partial \Phi(w) \hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega}}{\left\langle\hat{\mathcal{O}}_{z_{1}} \ldots \hat{\mathcal{O}}_{z_{n}}\right\rangle_{\Omega}}
$$

$\mathcal{O}_{z_{i}} \in\left\{\sigma_{z_{i}}, \mu_{z_{I}}\right\}$, turns out to be a limiting form of
Theorem (D. Hejhal, independently J. Fay, 1973)
Given a spin line bundle χ on a compact Riemann surface $\hat{\Omega}$, one has

$$
\Lambda_{\hat{\Omega}, \chi}(z, w)^{2}=\beta(z, w)+\sum_{i, j} \frac{\partial_{z_{i}} \partial_{z_{j}} \theta[\chi](0)}{\theta[\chi](0)} u_{i}(z) u_{j}(w),
$$

- $\Lambda_{\hat{\Omega}, \chi}(z, w)$ is the Szegö kernel of χ;
- $\beta(z, w)$ is the Abelian differential of the second kind;
- $u_{1}(z), \ldots, u_{g}(z)$ are Abelian differentials of the first kind;
- $\theta[\chi](0)$ is the theta-function with characteristic χ.

The surface $\hat{\Omega}$

The surface $\hat{\Omega}$ is the Shottky double of Ω with small handles attached at z_{i} and its "mirror image" (more handles at endpoints of free arcs)

The surface $\hat{\Omega}$

The surface $\hat{\Omega}$ is the Shottky double of Ω with small handles attached at z_{i} and its "mirror image" (more handles at endpoints of free arcs)

The surface $\hat{\Omega}$

The surface $\hat{\Omega}$ is the Shottky double of Ω with small handles attached at z_{i} and its "mirror image" (more handles at endpoints of free arcs)

The surface $\hat{\Omega}$

The surface $\hat{\Omega}$ is the Shottky double of Ω with small handles attached at z_{i} and its "mirror image" (more handles at endpoints of free arcs)

The surface $\hat{\Omega}$

The surface $\hat{\Omega}$ is the Shottky double of Ω with small handles attached at z_{i} and its "mirror image" (more handles at endpoints of free arcs)

Thank you!

