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Critical Ising correlations in planar domains

This talk is about correlations of primary fields in the scaling limit of
the critical planar Ising model:

⟨Oz1 . . .Ozn⟩Ω,

where

▶ Ω is a finitely-connected domain (equipped with boundary
conditions)

▶ z1, . . . , zn ∈ Ω are distinct;

▶ Ozi ∈ {σzi , µzi , εzi , ψzi , ψ
⋆
zi}.

▶ for now, ⟨Oz1 . . .Ozn⟩Ω is just a family of special (multi-valued)
real analytic functions (⟨Oz1 . . .Ozn⟩2Ω are single-valued).
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Multiply-connected domain with boundary conditions
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Scaling limits of correlations in the usual Ising model

Critical Ising model on a lattice approximation Ωδ to Ω: assign spins
at random to the vertices of Ωδ:

σ : Vertices(Ωδ) → {±1} random, P(σ) =
1

Z
e−βH(σ),

H(σ) = −
∑

(xy)∈Edges(Ωδ)

σxσy, β = βc =
1

2
log(

√
2 + 1).

Theorem (Chelkak, Hongler, K.I.’21): )
For natural observables Oδ

zi ∈ {σzi , µzi , εzi , ψzi , ψ
⋆
zi} in critical Ising

model on Ωδ we have
n∏

i=1

(Ciδ
−∆̃i)EΩδ [Oδ

z1 . . .O
δ
zn ]

δ→0−→ ⟨Oz1 . . .Ozn⟩Ω, as Ωδ → Ω.
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▶ Ci are (lattice-dependent) constants
▶ ∆̃i = ∆i +∆′

i are scaling dimensions.
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Theorem (Chelkak, Hongler, K.I.’21):)
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z1 . . .O
δ
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Lattice counterparts Oδ
zi :

▶ σzi is just a spin at zi,

▶ εz = σz− δ
2
σz+ δ

2
− 1√

2
= σz− δ

2
σz+ δ

2
− ECδ [σz− δ

2
σz+ δ

2
], z a centre

of a horisontal edge;
▶ µu1

µu2
= exp(−2β

∑
(xy)∩γ σxσy ̸= ∅), γ : u1↭ u2 on the dual

graph
▶ ψz = σz− δ

2
µz− iδ

2
+ iσz+ δ

2
µz+ iδ

2
(same thing as

Smirnov–Hongler–... observable in contour representation)
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What do we know about ⟨Oz1 . . .Ozn⟩Ω?

▶ Conformal covariance:

⟨Oz1 . . .Ozn⟩Ω =

n∏
i=1

φ′(zi)
∆iφ′(zi)

∆′
i⟨Oφ(z1) . . .Oφ(zn)⟩φ(Ω)
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▶ Holomorphicity: ∂zi⟨Oz1 . . .Ozn⟩Ω = 0 if Ozi = ψzi ;

▶ Behavior as zi → zj : first two terms of expansions;
▶ Behavior as zi → ∂Ω: Riemann boundary conditions for Ozi = ψzi or

Ozi = ψ⋆
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What do we know about ⟨Oz1 . . .Ozn⟩Ω?

▶ Conformal covariance:
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These properties are enough to identify ⟨Oz1 . . .Ozn⟩Ω uniquely. The
result is not very explicit.



Conformal field theory

On the other hand: ⟨Oz1 . . .Ozn⟩Ω are (conjectured to be)
correlations in a (minimal) Conformal field theory, hence

▶ they should satisfy the BPZ equations.

▶ the expansions as zi → zj is known to all orders in terms of
Virasoro descendants ⇝ Conformal bootstrap.

▶ ultimately, the correlations can be computed explicitly
... in several different ways...
... with results that are not obviously equal to each other...

(G. Felder, BRST approach to minimal models, 1989)
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Compactified free field

Compactified free field: Φ = φ+ ξ, where
▶ φ and ξ are independent;

▶ φ is the Gaussian free field in Ω: mean zero, covariance
GΩ = 2π(∆−1), zero boundary conditions;

▶ the instanton component ξ is a random harmonic function with
piecewise constant boundary conditions:
▶ ξ(z) ∈

√
2πZ, and constant along “wired” part of each boundary

component;
▶ ξ(z) ∈

√
2π(Z+ 1

2
) and constant on each “free” boundary arc;

▶ ξ jumps by ±
√
2π · 1

2
at wired/free boundary change;

▶ ξ is normalized (e.g., ξ ≡ 0 on a distinguished “wired” arc);
▶ P(ξ) ∼ exp(− 1

4π
⟨∇ξ,∇ξ⟩reg) (a reguralized Dirichlet energy).
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2
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2
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⟨∇ξ,∇ξ⟩reg) (a reguralized Dirichlet energy).
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Bosonization identity
Theorem (Bayraktaroglu, K. I., Virtanen, Webb, ’23)
To each Ising field Ozi , there corresponds a field Ôzi in a bosonic
theory, defined in terms of the compactified Gaussian free field Φ,
such that

⟨Oz1 . . .Ozn⟩2Ω = ⟨Ôz1 . . . Ôzn⟩Ω.
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theory, defined in terms of the compactified Gaussian free field Φ,
such that

⟨Oz1 . . .Ozn⟩2Ω = ⟨Ôz1 . . . Ôzn⟩Ω.

▶ known to the physicists (Di Francesco–Saleur–Zuber’ 87)

▶ possibly provable by exact bosonization on the lattice
(Dubédat’11–15; Duminil-Copin–Lis’17 +
Beresticky–Laslier–Ray’20, Basok’23+)

▶ caveat about boundary conditions: free + locally monochromatic
(spin constant on each connected component of C \ Ωδ).

▶ the right-hand side is as explicit as it gets (e.g., can be written in
terms of harmonic measures of components via theta functions).
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BPZ equations

Theorem (BPZ’84; K.I., Webb’23)
The Ising correlations satisfy the BPZ equations

L⟨Oz1 . . .Ozn⟩H ≡ 0,
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(Same methods give analogs for multiply-connected domains)
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▶ They are called Virasoro descendants of the primary fields
σ, µ, ε, ψ, ψ⋆.

▶ We don’t need anything else.
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OPE for Ising correlations

Theorem (BPZ’84; K.I., Webb’23)
Each pair of primary fields Oz ∈ {σz, µz, εz, ψz, ψ

⋆
z} and

Ow ∈ {σw, µw, εw, ψw, ψ
⋆
w} has an OPE of the form

OzOw =
∑
n,m

(z − w)n(z − w)mO(n,m)
w ,

where n ∈ (N+ a) ∪ (N+ b), m ∈ (N+ c) ∪ (N+ d), for some
a, b, c, d ∈ R.
Moreover, the coefficients satisfy the recursion[

n(n− 1) +
2(2∆2 + 1)

3
(n−∆1)

]
O(n,m)

w

=

(
2(2∆2 + 1)

3
L−2 − L2

−1

)
O(n−2,m)

w + 2(n− 1)L−1O(n−1,m)
w .

This recursion + conjugate one + beginning of the OPE known from
Chelkak–Hongler–K.I.’21 determines the coefficients uniquely.
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Bosonization identity: sketch of the proof
Theorem (Bayraktaroglu, K. I., Virtanen, Webb, ’23)

⟨Oz1 . . .Ozn⟩2Ω = ⟨Ôz1 . . . Ôzn⟩Ω.

Ozi Ôzi

σzi
√
2 : cos

(√
2
2 Φ(zi)

)
:

µzi

√
2 : sin

(√
2
2 Φ(zi)

)
:

εzi − 1
2 : |∇Φ(zi)|2 :

ψzi 2
√
2i∂Φ(zi)

ψ⋆
zi −2

√
2i∂Φ(zi)
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Theorem (Bayraktaroglu, K. I., Virtanen, Webb, ’23)

⟨Oz1 . . .Ozn⟩2Ω = ⟨Ôz1 . . . Ôzn⟩Ω.

Step 1: using OPE, reduce to the case Ozi ∈ {σzi , µzi}.

Step 2: Prove, for Ozi ∈ {σzi , µzi},(
⟨ψzψwOz1 . . .Ozn⟩Ω

⟨Oz1 . . .Ozn⟩Ω

)2

= −8
⟨∂Φ(z)∂Φ(w)Ôz1 . . . Ôzn⟩Ω

⟨Ôz1 . . . Ôzn⟩Ω
,

Step 3: using OPE, deduce ∂z1 log⟨Oz1 . . .Ozn⟩Ω = 1
2∂z log⟨Ôz1 . . . Ôzn⟩Ω

ψzσw = e
iπ
4 (z − w)−

1
2 · µw + . . . ;

ψzµw = e−
iπ
4 (z − w)−

1
2 · (σw + (z − w)∂wσw + . . . )

.
Step 4: conclude⟨Oz1 . . .Ozn⟩2Ω = ⟨Ôz1 . . . Ôzn⟩Ω.
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,

Ozi ∈ {σzi , µzI}, turns out to be a limiting form of

Theorem (D. Hejhal, independently J. Fay, 1973)
Given a spin line bundle χ on a compact Riemann surface Ω̂, one has

ΛΩ̂,χ(z, w)
2 = β(z, w) +

∑
i,j

∂zi∂zjθ[χ](0)

θ[χ](0)
ui(z)uj(w),

▶ ΛΩ̂,χ(z, w) is the Szegö kernel of χ;
▶ β(z, w) is the Abelian differential of the second kind;
▶ u1(z), . . . , ug(z) are Abelian differentials of the first kind;
▶ θ[χ](0) is the theta-function with characteristic χ.
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Thank you!


