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- take an infinite line in the plane carrying a sequence of         alternating black 
and white points,

- connect all black points to white points by      non-crossing arches drawn above
and/or below the line, 

- call          the number of different ways to do so.  Formula for         ? 

(*) introduced in E.Guitter, C. Kristjansen, J. Nielsen 1999
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1. An enumeration problem that still holds out against
combinatorialists (*) 



From the exact enumeration data, we may extract

Conjecture (E. Guitter, C. Kristjansen, J. Nielsen 1999)
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We expect .     Values of                  ?                                                 
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2. Where bees come to the rescue
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Statistical model on the honeycomb lattice

FPL(   ) model on the honeycomb lattice

Fully Packed Loops := Loops drawn on the 
edges of the honeycomb lattice, and which
visit all the vertices of the lattice

Assign a weight to each loop
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Honeycomb lattice
= the regular bicubic lattice

all vertices have 
degree 3

bicolored in black 
and white 

FPL(   ) model on the honeycomb lattice
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Honeycomb lattice: 
the regular bicubic lattice

Random version:
random bicubic planar map

all vertices have 
degree 3

bicolored in black 
and white 

Before « wine and cheese » After « wine and cheese »

`Gravitational version’

= FPL(   ) model on a random bicubic planar map
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Taking the                 limit corresponds to 
selecting configurations with a single loop
visiting all the vertices of the map
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Cut the loop at some edge and stretch ✃

Our combinatorial problem is nothing but the problem of 
a Hamiltonian cycle on a random bicubic map

it into a straight line



3. The KPZ relations
Regular lattice Random planar map of fixed area 

Critical system described by a 
Conformal Field Theory with

central charge 

Partition function
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Correlation function of operators
with conformal weight
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(Unnormalized) correlator

V. Knizhnik, A. Polyakov, 
A. Zamolodchikov 1988
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4. The FPL model on the honeycomb lattice

N. Reshetikhin 1991 / H. Blöte and B. Nienhuis 1994 / M.Batchelor, J. Suzuki and C. 
Yung 1994 / J. Kondev, J. de Gier, B. Nienhuis 1996 / J. Jacobsen, J. Kondev 1998 /   
T. Dupic, B. Estienne and Y. Ikhlef 2016, 2019 

P. Di Francesco, E. Guitter / Physics Reports 415 (2005) 1–88 39

n20-2

u-1

fully-packed loops dense loops

Fig. 23. Renormalization flow in the (n, u−1) plane. We have indicated an example of flow at constant n. The fully-packed loop
gas corresponds to an unstable fixed point at u−1 = 0. The dense loop gas corresponds to a stable fixed point. The central charge
decreases by 1 between these two fixed points cdense(n) = cfully packed(n) − 1.

6. Folding of random lattices

6.1. Foldability of triangulations

In this part C, we shall consider only the simplest case of triangulations, for which all the tiles are
equilateral triangles with edges of unit length. We will moreover restrict ourselves to planar triangulations,
i.e. tessellations of a surface with the topology of the sphere (genus 0, no handles). An example of such
a triangulation is given in Fig. 24.

Given such a triangulation, we define as before a folding as a map from the triangulation into Rd such
that its restriction to any elementary triangle is an isometry. In particular, each triangle is again mapped
onto an equilateral triangle in Rd .

obtained by taking
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Figure 3: The two-dimensional vectors A, B, C and b2 and a portion of the R lattice.

As displayed in Figure 2, a configuration can be alternatively described as a 3-coloring
of the edges of the lattice by colors A, B and C, so that the three edges incident to
any vertex be of different colors. It is indeed easily seen that, for such a 3-coloring, the
B- and C-colored edges form closed loops of alternating B- and C-edges visiting all the
vertices of the lattice, while the A-edges correspond to the unvisited edges. Orienting
the visited edges from their black to their white incident vertex for B-edges, and from
their white to their black incident vertex for C-edges induces a well-defined orientation
for each loop. Changing the orientation of a loop simply corresponds to interchanging
the B- and C-edges along it.

We may finally transform the FPL(2) configurations into a “height-model” by assigning
to each hexagonal face a two-dimensional height X 2 R2 whose variation �X between
neighboring faces depends on the nature of their separating edge, with the dictionary
of Figure 2. In the 3-coloring language, we have �X = A (resp. B, C) if the crossed
edge is of color A (resp. B, C) and traversed with the incident black vertex on the
left. Making a complete turn around any vertex of the honeycomb lattice implies the
constraint A+B +C = 0 so that X is indeed two-dimensional.

Following [8], we make the following symmetric choice of vectors, see Figure 3:
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so that |A| = |B| = |C| = 1/
p
3 and A · B = B · C = C · A = �1/6. The height

variable X takes its values within the triangular lattice T := ZB + ZC, with mesh size
1/

p
3. We also define the “repeat lattice” as the sub-lattice of T given by

R := Z (A�B) + Z (A�C) (4)

which is a triangular lattice of mesh size 1 (see Figure 3). It is such that two pieces of
lattice whose values of the 2D height differ globally by an element of R describe the same
coloring arrangement, hence the same loop configuration environment.

In [8], it is claimed that the model may then be described at large scale by a coarse-
grained variable  (x) = hXi suitably averaged in the vicinity of the point x of the
underlying lattice, where  is governed by the free field action

ACG = ⇡ g

ˆ
d
2
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lattice whose values of the 2D height differ globally by an element of R describe the same
coloring arrangement, hence the same loop configuration environment.
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with g = 1 (with our choice of normalization for A,B,C). The variable  is defined
modulo R, i.e., is an element of R2

/R via the equivalence relation in R2:

 ⌘  0 ()  � 0 2 R . (6)

Since the loops follow the B- and C-colored edges, the color A on the one hand and the
colors B and C on the other hand play very different roles in the description of loop
observables. It is then convenient to introduce the vector

b2 := B �C = (0, 1) , (7)

so that |b2| = 1 and b2 ·A = 0, and to work in the orthogonal basis (A, b2), see Figure 3.
We thus write

 =  1A+  2b2 . (8)
For a fixed n (0  n  2), the wanted weight n per loop in the FPL(n) model is obtained
by introducing local weights accounting for the left or right nature of the turns of the
(oriented) loops at each vertex. At large scales, this new weight results into a modified
Coulomb Gas action (see [8, 9] for details)
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where R is the (local) scalar curvature of the underlying lattice1, and with now

g = 1� e0 = 1� 1

⇡
arccos

⇣
n

2

⌘
. (10)

The last term in the action is the most relevant perturbation which allows one to fix g by
demanding that it be marginal [9]. At this stage, it is important to note that the action
is such that the two components  1 and  2 of the field  are decoupled. The component
 1 along A is governed by a simple free field action, while the component  2 along b2
is governed by a usual one-dimensional CG action, similar to that obtained from the
SOS reformulation of a dense O(n) model (i.e., without the constraint that each vertex is
visited by a loop). Still, a coupling between the two directions A and b2 arises when we
deal with the operator spectrum of the FPL(n) model, as the defect configurations must
be consistent with the condition (6). Finally, the central charge of the FPL(n) model on
the honeycomb lattice is given by

cfpl(n) = 1 + cdense(n) = 2� 6
(1� g)

2

g
(11)

where, in the middle expression, the first term 1 is the central charge for the free scalar
field  1 and the second term is the usual central charge

cdense(n) = 1� 6
(1� g)

2

g
(12)

of a dense O(n) model (as obtained for instance from its one-dimensional CG description
[10]). For n = 0 (g =

1
2), this yields a total central charge cfpl(0) = 1� 2 = �1.

1For instance, if the model is defined on a cylinder by taking periodic conditions in one direction, the
scalar curvature is concentrated at both ends of the cylinder.
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As displayed in Figure 2, a configuration can be alternatively described as a 3-coloring
of the edges of the lattice by colors A, B and C, so that the three edges incident to
any vertex be of different colors. It is indeed easily seen that, for such a 3-coloring, the
B- and C-colored edges form closed loops of alternating B- and C-edges visiting all the
vertices of the lattice, while the A-edges correspond to the unvisited edges. Orienting
the visited edges from their black to their white incident vertex for B-edges, and from
their white to their black incident vertex for C-edges induces a well-defined orientation
for each loop. Changing the orientation of a loop simply corresponds to interchanging
the B- and C-edges along it.

We may finally transform the FPL(2) configurations into a “height-model” by assigning
to each hexagonal face a two-dimensional height X 2 R2 whose variation �X between
neighboring faces depends on the nature of their separating edge, with the dictionary
of Figure 2. In the 3-coloring language, we have �X = A (resp. B, C) if the crossed
edge is of color A (resp. B, C) and traversed with the incident black vertex on the
left. Making a complete turn around any vertex of the honeycomb lattice implies the
constraint A+B +C = 0 so that X is indeed two-dimensional.
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lattice whose values of the 2D height differ globally by an element of R describe the same
coloring arrangement, hence the same loop configuration environment.
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is such that the two components  1 and  2 of the field  are decoupled. The component
 1 along A is governed by a simple free field action, while the component  2 along b2
is governed by a usual one-dimensional CG action, similar to that obtained from the
SOS reformulation of a dense O(n) model (i.e., without the constraint that each vertex is
visited by a loop). Still, a coupling between the two directions A and b2 arises when we
deal with the operator spectrum of the FPL(n) model, as the defect configurations must
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cfpl(n) = 1 + cdense(n) = 2� 6
(1� g)

2

g
(11)

where, in the middle expression, the first term 1 is the central charge for the free scalar
field  1 and the second term is the usual central charge

cdense(n) = 1� 6
(1� g)

2

g
(12)

of a dense O(n) model (as obtained for instance from its one-dimensional CG description
[10]). For n = 0 (g =

1
2), this yields a total central charge cfpl(0) = 1� 2 = �1.

1For instance, if the model is defined on a cylinder by taking periodic conditions in one direction, the
scalar curvature is concentrated at both ends of the cylinder.

6

u

u�1

u ! 1

cdense(n) = 1� 6
(1� g)2

g

cFPL(n) = 2� 6
(1� g)2

g

g =
1

⇡
arccos

⇣
�n

2

⌘
,
1

2
 g  1

cdense(n) = 1� · · ·

cFPL(n) = 2� · · ·

cdense(2) = 1

cFPL(2) = 2

n = 2

g = 1

A+B +C = 0

X

A = 0

ACG =

Z
d2x

⇢
⇡ g

✓
1

3
(r 1)

2 + (r 2)
2
◆
+

1

2
i e0  2R

�

e4i⇡ 2

2

with g = 1 (with our choice of normalization for A,B,C). The variable  is defined
modulo R, i.e., is an element of R2

/R via the equivalence relation in R2:

 ⌘  0 ()  � 0 2 R . (6)

Since the loops follow the B- and C-colored edges, the color A on the one hand and the
colors B and C on the other hand play very different roles in the description of loop
observables. It is then convenient to introduce the vector

b2 := B �C = (0, 1) , (7)

so that |b2| = 1 and b2 ·A = 0, and to work in the orthogonal basis (A, b2), see Figure 3.
We thus write

 =  1A+  2b2 . (8)
For a fixed n (0  n  2), the wanted weight n per loop in the FPL(n) model is obtained
by introducing local weights accounting for the left or right nature of the turns of the
(oriented) loops at each vertex. At large scales, this new weight results into a modified
Coulomb Gas action (see [8, 9] for details)

ACG =

ˆ
d
2
x

⇢
⇡ g

✓
1

3
(r 1)

2
+ (r 2)

2
◆
+

1

2
i e0  2R+ : e

4i⇡ 2 :

�
(9)

where R is the (local) scalar curvature of the underlying lattice1, and with now

g = 1� e0 = 1� 1

⇡
arccos

⇣
n

2

⌘
. (10)

The last term in the action is the most relevant perturbation which allows one to fix g by
demanding that it be marginal [9]. At this stage, it is important to note that the action
is such that the two components  1 and  2 of the field  are decoupled. The component
 1 along A is governed by a simple free field action, while the component  2 along b2
is governed by a usual one-dimensional CG action, similar to that obtained from the
SOS reformulation of a dense O(n) model (i.e., without the constraint that each vertex is
visited by a loop). Still, a coupling between the two directions A and b2 arises when we
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Effective Coulomb Gas description of FPL on honeycomb
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with g = 1 (with our choice of normalization for A,B,C). The variable  is defined
modulo R, i.e., is an element of R2

/R via the equivalence relation in R2:

 ⌘  0 ()  � 0 2 R . (6)

Since the loops follow the B- and C-colored edges, the color A on the one hand and the
colors B and C on the other hand play very different roles in the description of loop
observables. It is then convenient to introduce the vector

b2 := B �C = (0, 1) , (7)

so that |b2| = 1 and b2 ·A = 0, and to work in the orthogonal basis (A, b2), see Figure 3.
We thus write

 =  1A+  2b2 . (8)
For a fixed n (0  n  2), the wanted weight n per loop in the FPL(n) model is obtained
by introducing local weights accounting for the left or right nature of the turns of the
(oriented) loops at each vertex. At large scales, this new weight results into a modified
Coulomb Gas action (see [8, 9] for details)
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The last term in the action is the most relevant perturbation which allows one to fix g by
demanding that it be marginal [9]. At this stage, it is important to note that the action
is such that the two components  1 and  2 of the field  are decoupled. The component
 1 along A is governed by a simple free field action, while the component  2 along b2
is governed by a usual one-dimensional CG action, similar to that obtained from the
SOS reformulation of a dense O(n) model (i.e., without the constraint that each vertex is
visited by a loop). Still, a coupling between the two directions A and b2 arises when we
deal with the operator spectrum of the FPL(n) model, as the defect configurations must
be consistent with the condition (6). Finally, the central charge of the FPL(n) model on
the honeycomb lattice is given by

cfpl(n) = 1 + cdense(n) = 2� 6
(1� g)

2

g
(11)

where, in the middle expression, the first term 1 is the central charge for the free scalar
field  1 and the second term is the usual central charge
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2

g
(12)

of a dense O(n) model (as obtained for instance from its one-dimensional CG description
[10]). For n = 0 (g =

1
2), this yields a total central charge cfpl(0) = 1� 2 = �1.

1For instance, if the model is defined on a cylinder by taking periodic conditions in one direction, the
scalar curvature is concentrated at both ends of the cylinder.
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Correlation of « magnetic operators » = dislocations

2.2. Exponents for vortex-antivortex correlations

The operator spectrum of the FPL(n) model on the honeycomb lattice is discussed in
details in [8]. Of particular interest are the so-called vortex operators characterized, in
the CG language, by their 2D magnetic charge M 2 R. An operator with magnetic
charge M corresponds to the insertion of a dislocation at a given lattice vertex, i.e., a
topological defect �X = M in the 2D height when going counterclockwise around that
vertex. Several defects must be introduced simultaneously so that the total magnetic
charge is zero (this guarantees that the 2D height remains well defined at infinity) to
keep a finite free energy cost. For instance, the vortex-antivortex correlation corresponds
to inserting a vortex of charge M and one of charge �M at two fixed vertices distant
by r in the honeycomb lattice. For

M = j(A�B) + k(A�C) 2 R, j, k 2 Z , (13)

the change �F of free energy induced by the introduction of the M/ � M defect is
expected to behave at large r as e

��F ⇠ r
�4hM with exponent [8]

hM =
g

4

�
j
2
+ k

2
+ j k

�
� (1� g)

2

4g
(1� �j,k) . (14)
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where the coordinates �1 and �2 are now integers or half-integers satisfying �1 2 3
2Z,

�2 2 1
2Z and �1 + �2 2 Z. Note that, as a consequence of the decoupled form (9) of the

action, the expression above for hM is naturally split into two terms: a first contribution
depending on the coordinate �1 along A only and a second contribution involving the
coordinate �2 along b2 only.

2.3. Examples

Let us illustrate the result (15) in the case n = 0 and for a few values of the magnetic
charge M . For n = 0 (g =

1
2), Equation (15) reduces to

hM (n = 0) =
1

24
�
2
1 +

1

8
(1� ��2,0)

�
�
2
2 � 1

�
. (16)

The case M = B + 2A =
3
2A +

1
2b2. A vortex with magnetic charge B + 2A corre-

sponds to a black vertex surrounded by two A’s and one B which, in the loop language,
corresponds to a black vertex from which a path originates (see Figure 4). The corre-
sponding antivortex, of charge �B� 2A corresponds to the end of this path at a further
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The operator spectrum of the FPL(n) model on the honeycomb lattice is discussed in
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charge M corresponds to the insertion of a dislocation at a given lattice vertex, i.e., a
topological defect �X = M in the 2D height when going counterclockwise around that
vertex. Several defects must be introduced simultaneously so that the total magnetic
charge is zero (this guarantees that the 2D height remains well defined at infinity) to
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M=A+2B
�M= �A�2B

M=3A

�M=�3A

Figure 6: Schematic representation of a pair of defects with magnetic charges ±M for M = 3A.

This corresponds to fully packed loop configurations with two unvisited vertices, one

of each color, at given distant r from each other.

The case M = A + 2B = b2. A vortex with magnetic charge A + 2B corresponds
to two paths originating from the same black vertex (see Figure 5), and ending at the
white vertex2 where we put the antivortex �A � 2B. By changing the orientation of
one of the paths, the concatenation of the two paths forms a well-oriented loop: the
vortex-antivortex correlation therefore enumerates fully packed loop configurations for
which two prescribed vertices on the honeycomb lattice at distance r from each other
belong to the same loop. For n ! 0, this is always the case since the configuration is
made of a single cycle. This is consistent with the value
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The case M = 3A. This corresponds to having a black and a white vertex at distance
r apart which are not visited by a loop. For n ! 0, we then have a unique fully packed
loop visiting all vertices but two (see Figure 6). We find

h3A(n = 0) =
1

24
(3)

2
=

3

8
, (19)

meaning that the number of configurations decays as r
�3/2 at large r. Since h3A < 1,

such a defect corresponds to a relevant perturbation. This agrees with the fact that the
fully packed loop fixed point (here for n = 0) is unstable with respect to the creation of
“empty” vertices: giving these vertices a finite chemical potential drifts the model toward
a new fixed point, that of the dense O(n) model, with central charge cdense(n) as in (12)
[10].

2We may also put the antivortex at a black vertex, now with magnetic charge A+2C so that the total
charge is A+ 2B +A+ 2C = 0.
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5. KPZ predictions I : partition function

(i.e.,                   ):

u

u�1

u ! 1

cdense(n) = 1� 6
(1� g)2

g

cFPL(n) = 2� 6
(1� g)2

g

g =
1

⇡
arccos

⇣
�n

2

⌘
,
1

2
 g  1

cdense(n) = 1� · · ·
cFPL(n) = 2� · · ·

cdense(2) = 1

cFPL(2) = 2

n = 2

g = 1

A+B +C = 0

X

A = 0

ACG =

Z
d2x

⇢
⇡ g

✓
1

3
(r 1)

2 + (r 2)
2
◆
+

1

2
i e0  2R

�

e4i⇡ 2

2 R2/R

e0 =
1

⇡
arccos

⇣n
2

⌘
, 0  e0 

1

2

g =
1

⇡
arccos

⇣
�n

2

⌘
= 1� e0

⇥
1

 2 2 R/Z
�X = M

�X = �M

n = 0

g = 1/2

2

u

u�1

u ! 1

cdense(n) = 1� 6
(1� g)2

g

cFPL(n) = 2� 6
(1� g)2

g

g =
1

⇡
arccos

⇣
�n

2

⌘
,
1

2
 g  1

cdense(n) = 1� · · ·
cFPL(n) = 2� · · ·

cdense(2) = 1

cFPL(2) = 2

n = 2

g = 1

A+B +C = 0

X

A = 0

ACG =

Z
d2x

⇢
⇡ g

✓
1

3
(r 1)

2 + (r 2)
2
◆
+

1

2
i e0  2R

�

e4i⇡ 2

2 R2/R

e0 =
1

⇡
arccos

⇣n
2

⌘
, 0  e0 

1

2

g =
1

⇡
arccos

⇣
�n

2

⌘
= 1� e0

⇥
1

 2 2 R/Z
�X = M

�X = �M

n = 0

g = 1/2

2

Formulaire

Hamiltonian paths on random bicubic maps and KPZ

January 4, 2023

2N

N

ZN

ZN ⇠
N!1

{ µ2N

N2��

µ,{, �

µ2 = 10.113± 0.001

� = �0.77± 0.01

� = �1 +
p
13

6
= �0.76759 · · ·

n

n ! 0

c

ZA ⇠ const. µAA�(c)�3

h
Y

i

�hi,ciA ⇠ const. A
P

i{1��(hi,c)}

�(c) =
1

12

⇣
c� 1�

p
(1� c)(25� c)

⌘

�(h, c) =

p
1� c+ 24h�

p
1� cp

25� c�
p
1� c

ZA h
Y

i

�hi,ciA ⇠ const. µAA
P

i{1��(hi,c)}+�(c)�3

1

Formulaire

Hamiltonian paths on random bicubic maps and KPZ

January 4, 2023

2N

N

ZN

ZN ⇠
N!1

{ µ2N

N2��

µ,{, �

µ2 = 10.113± 0.001

� = �0.77± 0.01

� = �1 +
p
13

6
= �0.76759 · · ·

n

n ! 0

c

ZA ⇠ const. µAA�(c)�3

h
Y

i

�hi,ciA ⇠ const. A
P

i{1��(hi,c)}

�(c) =
1

12

⇣
c� 1�

p
(1� c)(25� c)

⌘

�(h, c) =

p
1� c+ 24h�

p
1� cp

25� c�
p
1� c

ZA h
Y

i

�hi,ciA ⇠ const. µAA
P

i{1��(hi,c)}+�(c)�3

1

n = 0

g = 1/2

cFPL(n = 0) = �1

cdense(n = 0) = �2

ZN = 2N ⇥ ZN ⇠ const.
µ2N

N2��

� = �(c = �1) = �1 +
p
13

6

3

n = 0

g = 1/2

cFPL(n = 0) = �1

cdense(n = 0) = �2

ZN = 2N ⇥ ZN ⇠ const.
µ2N

N2��

� = �(c = �1) = �1 +
p
13

6

A = 2N

3

n = 0

g = 1/2

cFPL(n = 0) = �1

cdense(n = 0) = �2

ZN = 2N ⇥ ZN ⇠ const.
µ2N

N2��

� = �(c = �1) = �1 +
p
13

6

A = 2N

3

E.Guitter, C. Kristjansen, J. Nielsen 1999 

 2 2 R/Z

�X = M

�X = �M

n = 0

g = 1/2

cFPL(n = 0) = �1

cdense(n = 0) = �2

zN = 2N ⇥ Z2N ⇠ const.
µ2N

N2��

� = �(c = �1) = �1 +
p
13

6

A = 2N

A = 0

C = �B

�� = �(c = �2) = �1

z�N ⇠ const.
(µ�)2N

N2���

⇠ const.
42N

N3

µ

}

n = 1

� =
1

2

`

�` =
`

8

9/8

9

8
r

9

8
=
`

8

3



µ2 = 10.113

N
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ã(3)
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7. KPZ predictions II : correlators

The complete list up to N = 28 is given in Table 2 of Appendix B. It confirms and extends
the results of [1] (limited to N  20), see also the sequence A116456 in OEIS [35].

Hamiltonian open paths with trivalent endpoints The second quantity that we con-
sidered is the number yN of Hamiltonian open paths on planar bicubic maps with 2N+2

vertices (in particular, the endpoints of the path are trivalent). As already seen in the
regular lattice case, the endpoints of the path correspond to defects with opposite mag-
netic charges ±M , with M = 2A+B =

3
2A+

1
2b2. In the arch language, we may write

pictorially

yN := (44)

with a now a line segment of 2N + 2 alternating black and white vertices and a total
of N + 2 non-crossing arches. In the planar representation of the map, we fixed as
external face that containing the corner between the two unvisited edges at the black
endpoint (marked here by a dashed segment – this de facto allows us to extend the line
segment into an infinite half-line). The arches are now allowed to wind around the line
segment by passing to the right of the white endpoint. We obtained the first values of
yN independently by the transfer matrix and by the up-down factorization methods:

(yN )N�0 = (1, 6, 40, 286, 2152, . . .) . (45)

The complete list up to N = 16 is given in Table 3 of Appendix B.

Hamiltonian open paths with univalent endpoints The third quantity of interest is
the number xN of Hamiltonian open paths on planar bicolored maps with 2N trivalent
vertices and 2 univalent ones. There the path necessarily starts and ends at the two
univalent vertices which moreover correspond to defects with opposite magnetic charges
±M with now M = B = �1

2A+
1
2b2. In the arch language, we have pictorially

xN := (46)

with a line segment of 2N + 2 alternating black and white vertices and a total of N

non-crossing arches connecting all vertices except the two extremal ones. In the planar
representation of the map, we took as external face that containing the corner at the
univalent black vertex so that the arches are allowed to wind around the line segment
by passing to the right of the white univalent vertex. We obtained the first values of xN
independently by the transfer matrix and by the up-down factorization methods:

(xN )N�0 = (1, 4, 24, 168, 1280, . . .) . (47)

The complete list up to N = 17 is given in Table 4 of Appendix B.
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The following ensembles correspond to “vacancy defects”, i.e. configurations having
two or three unvisited vertices.

Hamiltonian cycles with two unvisited univalent vertices The fourth quantity which
we studied is the number 2wN of cycles on planar bicolored maps with 2N trivalent
vertices and 2 univalent ones, such that the cycle visits all the trivalent vertices but,
since it is a cycle, cannot visit the univalent ones (which are then necessarily of different
colors). This situation corresponds to having two defects with opposite magnetic charges
±M with M = A. In the arch language, we have pictorially

wN :=
1

2
⇥ (48)

with an infinite line carrying 2N alternating white and black vertices, a black univalent
vertex grafted above the first (white) vertex of the line and a white univalent vertex
grafted above or below one of the black vertices of the line. The configuration now has
a total of N � 1 non-crossing arches. In the planar representation of the map, we took
as external face that containing the corner at the univalent black vertex. The factor
1
2 is because we factored out the trivial symmetry consisting in flipping up or down
the univalent white vertex. The first values of wN were obtained independently by the
transfer matrix method and by the up-down factorization method, with result:

(wN )N�1 = (1, 4, 22, 140, 972, . . .) . (49)

The complete list up to N = 18 is given in Table 5 of Appendix B.

Hamiltonian cycles with two unvisited bivalent vertices Our fifth quantity is the
number vN of cycles on planar bicolored maps with 2N trivalent vertices and 2 bivalent
ones (which are then necessarily of different colors), where we require that the cycle visits
all the trivalent vertices but not the bivalent ones. This situation corresponds to having
two defects with opposite magnetic charges ±M with M = 2A. In the arch language,
we have pictorially

vN :=

e1 e2

(50)

with an infinite line carrying 2N alternating white and black vertices, a black bivalent
vertex linked (from above) to two (white) vertices of the line among which we choose
the first white vertex along the line, and a white bivalent vertex linked to two black
vertices of the line. The configuration has N � 2 additional non-crossing arches. The
two edges incident to the bivalent black vertex are distinguished as e1 and e2 and, in
the planar representation of the map, we take as external face that containing the corner
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between edges e1 and e2 clockwise. The first values of vN were obtained by the up-down
factorization method, with result:

(vN )N�2 = (1, 10, 84, 682, 5534, . . .) . (51)

The complete list up to N = 21 is given in Table 6 of Appendix B.

Hamiltonian cycles with two univalent one bivalent unvisited vertices The last quan-
tity which we considered is the number 4uN of cycles on planar bicolored maps with 2N

trivalent vertices, 1 bivalent black one and 2 univalent white ones, such that the cycle
visits all the trivalent vertices but not the bivalent or univalent ones. This situation
corresponds to having three defects with respective magnetic charges 2A, �A and �A.
In the arch language, we have pictorially

uN :=
1

4
⇥

e1 e2

(52)

with an infinite line carrying 2N alternating white and black vertices, a black bivalent
vertex linked (from above) to two (white) vertices of the line among which we choose the
first white vertex along the line, and two white univalent vertices grafted to black vertices
along the line. The configuration has N � 2 additional non-crossing arches. Again, the
two edges incident to the bivalent black vertex are distinguished as e1 and e2 and, in
the planar representation of the map, we take as external face that containing the corner
between edges e1 and e2 clockwise. The factor 1

4 is because we factored out the trivial
symmetry consisting in flipping up or down the univalent white vertices. The first values
of uN were obtained by the up-down factorization method, with result:

(uN )N�2 = (1, 10, 90, 798, 7094, . . .) . (53)

The complete list up to N = 17 is given in Table 7 of Appendix B.

5.3. Exponential growth rate

All the quantities tN = zN , yN , xN , wN , vN , uN which we introduced so far are expected
to have the asymptotic behavior

tN ⇠ const.
µ
2N

N�t
, (54)

with the same exponential growth rate µ and sub-leading corrections characterized by
an exponent �t specific to each quantity and whose value should be predicted from the
KPZ formulas. In order to evaluate µ and �t, we construct from the sequence tN the
following two sequences

aN :=
tN+1

tN
, bN := N

2 Log
tN+2tN

(tN+1)
2
, (55)
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2
Log(yN+2yN/(yN+1)

2
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We will come back to this point in the next section. As for the indicated error ranges,
they are estimated from the observed amplitude for the variation of the first digit which
is not yet stabilized.

6. Comparison with KPZ predictions

We now wish to compare the numerical exponents above to their values predicted by the
KPZ equivalence. Since we expect that c = cfpl(0) = �1 for n = 0 (g =

1
2), we have,

from (21), the exponent

� := �(�1) = �1 +
p
13

6
= �0.76759 . . . (62)

and, from (23), the gravitational anomalous dimensions

�M := �(hM ,�1) =

p
1 + 12hM � 1p

13� 1
, (63)

with, from (15) at n = 0 (g =
1
2),

hM =
1

24
�
2
1 +

1

8
(1� ��2,0) (�

2
2 � 1) for M = �1A+ �2b2 . (64)

From the general formulas (22) and (25) and the identity h�M = hM , hence ��M =

�M , we may write

�z = 2� � , �y = 1 + 2� 3
2A+ 1

2b2
� � , �x = 1 + 2�� 1

2A+ 1
2b2

� � ,

�w = 1 + 2�A � � , �v = 1 + 2�2A � � , �u = �2A + 2�A � � .
(65)

As in [1], our estimated value �z = 2.77± 0.01 above is in perfect agreement with the
announced value 2� � = 2.76759 . . . and we thus confirm the prediction (2) of [1].
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Renormalization
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p
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13�1)

= 2.46983 . . .
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13�1
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3(
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Table 1: Comparison of the numerical estimates for the various configuration expo-
nents and their values predicted by the naive and by the (4/3)-corrected KPZ formulas.
(⇤)As explained in the text and in Figure ??, a more reliable estimate is �v = 2.42± 0.06.
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8. General bicolored maps

5-regular

{3,4}-mixed

= 4  rigid

} q � 1

}
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} q � 1

}
q � 1

} q � 1

}
q � 1

} q � 1

}
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Figure 10: Example of the edge environment of a black and of a white vertex in the RFPL
model. Each vertex is traversed by a loop (thick edges) in such a way that there are
exactly q � 1 unvisited edges (thin edges) on each side of the loop (here q = 4).

of rigid Hamiltonian cycles, i.e., configurations with a single self-avoiding loop visiting
all the vertices of the map.

For 2q = 4, a rigid Hamiltonian cycle configuration is what was called a meandric

system in [20, 9]. Note that a 4-regular planar map equipped with a rigid Hamiltonian
cycle is automatically bicolorable.

Let us again start with the RFPL(2) model, corresponding to (unweighted) oriented
loops. As we did in Section 2, we may distinguish A- (unvisited), B- (visited oriented
towards a black vertex) and C- (visited oriented towards a black vertex) edges, which
allows us to assign a d-component height X 2 Rd to each face of the map, whose variation
�X between adjacent faces depends on the nature of the edge between them according
to the rules of Figure 2. As before, this height is well-defined by requiring the necessary
and sufficient condition (corresponding to (3) for p = 2q):

2(q � 1)A+B +C = 0 (19)

which, de facto, fixes d = 2, with X living in the (B,C)-plane with B and C two
unit vectors with, say B · C = �1/2. As before, it is convenient to express X in the
orthogonal basis (A, b2), with b2 := B � C and, as in Section 2, write the associated
coarse grained average value  = hXi as a two-component vector field  =  1A+ 2b2
with components both along A and along b2. Reproducing the arguments of Section 2, it
would be tempting to infer that the results of Claims 3 and 4 hold, i.e., that the RFPL(n)
model is the coupling to gravity of a CFT of central charge cfpl(n). We will now argue
that this conclusion is actually incorrect and that the RFPL(n) model is the coupling to
gravity of a CFT of central charge cdense(n) = cfpl(n)� 1. Indeed, even though we may
define the coordinate  1 in the A direction, the value of this coordinate is in practice
frozen, equal to a fixed value (which we may take equal to 0) on the entire map. We thus
state:

Proposition 11. The two-component vector field  varies only via its coordinate  2

along the b2 direction, which makes it in practice a one-component vector field.

14
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unit vectors with, say B · C = �1/2. As before, it is convenient to express X in the
orthogonal basis (A, b2), with b2 := B � C and, as in Section 2, write the associated
coarse grained average value  = hXi as a two-component vector field  =  1A+ 2b2
with components both along A and along b2. Reproducing the arguments of Section 2, it
would be tempting to infer that the results of Claims 3 and 4 hold, i.e., that the RFPL(n)
model is the coupling to gravity of a CFT of central charge cfpl(n). We will now argue
that this conclusion is actually incorrect and that the RFPL(n) model is the coupling to
gravity of a CFT of central charge cdense(n) = cfpl(n)� 1. Indeed, even though we may
define the coordinate  1 in the A direction, the value of this coordinate is in practice
frozen, equal to a fixed value (which we may take equal to 0) on the entire map. We thus
state:

Proposition 11. The two-component vector field  varies only via its coordinate  2

along the b2 direction, which makes it in practice a one-component vector field.
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This de facto reduces the central charge by 1, hence we arrive at:

Claim 12. For �2  n  2, the RFPL(n) model on 2q-regular bicolored planar maps is

described by the coupling to gravity of a CFT with central charge

c = cdense(n) = 1� 6
(1� g)2

g
where n = �2 cos(⇡ g) with 0  g  1 . (20)

In the n ! 0 limit, we deduce in particular:

Corollary 13. The model of rigid Hamiltonian cycles on 2q-regular bicolored planar

maps is described by the coupling to gravity of a CFT with central charge

c = cdense(0) = �2 . (21)

In particular, using KPZ (2), the associated partition function zN has the asymptotic

behavior (1) with

� = �(�2) = �1. (22)

5.2. Proof of Proposition 11

Proof. The following argument is a generalization to arbitrary q of that given in [14,
Sect. 11.3] for the case q = 2. The first remark is that the set of faces of a bicol-
ored p-regular planar map is naturally split into p subsets as follows4: pick a reference
face f0 and label each face f of the map by `(f) = (L(f) mod p) + 1 where L(f) is
the number of crossed edges of any path connecting f0 to f and traversing only edges

with their white vertex on the right (or equivalently turning clockwise around white ver-
tices and counterclockwise around black ones). It is easily seen that L(f) is indeed
independent on the chosen path. This splits the set of faces into p-subsets which we
denote by F1,F2, . . . ,Fp where Fj is the set of faces labelled j. Moreover, it is easily
seen that, by construction, the cyclic order of the labels is (1, 2, . . . , p) both clockwise
around white vertices and counterclockwise around black ones. For p = 2q, we may
instead use labels ` 2 {1, 2, . . . , q, 1̂, 2̂, . . . , q̂} so that the subsets are now denoted by
F1,F2, . . . ,Fq,F1̂,F2̂, . . . ,Fq̂ and the cyclic order of the labels is (1, 2, . . . , p, 1̂, 2̂, . . . , q̂).
In the presence of rigid fully packed oriented loops, we may finally choose the face f0 so
that the loops always separate faces in F1 from faces in Fq̂ and faces in F1̂ from faces in
Fq (it is enough to impose this property at one vertex and, since the loops are rigid, it
automatically propagates5 to all the vertices), see Figure 11 for an example in the case
q = 3.

4The reader might be more familiar with the dual picture: bicolored p-regular planar maps are dual
to planar Eulerian p-angulations (with bicolored black and white faces all of valency p), a particular
instance of p-constellations [21].

5Note that the set F1 [ F1̂ needs not be connected. Still, one can check that the property propagates
from one connected component to the other. This is because the edges separating Fj from Fj�1 and
Fĵ from F[j�1 for any given j 2 {2, . . . q} also form a set of rigid fully packed loops.
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Figure 3: An example of a 4-regular bicolored planar map equipped with a set of fully packed
oriented loops (thick lines). The unvisited edges (thin lines) automatically form a
complementary set of fully packed unoriented loops on the map.

result is a shift of the central charge from c = cfpl(2) = 2 to a lower value c = cfpl(n) [11]
whose expression is recalled just below.

Since the FPL(2) model on p-regular bicolored planar maps has the same two-component
field description for any arbitrary integer p � 3, we expect that the passage from n = 2

to an arbitrary n 2 [�2, 2] induces the very same lowering of the central charge. This
leads us to express the following statement:

Claim 4. For �2  n  2, the FPL(n) model on p-regular bicolored planar maps is, for

arbitrary p � 3, described by the coupling to gravity of a CFT with central charge

c = cfpl(n) := 2� 6
(1� g)2

g
where n = �2 cos(⇡ g) with 0  g  1 . (6)

In the n ! 0 limit, we deduce in particular:

Corollary 5. The model of Hamiltonian cycles on p-regular bicolored planar maps is

described by the coupling to gravity of a CFT with central charge

c = cfpl(0) = �1 . (7)

In particular, using KPZ (2), the partition function zN of Hamiltonian cycles on p-regular
bicolored planar maps of size 2N has the asymptotic behavior (1) with

� = �(�1) = �1 +
p
13

6
. (8)

This extends the conjecture of [5] (see also [14, 1]) for p = 3 to an arbitrary value of
the integer p � 3.
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9. Long-distance contacts

Figure 14: On the hexagonal lattice with the spherical topology, the two (red and green) halves

C1 and C2 of a Hamiltonian cycle C = C1 [ C2 are separated by a (dotted) dual loop
eC = C1 \ C2 on the dual lattice that crosses the whole set of their contact links. This
separatrix can be seen as the external perimeter of each half of C. A point along that
dual loop can be viewed as the origin of either ` = 4 compact O(n = 0) half-lines,
or of ` = 2 dual half-lines. In the scaling limit, the fully-packed loop C converges to
space-filling SLE=8 with Hausdorff dimension D = 2, and its fractal contact set eC
to whole-plane SLEe=2, with Hausdorff dimension eD = 5/4.

In the scaling limit, one has g = 1/2, = 8, so the cycle C should converge to a
conformally invariant SLE8 path drawn on the Riemann sphere, which is a Peano curve,
i.e., a space-filling curve with Hausdorff dimension D = 2. By duality (32) (33), the path
eC should then converge to a whole-plane SLE2 curve with Hausdorff dimension eD = 5/4.

This can be directly checked by observing that a contact point on eC can be viewed
as the origin of ` = 4 fully-packed n = 0 lines, i.e., in the scaling limit, that of ` = 4

space-filling SLE8 paths, as well as the origin of ` = 2 SLE2 dual paths, with identical
conformal weights (34)

h1\2 := hfpl(0)`=4 = h(=8)
`=4 = h(e=2)

`=2 =
3

8
. (38)

The expected number |eC| = |C1 \ C2| of contact links between the two halves of Hamil-
tonian cycle C, in a large domain D of area A = |D| on the regular bicolored lattice, is
then given, in the scaling limit, by

E |C1 \ C2| ⇣ A
eD/2

= A1�h1\2 , h1\2 = 3/8, A ! 1 , (39)

where the asymptotic equivalence ⇣ means that the ratio of logarithms tends to 1.

6.3. Coupling to quantum gravity

Random planar maps, as weighted by the partition functions of critical statistical models,
are widely believed to have for scaling limits Liouville quantum gravity (LQG) coupled to
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spherical topology being SLE8 decorating an independent �L-LQG sphere (for a proper
definition, see [6, 57, 58]), with a Liouville parameter and a central charge depending
on the choice of the map’s vertex statistics. In the case of generic (i.e., non-bicolored)
cubic maps [1], of bicolored maps with vertices of mixed valencies (Corollary (8)), and of
2q-regular bicolored maps with a local rigidity condition (Corollary(13)), we have from
(44) and (45) for  = 8,

�L =
p
2, � = �1, c = �2 . (48)

In the case of bicubic maps [1] or, more generally, of p-regular bicolored maps (Corollary
(5)) we have from (46) and (47) for  = 8,

�L =
1p
3

⇣p
13� 1

⌘
, � = �1 +

p
13

6
, c = �1 . (49)

Let us consider the set eC = C1 \ C2 of contact points between the two halves of the
Hamiltonian cycle C = C1 [ C2, on a bicolored random planar map of fixed size 2N (see
Figure 15). In the thermodynamic limit N ! 1, and after rescaling, this set converges
(in the peanosphere topology [6]) to the intersection of the two halves of an infinite
SLE8 path, i.e., a whole-plane SLE2, decorating a quantum sphere of fixed �L-LQG area
A [6, 57, 58]. An SLE=2 quantum length measure [51, 6] based on the SLE natural
parametrization [59] is associated in the scaling limit with the cardinal |eC| = |C1 \ C2|.
Its expectation scales as

ELQG|C1 \ C2| ⇣ A⌫
:= A1��1\2 , (50)

an expression entirely similar to the scaling form (39), but now with a quantum exponent
�1\2 := �(h1\2, c) given by the KPZ relation (41) in terms of h1\2 = 3/8 (38). Its value
thus crucially depends on the central charge c, i.e., on the choice of vertex statistics on
the bicolored map. For case (48), we find

�1\2 = �(3/8, c = �2) = 1/2 ,

⌫ = 1��1\2 = 1/2 ;
(51)

whereas in case (49) we predict

�1\2 = �(3/8, c = �1) =

p
11�

p
2p

26�
p
2
,

⌫ = 1��1\2 =

p
26�

p
11p

26�
p
2

= 0.483715 · · · .

(52)

These two predictions for ⌫ will now be tested numerically using extrapolations from
exact enumerations.

7. Numerics for long-distance contacts

Our Hamiltonian cycles have a marked visited edge e. We may thus label all the vertices
by their natural order along a cycle C, starting from the black vertex incident to e
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3

8
. (38)

The expected number |eC| = |C1 \ C2| of contact links between the two halves of Hamil-
tonian cycle C, in a large domain D of area A = |D| on the regular bicolored lattice, is
then given, in the scaling limit, by
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However, for random bicubic planar maps, as seen in Ref. [1], and for the general non-

rigid case of p-regular bicolored planar maps (Claim (4)), the correspondence (44) no
longer holds, and one then has a mismatch [8, 9], with (45) replaced in (2), (40) and (41)
by

c = cfpl(n) = 1 + csle() , (46)
with  still given by (37). Note that the constraint c  1 in the KPZ relations restricts
the loop fugacity of the FPL(n) model on a bicubic map to the range n 2 [0, 1] with
 2 [6, 8], while the complementary range n 2 (1, 2) with  2 (4, 6) is likely to correspond
to random tree statistics.

A coupling between LQG and SLE with such mismatched parameters has yet to be
described rigorously. Following [1], we can simply conjecture here that for n 2 [0, 1] the
scaling limit of the FPL(n) model on a bicolored p-regular planar map with no rigid
condition, will be given by CLE [6], with  2 [6, 8] as in (37), on a �L-LQG sphere with
Liouville parameter

�L =
1p
12

 s
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✓
+
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◆
+ 22�

s
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✓
+

16
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� 26
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, (47)

in agreement with conjectures proposed in [8, 9].

Figure 15: On a random bicubic planar map with the spherical topology, the two (red and green)
halves C1 and C2 of a Hamiltonian cycle C = C1 [ C2 are separated by a (dotted)
dual loop eC = C1 \ C2 on the dual map that crosses the whole set of their nearest
neighbour contact links. In the scaling limit, the random map, the fully-packed loop
C and the separatrix eC converge (in the peanosphere topology [6]) to a �L-LQG
sphere decorated by a space-filling SLE8 and a whole-plane SLE2. In the case of this
(p = 3)-regular bicolored map, c = �1 and �L =

1p
3

�p
13� 1

�
.

6.4. Hamiltonian cycles and LQG

The FPL(n = 0) model on a random planar map converges to space-filling SLE=8

coupled to Liouville quantum gravity, the scaling limit of a Hamiltonian cycle in the
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8
. (38)
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spherical topology being SLE8 decorating an independent �L-LQG sphere (for a proper
definition, see [6, 57, 58]), with a Liouville parameter and a central charge depending
on the choice of the map’s vertex statistics. In the case of generic (i.e., non-bicolored)
cubic maps [1], of bicolored maps with vertices of mixed valencies (Corollary (8)), and of
2q-regular bicolored maps with a local rigidity condition (Corollary(13)), we have from
(44) and (45) for  = 8,

�L =
p
2, � = �1, c = �2 . (48)

In the case of bicubic maps [1] or, more generally, of p-regular bicolored maps (Corollary
(5)) we have from (46) and (47) for  = 8,

�L =
1p
3

⇣p
13� 1

⌘
, � = �1 +

p
13

6
, c = �1 . (49)

Let us consider the set eC = C1 \ C2 of contact points between the two halves of the
Hamiltonian cycle C = C1 [ C2, on a bicolored random planar map of fixed size 2N (see
Figure 15). In the thermodynamic limit N ! 1, and after rescaling, this set converges
(in the peanosphere topology [6]) to the intersection of the two halves of an infinite
SLE8 path, i.e., a whole-plane SLE2, decorating a quantum sphere of fixed �L-LQG area
A [6, 57, 58]. An SLE=2 quantum length measure [51, 6] based on the SLE natural
parametrization [59] is associated in the scaling limit with the cardinal |eC| = |C1 \ C2|.
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displayed the sequence (⌫̃2M (s))1MNmax/2 for 5 different values of s. From top to
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Figure 17: Determination of the shift s⇤ and the exponent ⌫ for Hamiltonian cycles on 3-regular
bicolored maps (with Nmax = 26). See caption of Figure 16 for details.
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Figure 18: Determination of the shift s⇤ and the exponent ⌫ for Hamiltonian cycles on bicolored
maps with mixed valencies 2 and 3 (with Nmax = 22). See caption of Figure 16 for
details.

hence a value of ⌫ very close to the predicted value (52). Figure 18 displays similar
results for maps with mixed valencies 2 and 3 (and w2 = w3 = 1), giving now s⇤ = 0.965
and ⌫ = 0.4997 very close to the predicted value 1/2 of (51). Table 2 gives a summary of
our estimates for ⌫ for Hamiltonian cycles on six different bicolored map families and for
the two parities of N . All the results are in perfect agreement with the expected values.

8. Conclusion

In this paper, we studied the statistics of Hamiltonian cycles, and more generally of fully
packed loops, on various families of bicolored random planar maps and found that the
corresponding models fall into two distinct universality classes. The first, most common
universality class corresponds to the coupling to gravity of a CFT with central charge
cdense(n) as defined in (11). This universality class is found for fully packed loops on
bicolored maps with mixed valencies, for rigid fully packed loops on 2q-regular bicolored
maps, but also for fully packed loops on non-bicolored maps (see Remark 10). It would
also be found for non-rigid or rigid dense loops (i.e., O(n) loops in their dense critical
phase) on either bicolored or non-bicolored maps. The common feature of all these models
is that they can be described by a single height field  =  2b2. The associated CFT on
a regular lattice is that describing the dense phase of the O(n) model, with conformal
dimensions which can be computed indifferently on any (hexagonal [39], square [46] or
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which has been directly established for critical percolation [40]. Non-simple SLE paths
for  2 (4, 8] have indeed been proven to have for outer boundaries dual simple SLEe
paths, with e = 16/ 2 [2, 4) [36, 37].

The so-called watermelon exponents (conformal weights) corresponding to the merging
of a number ` of conformally invariant SLE paths [26], in particular of ` critical lines in
the (dense or dilute) O(n) model with n as in (30) are given by [38, 39, 41, 42, 43, 44,
45, 46, 47]

h()` =
1

16

⇥
4`2 � (4� )2

⇤
, ` 2 Z+. (34)

As anticipated above, the Hausdorff dimension of SLE is [48]

D = inf{2(1� h()2 ), 2} = inf{1 + /8, 2} . (35)

The fully-packed FPL(n) model on the hexagonal lattice [11, 12, 13] or on the square
lattice [15, 16] is related to the corresponding dense O(n) model via a shift of its central
charge by one unit as in (6) and (11). The watermelon exponents for an even number
of paths are the same in FPL(n) and dense O(n) models, and in particular the 2-leg
exponent which gives the Hausdorff dimension of the paths, whereas those for a odd

number of paths differ both on the hexagonal (7) [11, 12, 13], and on the square (⇤)
[15, 16] lattices,

hfpl(n)2k = h()2k ,

hfpl(n)2k�1 = h()2k�1 +
3

4
(7),

hfpl(n)2k�1 = h()2k�1 +
1

6 + 
(⇤), k 2 Z+.

(36)

Even in the presence of the mismatch of central charges (6) and (11), one is thus led to
conjecture [1, 8, 9] that the scaling limit of the fully-packed FPL(n) loop model itself on
the honeycomb or square lattices is described by a conformal loop ensemble CLE, with
 corresponding to the dense O(n) model phase [10, 11, 12, 13, 15, 16],

 =
4⇡

arccos(�n/2)
2 (4, 8] for n 2 [0, 2) . (37)

6.2. Scaling limit for Hamiltonian cycles

Let us now consider the FPL(n = 0) case of a single Hamiltonian cycle C with 2N
vertices, drawn on the regular bicolored hexagonal (or square) lattice, with the sphere
topology. Marking two points at distance N along C splits this cycle into two equal parts
Ci, i = 1, 2 such that C = C1 [ C2. They are separated by a single closed path eC drawn on
the dual triangular lattice, that crosses the whole set of contacts links, i.e., edges incident
to a vertex in C1 and to one in C2. We write eC = C1 \C2 by a slight abuse of notation. In
the spherical topology, this dual path can be viewed as the common external perimeter
shared by each of the two halves Ci, i = 1, 2 of C (see Figure 14).
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SLE vs fully packed exponents

Figure 14: On the hexagonal lattice with the spherical topology, the two (red and green) halves

C1 and C2 of a Hamiltonian cycle C = C1 [ C2 are separated by a (dotted) dual loop
eC = C1 \ C2 on the dual lattice that crosses the whole set of their contact links. This
separatrix can be seen as the external perimeter of each half of C. A point along that
dual loop can be viewed as the origin of either ` = 4 compact O(n = 0) half-lines,
or of ` = 2 dual half-lines. In the scaling limit, the fully-packed loop C converges to
space-filling SLE=8 with Hausdorff dimension D = 2, and its fractal contact set eC
to whole-plane SLEe=2, with Hausdorff dimension eD = 5/4.

In the scaling limit, one has g = 1/2, = 8, so the cycle C should converge to a
conformally invariant SLE8 path drawn on the Riemann sphere, which is a Peano curve,
i.e., a space-filling curve with Hausdorff dimension D = 2. By duality (32) (33), the path
eC should then converge to a whole-plane SLE2 curve with Hausdorff dimension eD = 5/4.

This can be directly checked by observing that a contact point on eC can be viewed
as the origin of ` = 4 fully-packed n = 0 lines, i.e., in the scaling limit, that of ` = 4

space-filling SLE8 paths, as well as the origin of ` = 2 SLE2 dual paths, with identical
conformal weights (34)

h1\2 := hfpl(0)`=4 = h(=8)
`=4 = h(e=2)

`=2 =
3

8
. (38)

The expected number |eC| = |C1 \ C2| of contact links between the two halves of Hamil-
tonian cycle C, in a large domain D of area A = |D| on the regular bicolored lattice, is
then given, in the scaling limit, by

E |C1 \ C2| ⇣ A
eD/2

= A1�h1\2 , h1\2 = 3/8, A ! 1 , (39)

where the asymptotic equivalence ⇣ means that the ratio of logarithms tends to 1.

6.3. Coupling to quantum gravity

Random planar maps, as weighted by the partition functions of critical statistical models,
are widely believed to have for scaling limits Liouville quantum gravity (LQG) coupled to
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On the importance of being bicolored
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for the various quantities at hand. It is a simple exercise to obtain the exact expression

z
�
N =

NX

k=0

✓
2N

2k

◆
CatkCatN�k = CatNCatN+1 , (76)

where CatN =
�2N
N

�
/(N + 1) is the N

th Catalan number. We similarly get

y
�
N = 2

2NCatN+2 , x
�
N = 2

2NCatN , w
�
N = (2N � 1)CatN�1CatN ,

v
�
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1

2
(N � 1)CatNCatN+1 , u

�
N =

1

4
(2N � 1)(2N � 2)CatN�1CatN .

(77)

From these exact expressions, we immediately obtain that all these sequences have the
same exponential growth rate (µ

�
)
2
= 16, while the configuration exponents read:

�
�
z = 3 , �

�
y = �

�
x =
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2
, �

�
w = �

�
v = 2 �

�
u = 1 . (78)

These values match with the predictions
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upon taking �
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2b2
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�
� 1

2A+ 1
2b2

= �1/4, �
�
A = �

�
2A = 0 and �

�
= �1. The

latter value is that predicted by the KPZ formula (21) since, as discussed in Section 3.1
c = �2 is the expected central charge when the FPL(0) model is defined on cubic planar
maps, and �(�2) = �1. As for the dressed dimensions �

�, their values do not depend
on the component along the A direction, which is compatible with the fact that we
must set A = 0: we are therefore left in practice with the two independent exponents
�

�
1
2b2

= �1/4 and �
�
0 = 0, corresponding respectively to the 1- and 2-leg watermelon

exponents [44]. From the KPZ formula (23) which, at c = �2, reduces to

�(h,�2) =

p
1 + 8h� 1

2
(80)

we identify
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1
2b2

= �(h
�
1
2b2

,�2) and �
�
0 = �(h

�
0,�2) (81)

with the classical dimensions h
�
1
2b2

= �3/32 and h
�
0 = 0 [44]. These values are two

instances with �2 = 1/2 and 0 respectively of the general formula (64), which when
A = 0, translates into

h
�
�2b2 =

1

8
(1� ��2,0) (�

2
2 � 1) . (82)

To conclude, the obtained configuration exponents for the FPL(0) model defined on cubic
planar maps are exactly those predicted by the KPZ formulas. This confirms that the
discrepancies with KPZ found in this paper for bicubic maps are due to the existence of
the extra dimension (along A) in the problem.
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