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m f: X — Y - homeomorphism
m 7 : [0,00) — [0,00) an increasing map, n(0) = 0.
m f is n-quasisymmetric if
Sl (0))
dy(f(x),f(2)) ~

dx(x, z)
for all x,y,z € X with x # z.

llia Binder Quasisymmetric images of Brownian graph: minimal dimension



Quasisymmetry: definition

Quasisymmetric
images of Brownian
graph: minimal
dimension

llia Binder

m f: X — Y - homeomorphism
Oty o m 7 : [0,00) — [0,00) an increasing map, n(0) = 0.

dimension.

m f is n-quasisymmetric if

dy(f(x), f(y)) dx(x,y)
dy(F(x), F(z) =" ( )

dx(x, z)
for all x,y,z € X with x # z.

m f is quasisymmetric if it is n-quasisymmetric for some 7.
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f: X — Y - homeomorphism

Quasisymmetry and
dimension.

1 : [0,00) — [0, c0) an increasing map, n(0) = 0.

f is m-quasisymmetric if

dy(f(x), f(y)) dx(x,y)
dy(F(x), F(z) =" ( )

dx(x, z)
for all x,y,z € X with x # z.

f is quasisymmetric if it is n-quasisymmetric for some 7.

The inverse of a quasisymmetric map is also quasisymmetric.
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Quasisymmetry and
dimension.

H = n(1) here.

This is weakly quasisymmetric map. Equivalent to quasisymmetry for
“nice” X and Y.
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m A homeomorphism f : X — Y is K-Quasiconformal/QC if for every
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dimension. X € X

] i MaXdy (x,y)<r dy (F(x), f(y))
Dilf(x) = | — sk
e (x) vy Mingy (x,2)>r dy (f(x), f(2)) ~
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m A homeomorphism f : X — Y is K-Quasiconformal/QC if for every

Quasisymmetry and
dimension. X € X

] i MaXdy (x,y)<r dy (F(x), f(y))
Dilf(x) = | — sk
e (x) vy Mingy (x,2)>r dy (f(x), f(2)) ~

m Every quasisymmetric map is K-QC with K = n(1).
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m A homeomorphism f : X — Y is K-Quasiconformal/QC if for every
xeX

] i MaXdy (x,y)<r dy (F(x), f(y))
Dilf(x) = | — sk
e (x) vy Mingy (x,2)>r dy (f(x), f(2)) ~

m Every quasisymmetric map is K-QC with K = n(1).

m If X, Y are domains in RY, d > 2, then every K-QC map is locally
QS.
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m If dimX > 0 and 0 < € < 1 then the Snowflake map

Quasisymmetry and

dimension. id : (X, d) — (X7 dE)

is a QS map which increases dimension to édim X.
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m If dimX > 0 and 0 < € < 1 then the Snowflake map

Quasisymmetry and

A id : (X,d) — (X,d?)
is a QS map which increases dimension to édim X.

Theorem. (Bishop, '99)

If ECR", dimE >0, and € > 0 then there is a QS map f : R" — R"
s.t.

dimf(E) > n—e.
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rmal dimension

m Topological dimension of a metric space X

inf dimy f(X)= dim, X.

f EHomeo

m Conformal dimension of a metric space X

inf dimy f(X)= dimc X.
Fis Qs

Introduced by P. Pansu in 1989 as a tool to study the
quasi-isometric classification of the symmetric spaces. Extensively
used to classify hyperbolic groups.
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Quasisymmetry and
dimension.

Conformal dimension

m Topological dimension of a metric space X

inf dimy f(X)= dim, X.

f EHomeo

m Conformal dimension of a metric space X

inf dimy f(X)= dimc X.
Fis Qs

Introduced by P. Pansu in 1989 as a tool to study the
quasi-isometric classification of the symmetric spaces. Extensively
used to classify hyperbolic groups.

m X is minimal if

dimc X = dimH X.
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dimension

llia Binder m dim M" = dimc(M") = n for an n-dimensional submanifold of R".

m Let X be R? with the metric
d((x1, 1), (x2,¥2)) = [x1 — x| + [y1 — yo|"/?. Then

R Ty dimX =dimc X =3
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Some Examples

Quasisymmetric
images of Brownian

graph: minimal dimR" =dimcR" = n

dimension

llia Binder m dim M" = dimc(M") = n for an n-dimensional submanifold of R".

m Let X be R? with the metric
d((x1, 1), (x2,¥2)) = [x1 — x| + [y1 — yo|"/?. Then

R Ty dimX =dimc X =3

m Sierpiniski Gasket SG,dim(SG) = :ggg,dimc(SG) = 1.(Tyson, Wu,
'06)
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What is known about
conformal dimension.

What is known?

Theorem. (Beurling-Ahlfors'56)

There is a set E C R of full measure and a gs map f s.t. |f(E)| = 0.

Theorem. (Tukia'89)

There is a set E C R of full measure such that dimc(E) = 0.
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What is known?
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e R There is a set E C R of full measure and a qs map f s.t. |f(E)| = 0.

Theorem. (Tukia'89)

There is a set E C R of full measure such that dimc(E) = 0.

What is known about
conformal dimension.

Theorem. (Hakobyan'06)
There are sets E C R s.t. |[E| =0 but dimc E = 1.
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|=0.

Theorem. (Tukia'89)

There is a set E C R of full measure such that dimc(E) = 0.

What is known about
conformal dimension.

Theorem. (Hakobyan'06)
There are sets E C R s.t. |[E| =0 but dimc E = 1.

Theorem. (Kovalev'06)
If dim X < 1 then dimc¢ X = 0.
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What is known?

Quasisymmetric

, ST . ,
" graph: minimal Theorem. (Beurling-Ahlfors'56)

dimension

llia Binder There is a set E C R of full measure and a qs map f s.t. |f(E)

|=0.

Theorem. (Tukia'89)

There is a set E C R of full measure such that dimc(E) = 0.

What is known about
conformal dimension.

Theorem. (Hakobyan'06)
There are sets E C R s.t. |[E| =0 but dimc E = 1.

Theorem. (Kovalev'06)
If dim X < 1 then dimc¢ X = 0.

Theorem. (Bishop, Tyson'01)
For any a > 1, there exists a X C R? such that dim(X) = dimc(X) = a.
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T Bt m Choose a certain pattern D C {1,...,n} x {1,..., m} of rectangles
and remove the rest. Repeat this process with every remaining
rectangle. lterate and get a set Ep

m Let r; be the number of the rectangles in the j-th column of the

pattern D. Assume r; > 1 for all j.

McMullen sets and
Fractal percolation.
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McMullen self-affine sets

QEE TS m Let m;n € N and m < n. Divide the unit square into n rows and m

images of Brownian

graph: minimal columns.

dimension

T Bt m Choose a certain pattern D C {1,...,n} x {1,..., m} of rectangles
and remove the rest. Repeat this process with every remaining
rectangle. lterate and get a set Ep

m Let r; be the number of the rectangles in the j-th column of the
pattern D. Assume r; > 1 for all j.

McMullen sets and
Fractal percolation.

dimy Ep =1+ log, %(rl + .ot ).
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McMullen sets and
Fractal percolation.

McMullen self-affine sets

columns.

Let m,n € N and m < n. Divide the unit square into n rows and m

m Choose a certain pattern D C {1,...,n} x {1,..., m} of rectangles
and remove the rest. Repeat this process with every remaining
rectangle. lterate and get a set Ep

m Let r; be the number of the rectangles in the j-th column of the
pattern D. Assume r; > 1 for all j.

dimy Ep =1+ log, %(rl + .ot ).

m Almost every vertical cross-section has Hausdorff dimension

Vert(ED

llia Binder

Z log, rj =log, {/ri-... rm.
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McMullen sets and
Fractal percolation.

McMullen self-affine sets

Let m,n € N and m < n. Divide the unit square into n rows and m
columns.

m Choose a certain pattern D C {1,...,n} x {1,..., m} of rectangles
and remove the rest. Repeat this process with every remaining
rectangle. lterate and get a set Ep

m Let r; be the number of the rectangles in the j-th column of the
pattern D. Assume r; > 1 for all j.

dimy Ep =1+ log, %(rl + .ot ).

m Almost every vertical cross-section has Hausdorff dimension

Vert(Ep) = Z log,ri =log, ¥/ri ... rm.

dimu(Ep) = log,, (z'"l log, ) (McMullen, '86)

J
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McMullen sets and
Fractal percolation.

McMullen self-affine sets

Let m,n € N and m < n. Divide the unit square into n rows and m
columns.

Choose a certain pattern D C {1,...,n} x {1,..., m} of rectangles
and remove the rest. Repeat this process with every remaining
rectangle. lterate and get a set Ep

Let r; be the number of the rectangles in the j-th column of the
pattern D. Assume r; > 1 for all j.

dimy Ep =1+ log, %(rl + .ot ).

Almost every vertical cross-section has Hausdorff dimension

Vert(Ep) = Z log,ri =log, ¥/ri ... rm.

dimu(Ep) = log,, (zml log, )(McMuIIen '86)

j
Except forthe case n =rn =+ = rny,

1+ Vert(Ep) < dimy Ep < dimy Ep.
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Fractal percolation introduced by Mandelbrot ('74).
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m Fix a pattern of rectangles D C {1,...,n} x {1,...,m} with r; > 1
for all j.

McMullen sets and
Fractal percolation.
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m Fix a pattern of rectangles D C {1,...,n} x {1,...,m} with r; > 1
for all j.
m In the n-th step independently replace every rectangle left from step
o uen sets and n — 1 by a shuffled copy of D: For a permutation
o:{1,2...,m} = {1,2..., m}, D, is the pattern with o(j)-th
column equal to j-th column of D.
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A self-affine version of fractal percolation
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in Binder Fractal percolation introduced by Mandelbrot ('74).
m Fix a pattern of rectangles D C {1,...,n} x {1,...,m} with r; > 1
for all j.
m In the n-th step independently replace every rectangle left from step
o uen sets and n — 1 by a shuffled copy of D: For a permutation
o:{1,2...,m} = {1,2..., m}, D, is the pattern with o(j)-th
column equal to j-th column of D.
m Different ways to shuffle the columns have the same probability and

are independent for different rectangles. The intersection is a fractal
percolation cluster Ep.
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A self-affine version of fractal percolation

Quasisymmetric
images of Brownian
graph: minimal
dimension

in Binder Fractal percolation introduced by Mandelbrot ('74).
m Fix a pattern of rectangles D C {1,...,n} x {1,...,m} with r; > 1
for all j.
m In the n-th step independently replace every rectangle left from step
o uen sets and n — 1 by a shuffled copy of D: For a permutation
o:{1,2...,m} = {1,2..., m}, D, is the pattern with o(j)-th
column equal to j-th column of D.
m Different ways to shuffle the columns have the same probability and
are independent for different rectangles. The intersection is a fractal
percolation cluster Ep.

m Almost surely, Ep satisfies

1+ Vert(ED) =dimy ED =dimpy ED.
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McMullen sets and
Fractal percolation.

In this example we a.s. get

dimpy E=1 + log, g

Here the second term is the a.s. dimension of a random Cantor set in
the line.
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What is the conformal dimension of SLE, trace?
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What is the conformal dimension of SLE, trace?

SLE,, trace is a.s. minimal.

dimc(SLE:) = min(1 + /8, 2)
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Conformal dimension of McMullen sets and fractal percolation
clusters

Kgasyminetiic Theorem. (B., Hakob )
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dimc Ep > 1+ Vert(ED).

Results
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dimc Ep > 1+ Vert(ED).

Theorem. (B., Hakobyan'15)

Let Ep be a fractal percolation cluster. Then almost surely it is minimal:

dimc Ep = dimy Ep = dimy Ep = 1 + Vert(Ep).

Results
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Conformal dimension of McMullen sets and fractal percolation
clusters

R Theorem. (B., Hakobyan'15)

images of Brownian
graph: minimal .
dimension Let Ep be a self affine McMullen set. Then
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dimc Ep > 1+ Vert(ED).

Theorem. (B., Hakobyan'15)

Let Ep be a fractal percolation cluster. Then almost surely it is minimal:

dimc Ep = dimy Ep = dimy Ep = 1 + Vert(Ep).

Results

Theorem. (B., Hakobyan, Li'22)

Let B(t) be standard one-dimensional Brownian motion,
s = {(t,B(t))} be its graph. Then almost surely it is minimal

dimc I'B = dimH I'B = g
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images of Brownian . i i
graph: minimal m Let I be a collection of curves in a metric measure space (X, u, d).

dimension

T Bl m A Borel function p : X — [0, 00] is admissible for ', or p AT if

/pdwz 1,
5

where d7 is the arclength element.

Modulus of a curve family
and Fuglede modulus
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Modulus of a curve family

Quasisymmetric
images of Brownian . i i
graph: minimal Let I' be a collection of curves in a metric measure space (X, y, d).

dimension

T Bl m A Borel function p : X — [0, 00] is admissible for ', or p AT if

/pdwz 1,
5

where d7 is the arclength element.

m For p > 1 define p-modulus of ' (extremal width) as

mod, (I, X, ) = inf/ pPdu.
pAL b%

Modulus of a curve family
and Fuglede modulus

mod, (I, X, p) is an outer measure on the set of rectifiable curves.
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Modulus of a curve family

Quasisymmetric
images of Brownian . . .
graph: minimal Let I' be a collection of curves in a metric measure space (X, y, d).

dimension

T Bl m A Borel function p : X — [0, 00] is admissible for ', or p AT if

/pdwz 1,
5

where d7 is the arclength element.
m For p > 1 define p-modulus of ' (extremal width) as

mod, (I, X, ) = inf/ pPdu.
pAL b%

Modulus of a curve family
and Fuglede modulus

mod, (I, X, p) is an outer measure on the set of rectifiable curves.

If p < g then, by Minkowski inequality,

mody(T, X, 1) < a(X)' " mod(T, X, )%,
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Modulus of a curve family
and Fuglede modulus

Modulus of a curve family

Let I' be a collection of curves in a metric measure space (X, y, d).

m A Borel function p : X — [0, 00] is admissible for ', or p AT if

/pdwz 1,
5

where d7 is the arclength element.

m For p > 1 define p-modulus of ' (extremal width) as

mod, (I, X, ) = inf/ pPdu.
pAL b%

mod, (I, X, p) is an outer measure on the set of rectifiable curves.

If p < g then, by Minkowski inequality,

mody(T, X, 1) < a(X)' " mod(T, X, )%,

mod,(I, X, 1) >0 = modq(l, X, 1) >0
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An application: lower bound on Conformal dimension

Quasisymmetric A )

images of Brownian Theorem. (Tyson/Bishop-Tyson, '01)

graph: minimal
dimension

Let metric measure space (X, d, j1) satisfies the following conditions

llia Binder

m It is doubling: there exists a constant C so that
u(B(x,2r)) < Cu(B(x,r))
for all balls B(x,r) C X.
m p is g-smooth: for all B(x,r) C X p(B(x,r)) < Crf.

m There is a curve family I in X s.t.

Modulus of a curve family modpr > 0 for some 1 < P S qg.

and Fuglede modulus

Then
dimc¢ X > g.
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An application: lower bound on Conformal dimension

Quasisymmetric A )

images of Brownian Theorem. (Tyson/Bishop-Tyson, '01)

graph: minimal
dimension

Let metric measure space (X, d, j1) satisfies the following conditions
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m It is doubling: there exists a constant C so that
u(B(x,2r)) < Cu(B(x,r))
for all balls B(x,r) C X.
m p is g-smooth: for all B(x,r) C X p(B(x,r)) < Crf.

m There is a curve family I in X s.t.

Modulus of a curve family modpr > 0 for some 1 < P S qg.

and Fuglede modulus

Then
dimc¢ X > g.

Corollary (Bishop-Tyson, '01)

(0,1) x Y is minimal for every Y C R" or if Y is Ahlfors regular.
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Fuglede modulus.

Quasisymmetric
images of Brownian
graph: mal

dimension m Let (X, d, ) be a metric measure space and A = {\} be a
llia Binder collection of measures such that every u-measurable set is
A-measurable for all A € A.

Modulus of a curve family
and Fuglede modulus
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Fuglede modulus.

Quasisymmetric
images of Brownian
graph: minimal

dimension m Let (X, d, ) be a metric measure space and A = {\} be a
llia Binder collection of measures such that every u-measurable set is
A-measurable for all A € A.

m A Borel (or continuous) function p : X — [0, o] is admissible for A,

or p AN if
/pd)\zl

for every A € A

Modulus of a curve family
and Fuglede modulus
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Fuglede modulus.

Quasisymmetric
images of Brownian
graph: minimal

dimension m Let (X, d, ) be a metric measure space and A = {\} be a
llia Binder collection of measures such that every u-measurable set is
A-measurable for all A € A.

m A Borel (or continuous) function p : X — [0, o] is admissible for A,

or p AN if
/pd)\zl

m For p > 1 define p-modulus of A as

for every A € A

Modulus of a curve family
and Fuglede modulus

mod,(A, X, p) = ;Qf\/)<p”du~
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Quasisymmetric
images of Brownian
graph: minimal
dimension

llia Binder

Modulus of a curve family
and Fuglede modulus

Fuglede modulus.

Let (X, d, ) be a metric measure space and A = {\} be a
collection of measures such that every u-measurable set is
A-measurable for all A € A.

m A Borel (or continuous) function p : X — [0, o] is admissible for A,

or p AN if
/pd)\zl

m For p > 1 define p-modulus of A as

for every A € A

mod,(A, X, p) = ;Qf\/)<p”du~

m As for curves, if p < g

mod,y(A, X, ) >0 = modq(A, X, p) >0

llia Binder Quasisymmetric images of Brownian graph: minimal dimension



Quasisymmetric
images of Brownian
graph: minimal
dimension

llia Binder

Modulus of a curve family
and Fuglede modulus

Main technical tool

Theorem. (Hakobyan'08)

Let (X, d, ) be a doubling compact,metric measure space with
g-smooth measure .
Assume that there exists a collection £ of subsets of X with

dmcE>1, VE€f.

Assume also that there exists a collection of measures N = {\g}ece and
C > 0, such that for all E € €

suppAe = E.
There is C > 0 such that for all x € E we have
Ae(B(x,r)NE)>C-r.

mod,(E) > 0 for some1 < p < q
Then dimc(X) > q.
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Quasisymmetric
images of Brownian
graph: minimal
dimension

llia Binder

Modulus of a curve family
and Fuglede modulus

Main technical tool

Theorem. (Hakobyan'08)

Let (X, d, ) be a doubling compact,metric measure space with
g-smooth measure .
Assume that there exists a collection £ of subsets of X with

dmcE>1, VE€f.

Assume also that there exists a collection of measures N = {\g}ece and
C > 0, such that for all E € £

suppAe = E

There is C > 0 such that for all x € E we have

Ae(B(x,r)NE)>C-r.

mod,(E) > 0 for some1 < p < q
Then dimc(X) > q.

The condition 2 can be relaxed (BHL '22) to
Vx € E: dimje p(x) :=lim sup% <1.

llia Binder Quasisymmetric images of Brownian graph: minimal dimension



Constructing measure (.

I m Let x = 3%°. % be the base m representation of x. Let

images of Brownian j=1 mi
graph: minimal . #xi=k, j<n
it K:={x€[0,1] : limpso == =1 k=0,1,...,m—1}

llia Binder

Fractal percolation:
constructing measure
family with positive
modulus
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Constructing measure (.

I m Let x = 3%°. % be the base m representation of x. Let

images of Brownian j=1 mi

raph: mal . =k, j<
& imension K:={xe€[0,1] : limp oo ZE0I=0 — 1 4 —01,...,m—1}.

Hia Binder m K has length one.

Fractal percolation:
constructing measure
family with positive
modulus

llia Binder Quasisymmetric images of Brownian graph: mini



Constructing measure (.

I Let x = >.2°, 2 be the base m representation of x. Let

images of Brownian =1 mi

raph: mal . =k, j<
& imension K:={xe€[0,1] : limp oo ZE0I=0 — 1 4 —01,...,m—1}.

flia Binder m K has length one.
m Xy = (K X [0, 1]) N Ep.

Fractal percolation:
constructing measure
family with positive
modulus

llia Binder Quasisymmetric images of Brownian graph: mini



Constructing measure (.

I Let x = >.2°, 2 be the base m representation of x. Let

images of Brownian =1 i
graph: mal #xi=k, j<n 1
G=K J=n —
= k—O,l,...,m—l}.

dimension K = {X c [07 1] : ||m,,_>oo

llia Binder

n

K has length one.
Xo := (K X [0, 1]) N Ep.
q:=1+log, ¥/ri-... rm.

Fractal percolation:
constructing measure
family with positive
modulus

llia Binder Quasisymmetric images of Brownian graph: mini



Constructing measure (.

i tri X .
i,ﬁ;z:'f,y,"g",‘:w'"';" Let x = Zjoil — be the base m representation of x. Let
graph: minimal . sxi=k, j<n
dimension K = {X€[071] : ||mn_)oo%:%’ k:()’l’?m_l}

llia Binder

K has length one.
Xo := (K X [0, 1]) N Ep.

q:=1+log, ¥/ri-... rm.
dim Xy = q.

Fractal percolation:
constructing measure
family with positive
modulus
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Constructing measure (.

i tri X .
i,ﬁ;z:'f,y,"g",‘:w'"';" Let x = Zjoil — be the base m representation of x. Let
graph: minimal . sxi=k, j<n
dimension K = {X€[071] : ||mn_)oo%:%’ k:()’l’?m_l}

llia Binder

K has length one.
Xo := (K X [0, 1]) N Ep.

q:=1+log, ¥/ri-... rm.
dim Xy = q.

Need: Xo is minimal.

Fractal percolation:
constructing measure
family with positive
modulus

llia Binder Quasisymmetric images of Brownian graph: n al dimension



Constructing measure (.

et
i i Al Let x = ZJOOI % be the base m representatlon of x. Let
graph: minimal . #xi=k, j<n
dimension K = {X S [07 1] : ||m,,_>oo JTJ_ = E’ k = 07 17 e, M= 1}

llia Binder

K has length one.

Xo := (K x [0,1]) N Ep.
qg:=1+log, ¢/rn .. Im.
dim Xy = q.

Need: Xy is minimal.

If (i,j) € D, define u(Ry) = =

mrj

Fractal percolation:
constructing measure
family with positive
modulus
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Constructing measure (.

Quasisymmetric n Let X = ZOO Xj

images of Brownian j=1 mi
graph: minimal

dimension K = {X c [07 1] : ||m,,_>oo

llia Binder

be the base m representation of x. Let
ByTisn _ 1 —0,1,...,m—1}.
K has length one.

Xo := (K x [0,1]) N Ep.
qg:=1+log, ¢/rn .. Im.
dim Xy = q.

Need: Xy is minimal.

If (i,j) € D, define u(R;) =

L lterate to get a measure on Ep.
J

Fractal percolation:
constructing measure
family with positive
modulus
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Constructing measure (.

Quasisymmetric n Let X = ZOO Xj

images of Brownian j=1 mi
graph: minimal

dimension K = {X c [07 1] : ||m,,_>oo

llia Binder

be the base m representation of x. Let
ByTisn _ 1 —0,1,...,m—1}.
K has length one.

Xo := (K x [0,1]) N Ep.
qg:=1+log, ¢/rn .. Im.
dim Xy = q.

Need: Xy is minimal.

If (i,j) € D, define u(R;) =

m(Xo) = 1.

L lterate to get a measure on Ep.
J

Fractal percolation:
constructing measure
family with positive
modulus

llia Binder Quasisymmetric images of Brownian graph: minimal dimension



Quasisymmetric
images of Brownian
graph: minimal
dimension

llia Binder

Fractal percolation:
constructing measure
family with positive
modulus

Constructing measure (.

Let x = Zjoil ;—’ be the base m representation of x. Let
K:={x€[0,1] : limy oo ZHIS0 _ L) — 01, ,m—1}.
K has length one.

Xo == (K x [0,1]) N Ep.
qg:=1+log, ¢/rn .. Im.
dim Xy = q.

Need: Xp is minimal.

If (i,j) € D, define u(Ry) =
m(Xo) = 1.

Vz € Xo: dimpc p(2) = q.

L lterate to get a measure on Ep.
J

llia Binder Quasisymmetric images of Brownian graph: minimal dimension




Quasisymmetric
images of Brownian
graph: minimal
dimension

llia Binder

Fractal percolation:
constructing measure
family with positive
modulus

Constructing measure (.

Let x = Zjool —- be the base m representatlon of x. Let
K:={x€[0,1] : limy oo ZHIS0 _ L) — 01, ,m—1}.
K has length one.

Xo := (K x [0,1]) N Ep.

qg:=1+log, ¢/rn .. Im.

dim Xy = q.

Need: Xy is minimal.

If (i,j) € D, define u(R;) = % Iterate to get a measure on Ep.
m(Xo) = 1.

Vz € Xo: dimpc p(2) = q.

In stochastic case: ,u(k) on a k-th generation rectangle R™¥)

defined to be equal to k — Where r%) is the number of rectangles

in the same column as R(k . p will be a weak*-limit point of of p*)

llia Binder
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Quasisymmetric
images of Brownian
graph: minimal
dimension

llia Binder

Fractal percolation:
constructing measure
family with positive
modulus

Constructing measure (.

Let x = Zjool —- be the base m representatlon of x. Let
K:={x€[0,1] : limy oo ZHIS0 _ L) — 01, ,m—1}.
K has length one.

Xo := (K x [0,1]) N Ep.

qg:=1+log, ¢/rn .. Im.

dim Xy = q.

Need: Xy is minimal.

If (i,j) € D, define u(R;) = % Iterate to get a measure on Ep.
m(Xo) = 1.

Vz € Xo: dimpc p(2) = q.

In stochastic case: ,u(k) on a k-th generation rectangle R™¥)

defined to be equal to k — Where r%) is the number of rectangles
in the same column as R(k . p will be a weak*-limit point of of p*)
K = {x € [0, 1] with typical behaviour

Iogr(kk)(x) _ |Og r1+r2,-:...rm}; XO = (K % [07 1]) N Ep.

limes oo

llia Binder
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Constructing measure (.

i i Al Let x = ZJOOI % be the base m representatlon of x. Let
graph: minimal #xi=k, j<n
dimension K = {X S [07 1] : ||m,,_>oo JTJ_ = E’ k = 07 17 e, M= 1}

Hia Binder m K has length one.

m Xo:= (K x[0,1]) N Ep.
mqg:=1+log, Vrn-... rm.
m dimXo = g.
m Need: Xp is minimal.
m If (i,j) € D, define u(R;j) = % Iterate to get a measure on Ep.
mu(Xo) =1

Fractal percolation: mVz e Xo: dimpep(z) =q.

constructing measure

e m In stochastic case: ,u(k) on a k-th generation rectangle R™*)
defined to be equal to k — Where r%) is the number of rectangles

in the same column as R(k . p will be a weak*-limit point of of p*)
m K = {x € [0,1] with typical behaviour
limis oo B200) — jog '1+'2+-~’m}- Xo 1= (K x [0,1]) N Ep.
dim Xo =1 —|— log Attt

. Again: need it to be minimal.
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Horizontal sets

Quasisymmetric

images of Brownian
graph: minimal
dimension

llia Binder

Fractal percolat

constructing measure
family with positive
modulus

llia Binder

Quasisymmetric images of Brownian graph: mi

mal dimension




Measure family A

Quasisymmetric
images of Brownian m Ag — pullback of the length to E.
graph: mi al
dimension

llia Binder

Fractal percolation:
constructing measure
family with positive
modulus
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Measure family A

Quasisymmetric
images of Brownian m Ag — pullback of the length to E.
graph: mi al

e o m A = {)\g, E is a horizontal set}.

llia Binder

Fractal percolation:
constructing measure
family with positive
modulus
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Quasisymmetric
images of Brownian
graph: mal
dimension

llia Binder

Fractal percolation:
constructing measure
family with positive
modulus

Measure family A

m \g — pullback of the length to E.
m A= {)Ag, E is a horizontal set}.

Lemma

For any horizontal set E, E N Xo is minimal.

llia Binder Quasisymmetric images of Brownian graph: mini



Measure family A

Quasisymmetric
images of Brownian m Ag — pullback of the length to E.

graph: minimal
dnssios m A= {)Ag, E is a horizontal set}.

llia Binder

Lemma.

For any horizontal set E, E N Xo is minimal.

m Take an admissible function p(x, y) for A. Modify it to pi(x,y) by
replacing p(x, y) on any first-level rectangle by the values of p on
the rectangle R in the same column with the smallest integral
Jap(x,y) du(x, y).

S —— p1 is still admissible and [ p(x,y) du(x,y) > [ pi(x,y) du(x, y).

family with positive
modulus
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Measure family A

Quasisymmetric
images of Brownian m Ag — pullback of the length to E.

graph: minimal
dnssios m A= {)Ag, E is a horizontal set}.

llia Binder

Lemma.

For any horizontal set E, E N Xo is minimal.

m Take an admissible function p(x, y) for A. Modify it to pi(x,y) by
replacing p(x, y) on any first-level rectangle by the values of p on
the rectangle R in the same column with the smallest integral
Jap(x,y) du(x, y).

S —— p1 is still admissible and [ p(x,y) du(x,y) > [ pi(x,y) du(x, y).

(o D eiise m Repeat the process to construct p» which has the same values on all
second-level rectangles in the same column, and so on.
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Measure family A

Quasisymmetric
images of Brownian m Ag — pullback of the length to E.

graph: minimal
dnssios m A= {)Ag, E is a horizontal set}.

llia Binder

Lemma.

For any horizontal set E, E N Xo is minimal.

m Take an admissible function p(x, y) for A. Modify it to pi(x,y) by
replacing p(x, y) on any first-level rectangle by the values of p on
the rectangle R in the same column with the smallest integral
Jrp(x,y) du(x, y).

S —— p1 is still admissible and [ p(x,y) du(x,y) > [ pi(x,y) du(x, y).

‘d'lylw“’g" m Repeat the process to construct p» which has the same values on all

second-level rectangles in the same column, and so on.

m Take poo(x,y) to be the weak limit of pi(x,y). Then
Poo(X,¥) = poo(x) does not depend on y and still admissible for A.

llia Binder Quasisymmetric images of Brownian graph: minimal dimension



Measure family A

Quasisymmetric
images of Brownian m Ag — pullback of the length to E.

graph: minimal
dnssios m A= {)Ag, E is a horizontal set}.

llia Binder

Lemma.

For any horizontal set E, E N Xo is minimal.

m Take an admissible function p(x, y) for A. Modify it to pi(x,y) by
replacing p(x, y) on any first-level rectangle by the values of p on
the rectangle R in the same column with the smallest integral
Jrp(x,y) du(x, y).

S —— p1 is still admissible and [ p(x,y) du(x,y) > [ pi(x,y) du(x, y).

‘d'lylw“’g" m Repeat the process to construct p» which has the same values on all

second-level rectangles in the same column, and so on.

m Take poo(x,y) to be the weak limit of pi(x,y). Then
Poo(X,¥) = poo(x) does not depend on y and still admissible for A.

m [ p(x,y)du(x,y) > [ poo(x,y) du(x,y) = [ poo(x) dAe(x) > 1.
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Measure family A

Quasisymmetric
images of Brownian m Ag — pullback of the length to E.

graph: minimal
dnssios m A= {)Ag, E is a horizontal set}.

llia Binder

Lemma.

For any horizontal set E, E N Xo is minimal.

m Take an admissible function p(x, y) for A. Modify it to pi(x,y) by
replacing p(x, y) on any first-level rectangle by the values of p on
the rectangle R in the same column with the smallest integral
Jrp(x,y) du(x, y).

S —— p1 is still admissible and [ p(x,y) du(x,y) > [ pi(x,y) du(x, y).

‘d'lylw“’g" m Repeat the process to construct p» which has the same values on all

second-level rectangles in the same column, and so on.

m Take poo(x,y) to be the weak limit of pi(x,y). Then
Poo(X,¥) = poo(x) does not depend on y and still admissible for A.

m [ p(x,y)du(x,y) > [ poo(x,y) du(x,y) = [ poo(x) dAe(x) > 1.
IIlOd.l(/\7 )(07 /.l,) =1.
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Brownian motion and local time

Quasisymmetric Let B be a 1-dimensional Brownian motion.
images of Brownian
graph: minimal
dimension

m Let a, < 0 < b, with a, — 0 and b, — 0. The local time of B is an
increasing stochastic process defined on zeros of B in the following
way:

llia Binder

L(t) = lim 2(b, — an)D(an, bn, t)
n—oo

where D(an, bn, t) is the number of downcrossings from b, to a,
before time t.

Brownian graph:
constructing measure
family with positive
modulus using local
times.
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Brownian motion and local time

Quasisymmetric Let B be a 1-dimensional Brownian motion.
images of Brownian
graph: minimal
dimension

m Let a, < 0 < b, with a, — 0 and b, — 0. The local time of B is an
increasing stochastic process defined on zeros of B in the following
way:

llia Binder

L(t) = lim 2(b, — an)D(an, bn, t)
n—oo

where D(an, bn, t) is the number of downcrossings from b, to a,
before time t.
L(t) defines a measure, of dimension 1.

Brownian graph:
constructing measure
family with positive
modulus using local
times.
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Quasisymmetric
images of Brownian
graph: minimal
dimension

llia Binder

Brownian graph:
constructing measure
family with positive
modulus using local
times.

Let B be a 1-dimensional Brownian motion.

m L(t) defines a measure, of dimension 3.

Brownian motion and local time

m Let 2, <0< b, with a, — 0 and b, — 0. The local time of B is an

increasing stochastic process defined on zeros of B in the following
way:
L(t) = lim 2(b, — an)D(an, bn, t)
n— oo

where D(an, bn, t) is the number of downcrossings from b, to a,

before time t.

1
2

m In general, we define L7(t) to be the local time of the standard

Brownian motion B(t) at level a, i.e.,
L°(t) = lim 27""'D"(a, t)
n—oo

where D"(a, t) is the number of downcrossings before time t of the
n*P-dyadic interval containing a.
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Quasisymmetric
images of Brownian
inimal

llia Binder

Brownian graph:
constructing measure
family with positive
modulus using local
times.

Let B be a 1-dimensional Brownian motion.

m L(t) defines a measure, of dimension 3.

Brownian motion and local time

Let a, < 0 < b, with a, — 0 and b, — 0. The local time of B is an
increasing stochastic process defined on zeros of B in the following
way:

L(t) = nim 2(bn — an)D(an, bn, t)

where D(an, bn, t) is the number of downcrossings from b, to a,

before time t.

1
2

m In general, we define L7(t) to be the local time of the standard

Brownian motion B(t) at level a, i.e.,
L°(t) = lim 27""'D"(a, t)
n—oo
where D"(a, t) is the number of downcrossings before time t of the
n*P-dyadic interval containing a.

Almost surely, L? defines measures of dimension % for all a. In
particular, almost surely

dim{t: B(t) = a} = % for every a.

llia Binder Quasisymmetric images of Brownian graph: minimal dimension



Constructing measure (.

Quasisymmetric
images of Brownian
graph: minimal
dimension

llia Binder

We define

Brownian graph:
constructing measure
family with positive
modulus using local
times.
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Constructing measure (.

Quasisymmetric
images of Brownian
graph: minimal
dimension

llia Binder

m We define

for any € > 0.

Brownian graph:
constructing measure
family with positive
modulus using local
times.
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Constructing minimal sets

Quasisymmetric
images of Brownian
graph: minimal
dimension

llia Binder

Figure: A standard linear Brownian motion and the collection of Ej""" for 3
generations.

We construct a Cantor set E in the following way:

m Pick subset of ['g that lies between two adjacent hitting times of
Zo, Z1/> and another subset that lies between two adjacent hitting
times of Z; /5, Z1 to be the first two elements of E.

Brownian graph:
constructing measure
family with positive
modulus using local
times.
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Constructing minimal sets

Quasisymmetric
images of Brownian
graph: minimal
dimension

llia Binder
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Figure: A standard linear Brownian motion and the collection of Ej""" for 3
generations.

We construct a Cantor set E in the following way:

m Pick subset of ['g that lies between two adjacent hitting times of
Zo, Z1/> and another subset that lies between two adjacent hitting
times of Z; /5, Z1 to be the first two elements of E.

m Suppose a n'P-generation element is given, then we pick two

ST subsets that lies between two adjacent hitting times of two adjacent

B et dyadic levels, if this hitting times are close enough. All these 2"+!
elements forms the (n -+ 1)""-generation of E.

times.

llia Binder Quasisymmetric images of Brownian graph: minimal dimension



Quasisymmetric
images of Brownian
graph: minimal
dimension

llia Binder

Brownian graph:
constructing measure
family with positive
modulus using local
times.

Constructing minimal sets

m
TR
L]

82

Figure: A standard linear Brownian motion and the collection of Ej""" for 3
generations.

We construct a Cantor set E in the following way:

m Pick subset of ['g that lies between two adjacent hitting times of
Zo, Z1/> and another subset that lies between two adjacent hitting
times of Z; /5, Z1 to be the first two elements of E.

m Suppose a n'P-generation element is given, then we pick two
subsets that lies between two adjacent hitting times of two adjacent
dyadic levels, if this hitting times are close enough. All these 2"+!
elements forms the (n -+ 1)""-generation of E.

m Finally, E =2, U2, E™™.
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Constructing minimal sets

Quasisymmetric
images of Brownian
graph: minimal
dimension

llia Binder

Figure: A standard linear Brownian motion and the collection of Ej""" for 3
generations.

We construct a Cantor set E in the following way:

m Pick subset of ['g that lies between two adjacent hitting times of
Zo, Z1/> and another subset that lies between two adjacent hitting
times of Z; /5, Z1 to be the first two elements of E.

m Suppose a n'P-generation element is given, then we pick two

ST subsets that lies between two adjacent hitting times of two adjacent

B et dyadic levels, if this hitting times are close enough. All these 2"+!
elements forms the (n -+ 1)""-generation of E.

. ) 2" n,m

m Finally, E= 2, U, E™".

m Let £ be the collection of all the Cantor sets constructed this way.
A will be collection of vertical lengths on sets from £.
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Quasisymmetric
images of Brownian
graph: minimal
dimension

llia Binder

Brownian graph:
constructing measure
family with positive
modulus using local
times.

Proof of minimality of Brownian Graph

m There exists a measure p s.t. pu(B(x,r)NT(B)) S r

€ > 0.

The only thing left is to prove that mod;(A) > 0.

For any E € £,dimc E > 1.

3_
27¢ for any

o |
]
"l}.lvmln,("\)
Kl

A

,,,,,, i

A

-

A

\‘i‘

 —
i

[l

51

53

Figure: A standard linear Brownian motion and the collection of EJ.”’m for 3

generations.
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modulus is positive.

Quasisymmetric
images of Brownian
graph: minimal
dimension

llia Binder
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Figure: Constructing pp.

m Let p be admissible for A. We replace p by an alternative admissible
Poo With smaller mass.

Brownian graph:
constructing measure
family with positive
modulus using local
times.
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m Let p be admissible for A. We replace p by an alternative admissible
Poo With smaller mass.

e m Let p1 be a function on E; such that the integral of p1 on every
e . . .

Foma ISt-generatlon element that achieves the minimal among all the
modulus using local 1%*-generations of the same level.

m Similarly, define p, iteratively in the same way to cover all the
n*P-generation.
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Figure: Constructing pp.

m Let p be admissible for A. We replace p by an alternative admissible
Poo With smaller mass.

m Let p; be a function on E; such that the integral of p; on every
15°-generation element that achieves the minimal among all the
1%*-generations of the same level.

m Similarly, define p, iteratively in the same way to cover all the
n*P-generation.

m Finally, we define poo := liminf,_ o pn.
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Figure: A minimal graph with 3 generations.

m For any E € £, one can find F € £ such that

/Pood)\E > /p)\F > L
E F

Thus po is admissible for A.
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Figure: A minimal graph with 3 generations.

m For any E € £, one can find F € £ such that

/Pood)\E > /p)\F > L
E F

Thus po is admissible for A.

Brownian graph: .
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Figure: A minimal graph with 3 generations.

m For any E € £, one can find F € £ such that

/Pood)\E > /p)\F > L
E F

Thus po is admissible for A.

?J.‘.’ZZ'.'E'Z;ES.'?.'LSU.E m [, pdp < [y poodp where X is the space that £ covers.
family with positive

moduluzlusing lecal m It is sufficient to prove that fx Pocdp > 0.

times.
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Figure: A minimal graph with 3 generations.

m For any E € £, one can find F € £ such that

/Pood)\E > /p)\F > L
E F

Thus po is admissible for A.

e m [, pdp < [y poodp where X is the space that £ covers.

family with positive

moduis st m It is sufficient to prove that fx Pocdp > 0.
m Recall that p(B(x,r)) = fol 1:(B(x, r) N Z;)da.

. fx pocdp > (fE pood)\E) in'Fae[O,l] L*(Z,n X) >
infae[o’l] La(Za n X) > 46> 0.
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Thank you!

llia Binder

Quasisymmetric images of Brownian graph: n
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