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Kang-Makarov Conformal Field Theory

¢ Similar to physicists but with more geometry and complex analysis
® GFF is a convenient tool for representing correlation functions
® Two-point example:

G(Zl, ZQ) = E(I)(21>CI)(ZQ) — E(I)(Zl)E(I)(ZQ)

Multi-point example:

E[(I)ﬂ(zl)gq)ﬁ(@) (0®Pg(23) © (I)ﬁ(24))6@(@5(%)7@3(%))]

Calculated using Wick theorems or operator product expansion

Calculus for perturbative theory: Ward equations, stress tensor
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Kang-Makarov Conformal Field Theory

® Inspirations:
o Cardy
o Bauer-Bernard, Bauer-Bernard-Kytola
o Rushkin-Bettelheim-Gruzberg-Wiegmann
¢ Important aspect: correlation functions and associated calculus are
done in a coordinate free way
o Unified language for CFT on Riemann surfaces
o Or on annuli or multiply connected domains [Byun-Kang-Tak]
o Can check and guess formulas via dimension calculus

® Penultimate result: an infinite family of correlation functions are
martingale observables for an associated SLE process
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Multiple SLE



Multiple SLE

Two percolation interfaces in a domain with alternating boundary conditions
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Two percolation interfaces in a domain with alternating boundary conditions
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Multiple SLE

Global constructions

Weight the product measure of individual SLE curves by an appropriate factor.
Iterated re-sampling methods.

[Lawler-Kozdron, Lawler, Peltola-Wu, Beffara-Peltola-Wu, .. .]

Local construction via Loewner flows

Grow multiple curves by adding singularities to the Loewner equation, vector
of singularities is a multi-dimensional diffusion.

[Dubédat, Zhan, Bernard-Bauer-Kytol&, Kytola-Peltola, .. .]

Conformal weldings of LQG surfaces
[Ang-Pu-Sun]
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Main Results



Main Results of AKM

¢ Modification of Dubédat scheme for generating solutions to BPZ
equations via method of screening (Coulomb gas integrals,
Dotsenko-Fateev integrals)

o Simplification of Flores-Kleban proof of linear independence of solutions
® Proof of Dubédat commutation relations via CFT methods (generalized
Cardy equations + commutation of Lie derivatives)

¢ nfinite family of screened martingale observables for systems of
multiple SLEs
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Multiple SLE via
Loewner



Loewner Construction of Multiple SLE

e Goal: InHwithz; <22 < ... < 9, ; € R, use Loewner flow to
construct n SLE curves that connect z; in a non-crossing way

o Pure law: n curves almost surely connect according to fixed pattern
o Mixture: Scaling limit of a discrete model with alternating BCs

= _ 7\
o N =
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Loewner Construction of Multiple SLE

e Goal: InHwithz; <22 < ... < 9, ; € R, use Loewner flow to
construct n SLE curves that connect z; in a non-crossing way

o Pure law: n curves almost surely connect according to fixed pattern
o Mixture: Scaling limit of a discrete model with alternating BCs

Dubédat’s guiding principles
¢ |Induced law on curves should not depend on which conformal
coordinates of H are used to describe Loewner flow
¢ Induced law on curves should be invariant with respect to the order in
which they are grown
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Loewner Construction of Multiple SLE

e Goal: InHwithz; <22 < ... < 29, ; € R, use Loewner flow to
construct n SLE curves that connect x; in a hon-crossing way
o Pure law: n curves almost surely connect according to fixed pattern
o Mixture: Scaling limit of a discrete model with alternating BCs
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Loewner Construction of Multiple SLE

e Goal: InHwithz; <22 < ... < 9, ; € R, use Loewner flow to
construct n SLE curves that connect z; in a non-crossing way

o Pure law: n curves almost surely connect according to fixed pattern
o Mixture: Scaling limit of a discrete model with alternating BCs

e Task: Find functions Z = Z(x1,...,z2,) satisfying

BPZ Equations

2 (axi+5zi)Z—6_H Z

5 = vy Kk (zi—z5)?

2n

K = \2

5 (O + ) Z+Z
J#i

+ 3 additional PDEs called conformal Ward identities
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BPZ Equations via Commutation Relations

® Ansatz: dynamics for a single curve

i 2 (k) _ (i) 0(k) (i)
atglg)(z):ﬁ7 & =g (fo ), & =xieR
g (z) — &
el = VrdBY + k(0x, log Z) (M, ... €M) dt

e Multiple SLE is a Girsanov reweighting of independent SLE

® &, = the generator of & = ( ,...,gt ) under the above dynamics

¢ Guiding principles + argument involving generators + algebra — 7
must satisfy BPZ + conformal Ward
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BPZ Equations in Geometric Language

BPZ Equations in Coordinates

.., 2n.

BPZ Equations in Geometric Language

Z = Z(xy,...,2,) is a [52£, 0]-differential in each z; and

(g (Or; + Ba;)’ —25,%_) Z=0, i=1,....2n
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Lie Derivative and Conformal Fields

e [, = Lie derivative operator with respect to vector field v
e Acts on conformal fields and returns conformal fields

¢ Conformal field = function equipped with a transformation law under
conformal changes of coordinates

® Example: [ = f(z) is a [\, 0]-differential if
f=Pfoh h=dog™

® Vector fields are [—1, 0]-differentials
e Lie derivative of a differential:

Lof = wd+N)f
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Lie Derivative and Conformal Fields

¥; Y
]R“

Credit: https://www.researchgate.net/profile/Vadim-Belov
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Coordinate Free BPZ Equations

BPZ Equations in Geometric Language

Z = Z(x1,...,x2,) is @ [, 0]-differential in each z; and

(g (0 + ) —261%) Z=0, i=1,...,2n

k¢ is the Loewner vector field defined by
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Solving BPZ: Method
of Screening



Dubédat proposal: method of screening

¢ Also Coulomb gas integrals, Dotsenko-Fateev integrals, Euler integrals
® Dubédat introduces an auxiliary function
QO(.%'l, <y X2n, Cla cee 7Cn—1) = 90(:1:7 C)

which is a product of terms z; — z;, (;, — (s, and z; — (, raised to
dependent powers

® By explicit computation he shows

n—1
BP3,0 = > o, (fije)

j=1

for explicit (and lengthy) rational functions f; ; = f; j(z,¢)

13/30




Dubédat Solutions to BPZ: method of screening

n—1

BP3i0 = Y, 0, (fige)
j=1
® Integrate (y,...,(,_1 along closed cycles C = C; x ... x C,,_1 to obtain

n—1
B3, jg pdC = §5 2 0 (fije) d = 0
C

¢ J=1

* Hence Z(x) = §, p(z, ¢) d¢ is a solution
e Summary: Introduce more variables and integrate them out to solve BPZ
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Dubédat Solutions to BPZ: method of screening

2N—1 N-1

90("137 C) = H (l'QN — [L‘7‘,)176/K H (wQN _ Cj)lz/li72
= i=1
[T @—z) [T (G-¢)¥"
1<i<i/<2N 1<j<j'<N
[[ @—¢)—n
1<i<2N
1<j<N
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Vertex Exponentials and CGCFs

¢ CGCF = Coulomb gas correlation function

E exp {2 Oi@(z@-)} — o2 TiED(z) exp {‘Z o0 Cov(P(z;), @(zj))}

i<j
: exp {Z o} Var(@(zﬁ)}
i T
¢ Simply define
¢ [Z o Zi] = [ [Gzi =27
i i<j
® [[io;(zi — 2))7"% exp{® X; 0:®(2;)} satisfies Ward's equation,
exp{®,, 0;®(z;)} does not
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& 6%
CGCFs in Pictures (s
3
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Divisors

® CGCFs are characterized in terms of divisors
e Finite atomic measures on a Riemann surface

B=>0i0. =) 0i %

Write |8] = 3, 5
3; can be complex valued
¢ Terminology borrowed from algebraic geometry

In the full theory, there is a second divisor for the anti-holomorphic part
of the free field
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CGCFs are Differentials

® Let3 =), o,z beadivisor on the Riemann sphere and |3| = 2b,b € R
* Define C[3] in the identity chart of C by

CIB1id = | [(z — =0)7

i<j
¢ Definition: Ateach z;, C[3]is a [\y(0;), 0]-differential, where
() = %xQ —xb

Theorem: Mobius Invariance of CGCFs
For any divisor 8 on the Riemann sphere

£..C[B] =0, k=0,1,2
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Numerology

® Each divisor 8 with | 3| = 2b can describe SLE(x) where

b=/5/8 =2k, a=+2/s

® Dubédat’s p(x, () is the CGCF

\‘1'\ x'l-r\’\

® The relation o - -7

n—1
BR3i0 = Y, o, (fi)
j=1

is its BPZ equation at any z; 20/30




BPZ Equations for CGCFs

® Points x with 3(z) = a are starting points of “locally” SLE(x) curves
® At points = with 3(x) = q, level two degeneracy occurs
® [eads to PDEs for CGCFs

BPZ Equations for CGCFs

(g(@z + 9,)2 — 2£kz) C[B] =0, whereverB(x) =a

¢ Special case of more general principle
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Explanation of Dubédat Relation

/6 L\) (,(/%-r":b
* Lie derivative of C[Bp,y,] invoIv&sJ a Leibniz rule Sw
r\?/“\"\ ne1
C[/BDub] - Z ‘C /GDub Z BDub
j=1 k=1

® B(¢k) = —2aand \y(—2a) =1 = C[Bp] is a[l,0]-differential at (!
* Lie derivative of a [1, 0]-differential:

Lof = @wo+ 1) f =0o(f)

¢ Relation for Dubédat ¢ is forced by geometry, not just algebra
* [1,0]-differential at (;, — integrals will also be coordinate free
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General BPZ Equations

¢ Follows from Ward equations + operator product expansions
® Key step in proof that correlation functions are martingale observables

General BPZ Equations of Kang-Makarov

C[BIE(Tg *Y)(x)X = EY (x)Ly, (C[B]X)

23/30




Flores-Kleban

® 2b — a charge at x5, is peculiar

e Causes technical difficulties in the Flores-Kleban construction of
solutions Z

® Flores-Kleban result: Dimension of solution space to

¥
. 2
is exactly C, = = < n)
n

o Upper bound: PDE based methods (Green’s function estimgi’es)
o Lower bound: Explicitly construct C,, linearly independent solutions
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Flores-Kleban Argument

e Contours follow chords in the link pattern
® (C; is the Pochhammer contour surrounding endpoints of chord
* No contour for the chord connected to x5,

Pochhammer

Zyka(®@)=¢... ¢ ClBpu)dGu...dC
b4

n—1
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Flores-Kleban Argument

¢ Solutions characterized by boundary behavior as ;.1 — x;
* Merging operators:

: : 6/k—1 6/k—1
Lo Z = lim o lim (xy, — @y, )Y (e, — )Y 2
Ligp Prgpn_17Yn LigsTey Y1
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Flores-Kleban Argument

® Zrk . are linearly independent < invertibility of the matrix

(ﬁo/ZFsz)oc,o/

® Flores-Kleban compute all entries, show it equals the meander matrix
® Many special cases for the Dubédat 2b — a charge
¢ We find a modification of ¢ to help with this
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AKM Divisor

e AKM: add one more (; and one more marked point

de-b _l_(.LL bl ‘ZL)')(
¥1n X'Im’\

"Zn'fn
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AKM Screened Solutions: non-dependence on ¢

B2, 3, 0C) v 9,C
”\A——\ . r\—/\ A~
L,CBakn] = Y Lo(@))ClBarn] + 2 ClBaxm] + Lo(9)C[BakM]

j=1 k=1

* \(2b) =0 = C[Baxwm]is a0, 0]-differential at ¢

Lemma

qC[ﬁAKM] = Z a(kc[ﬁAKM,k]

k=1
for Bk . Obtained by swapping charges in 8,k
® Implies a non-trivial relation for hypergeometric integrals/functions

¢ |s an artifact of CFT, not just algebra 29/30




AKM Screened Solutions

¢ Contours follow chords in the link pattern
® (C; is the Pochhammer contour surrounding endpoints of chord
e All n contours are used

(=)

Pochhammer

$
ZAKM,a(f'gf = fj; e 43\ ClBarm] G - dG

G Cn
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Commutation
Relations via CFT



BPZ Equations via Commutation Relations

® Ansatz: dynamics for a single curve

i 2 i i
argt (=) = SOVOL &” = g(&"), & —meR
9 (2) =&
def” = VedB{ + rpi(gV, g dt

* &, =the generatorof ¢ = (ft(l), . ,5152”)) under the above dynamics
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Commutation Relations for Multiple SLE

® Ansatz: dynamics for a single curve

i 2 (k) _ (i) 0(k) (i)
atglg)(z): 7 e & =g (fo ), fg =x;eR
g (z) — &
el = \/rdBY + rpi(eM, .. €M)t

* &, =the generatorof ¢ = (ft(l), . ,5152”)) under the above dynamics
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Commutation Relations for Multiple SLE

® Ansatz: dynamics for a single curve

i 2 (k) _ (i) 0(k) (i)
atglg)(z): 7 e & =g (fo ), fg =x;eR
g (z) — &
el = \/rdBY + rpi(eM, .. €M)t

* &, =the generatorof ¢ = (ft(l), . ,5152”)) under the above dynamics

Dubédat’s Commutation Relations

[6351‘7 61]] -
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Commutation Relations for Fock Space Fields

Fock space fields are functionals of the Gaussian freefield ® : D — R

Expected values are deterministic functions D™\diag — C

Examples

(21,22) > E[8(:1)8(z2)], 2 — E[(08%08)(2)], z»ﬁ ¢~©202(0)] ¢
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Commutation Relations for Fock Space Fields

Fock space fields are functionals of the Gaussian freefield ® : D — R

Expected values are deterministic functions D™\diag — C

Examples

(21,22) = E[®(21)®(22)], 2z — E[(0®%0®)(2)], 2z— f )e=©2a®(©)] g¢

Commutation Relations for Fock Space Fields (AKM)
_r

(zi — ;)

for ¥ = Xi(z1)... Xn(2n) With X;,..., X arbitrary Fock space fields and
21,..., 2y distinct points in D
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Generalized Cardy Equations

¢ Dubédat’s proof of commutation relations is algebraic.
® AKM proof based on tools from complex differential geometry and:

Generalized Cardy Equations (AKM)
For X = Xj(z1)...X,(2z,) with Xy,..., X, arbitrary Fock space fields and

21,..., 2y distinct points in D

6,EX = ELy, X
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Generalized Cardy Equations

¢ Dubédat’s proof of commutation relations is algebraic.
® AKM proof based on tools from complex differential geometry and:

Generalized Cardy Equations (AKM)
For X = Xj(z1)...X,(2z,) with Xy,..., X, arbitrary Fock space fields and
21,..., 2y distinct points in D

6,EX = ELy, X

® [y, is Lie derivative with respect to Loewner field &,
¢ Proof: Ward equation + operator product expansion
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Generalized Cardy Equations

¢ Dubédat’s proof of commutation relations is algebraic.
® AKM proof based on tools from complex differential geometry and:

Generalized Cardy Equations (AKM)
For X = Xj(z1)...X,(2z,) with Xy,..., X, arbitrary Fock space fields and
21,..., 2y distinct points in D

6,EX = ELy, X
® [y, is Lie derivative with respect to Loewner field &,

¢ Proof: Ward equation + operator product expansion
* [&,,&,] converts to [Ly,, Ly, ] = Liky k]
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