Intersections of SLE paths ICM 2014: SEOUL, KOREA Recent Progress in Random Conformal Geometry

Hao Wu

Massachusetts Institute of Technology Joint work with Jason Miller (MIT)

11-12 August 2014

Intersections of SLE paths

Derive the Hausdorff dimension

Table of contents

SLE (Schramm Loewner Evolution)

Random fractal curves in $D \subset \mathbb{C}$ from *a* to *b*. Candidates for the scaling limit of discrete Statistical Physics models.

SLE (Schramm Loewner Evolution)

Random fractal curves in $D \subset \mathbb{C}$ from *a* to *b*. Candidates for the scaling limit of discrete Statistical Physics models.

Conformal invariance :

If γ is in *D* from *a* to *b*, and $\varphi : D \to \varphi(D)$ conformal map, then $\varphi(\gamma) \stackrel{d}{\sim}$ the one in $\varphi(D)$ from $\varphi(a)$ to $\varphi(b)$.

Domain Markov property : the conditional law of $\gamma[t, \infty)$ given $\gamma[0, t] \stackrel{d}{\sim}$ the one in $D \setminus \gamma[0, t]$ from $\gamma(t)$ to *b*.

Examples of SLE

One parameter family of growing processes SLE_{κ} for $\kappa \ge 0$. Simple, $\kappa \in [0, 4]$; Self-touching, $\kappa \in (4, 8)$; Space-filling, $\kappa \ge 8$.

Thanks to Tom Kennedy

Examples of SLE

One parameter family of growing processes SLE_{κ} for $\kappa \ge 0$. Simple, $\kappa \in [0, 4]$; Self-touching, $\kappa \in (4, 8)$; Space-filling, $\kappa \ge 8$.

Thanks to Tom Kennedy

- κ = 2 : LERW
 (Lawler, Schramm, Werner)
- κ = 3 : Critical Ising (Smirnov, Chelkak et al.)
- κ = 4 : Level line of GFF (Schramm, Sheffield, Miller)
- κ = 6 : Percolation (Smirnov, Camia, Newman)

 κ = 8 : UST (Lawler, Schramm, Werner)

SLE double point and cut point dimensions

Thanks to Miller

Hao Wu (MIT)

SLE double point and cut point dimensions

Thanks to Miller

Hao Wu (MIT)

Proposition : [Miller, W.] The Hausdorff dimension of the double points of SLE_{κ} is, almost surely,

$$1 + rac{\kappa}{8} - rac{6}{\kappa}$$
 for $\kappa \in (4, 8)$
 $1 + rac{2}{\kappa}$ for $\kappa \ge 8$

4 D N 4 B N 4 B N 4 B

SLE double point and cut point dimensions

Thanks to Miller

Hao Wu (MIT)

Proposition : [Miller, W.] The Hausdorff dimension of the double points of SLE_{κ} is, almost surely,

$$1 + rac{\kappa}{8} - rac{6}{\kappa}$$
 for $\kappa \in (4, 8)$
 $1 + rac{2}{\kappa}$ for $\kappa \ge 8$

Proposition : [Miller, W.] The Hausdorff dimension of the cut points of SLE_{κ} is, almost surely,

$$3-rac{3\kappa}{8}$$
 for $\kappa\in(4,8)$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 $\kappa \in (4, 8)$ Double points

$$1+rac{\kappa}{8}-rac{6}{\kappa}$$

Cut points

$$3-\frac{3\kappa}{8}$$

 $\kappa \in (4, 8)$ Double points

$$1+\frac{\kappa}{8}-\frac{6}{\kappa}$$

Cut points

$$3-\frac{3\kappa}{8}$$

 Critical percolation : κ = 6 double point dimension : ³/₄, predicted by Duplantier in 1987 cut point dimension : ³/₄, proved by Lawler, Schramm, Werner in 2001

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\kappa \in (4, 8)$ Double points

$$1+\frac{\kappa}{8}-\frac{6}{\kappa}$$

Cut points

$$3-rac{3\kappa}{8}$$

 Critical percolation : κ = 6 double point dimension : ³/₄, predicted by Duplantier in 1987 cut point dimension : ³/₄, proved by Lawler, Schramm, Werner in 2001

• Brownian excursion :

cut point dimension : $\frac{3}{4}$, proved by Lawler, Schramm, Werner in 2001

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\kappa \in (4, 8)$ Double points

$$1+\frac{\kappa}{8}-\frac{6}{\kappa}$$

Cut points

$$3-rac{3\kappa}{8}$$

 Critical percolation : κ = 6 double point dimension : ³/₄, predicted by Duplantier in 1987 cut point dimension : ³/₄, proved by Lawler, Schramm, Werner in 2001

- Brownian excursion : cut point dimension : ³/₄, proved by Lawler, Schramm, Werner in 2001
- FK model : κ ∈ (4,8) double point dimension and cut point dimension, predicted by Duplantier in 1989 and 2004 respectively.

Relation with other dimensions

	🖊 Beffara	Miller and Wu		
SLE_{κ}	$\kappa \in (0,4]$	$\kappa \in (4,8)$	$\kappa \ge 8$	
Trace	$1 + \frac{\kappa}{8}$	$1 + \frac{\kappa}{8}$	2	
Double point	Ø	$1 + \frac{\kappa}{8} - \frac{6}{\kappa}$	$1 + \frac{2}{\kappa}$	
Triple point	Ø	Ø	countable	
Cut point	$1 + \frac{\kappa}{8}$	$3 - \frac{3\kappa}{8}$	Ø	
Boundary poir	t Ø	$2-\frac{8}{\kappa}$	1	
Alberts and Sheffield				

2

イロト イヨト イヨト イヨト

Key in the proof

Key in the proof :

one-point estimate : martingale. two-point estimate : coupling between SLE and GFF, work by Sheffield and Miller

Imaginary Geometry I, II, III, IV

Table of contents

Background and Main Statements

DGFF with mean zero : a measure *h* on functions $\rho : D \to \mathbb{R}$ and $\rho = 0$ on ∂D with density

$$\frac{1}{\mathcal{Z}}\exp(-\frac{1}{2}\sum_{x\sim y}(\rho(x)-\rho(y))^2)$$

for $D \subset \mathbb{Z}^2$.

- For each vertex x, h(x) Gaussian r.v.
- Covariance : Green's function for SRW
- Mean value : zero.

DGFF with mean zero : a measure *h* on functions $\rho : D \to \mathbb{R}$ and $\rho = 0$ on ∂D with density

$$\frac{1}{\mathcal{Z}}\exp(-\frac{1}{2}\sum_{x\sim y}(\rho(x)-\rho(y))^2)$$

for $D \subset \mathbb{Z}^2$.

- For each vertex x, h(x) Gaussian r.v.
- Covariance : Green's function for SRW
- Mean value : zero.

DGFF with mean h_{∂} : DGFF with mean zero plus a harmonic function h_{∂} .

- For each vertex x, h(x) Gaussian r.v.
- Covariance : Green's function for SRW
- Mean value : $h_{\partial}(x)$

Hao Wu (MIT)

Thanks to Miller.

Sheffield

Intersections of SLE paths

11-12 August 2014 11 / 21

- -

Thanks to Miller, Sheffield

$\mathsf{DGFF} \to \mathsf{GFF} \ h$

- (h, ρ) Gaussian r.v.
- Covariance :

1

$$cov((h,\rho_1),(h,\rho_2)) = \iint dx dy G_D(x,y) \rho_1(x) \rho_2(y)$$

• Mean value : $\mathbb{E}((h, \rho)) = (h_{\partial}, \rho).$

イロト イヨト イヨト イヨト

Thanks to Miller, Sheffield $\mathsf{DGFF} \to \mathsf{GFF} \ h$

- (h, ρ) Gaussian r.v.
- Covariance :

$$cov((h,\rho_1),(h,\rho_2)) = \iint dx dy G_D(x,y) \rho_1(x) \rho_2(y)$$

- Mean value : $\mathbb{E}((h, \rho)) = (h_{\partial}, \rho).$
- Conformal invariance Domain Markov Property

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Flow lines of GFF

• *h* smooth, $\chi > 0$ constant. Vector field $e^{ih/\chi}$

3

イロン イ理 とく ヨン 一

Flow lines of GFF

- *h* smooth, $\chi > 0$ constant. Vector field $e^{ih/\chi}$
- Flow line of the field :

$$rac{d}{dt}\eta(t)=m{e}^{im{h}(\eta(t))/\chi}$$

イロト イ団ト イヨト イヨト

Flow lines of GFF

- *h* smooth, $\chi > 0$ constant. Vector field $e^{ih/\chi}$
- Flow line of the field :

$$rac{d}{dt}\eta(t)=oldsymbol{e}^{ih(\eta(t))/\chi}$$

• Flow line of the field with angle θ : $h + \theta \chi$

イロト イ団ト イヨト イヨト

Flow lines of GFF

- *h* smooth, $\chi > 0$ constant. Vector field $e^{ih/\chi}$
- Flow line of the field :

$$\frac{d}{dt}\eta(t) = e^{ih(\eta(t))/\chi}$$

- Flow line of the field with angle θ : $h + \theta \chi$
- Property : monotonicity.

Flow lines of GFF

- *h* smooth, $\chi > 0$ constant. Vector field $e^{ih/\chi}$
- Flow line of the field :

$$\frac{d}{dt}\eta(t) = e^{ih(\eta(t))/\chi}$$

- Flow line of the field with angle θ : $h + \theta \chi$
- Property : monotonicity.
- *h* GFF, "Vector field" $e^{ih/\chi}$

Flow lines of GFF

Hao Wu (MIT)

- *h* smooth, $\chi > 0$ constant. Vector field $e^{ih/\chi}$
- Flow line of the field :

$$rac{d}{dt}\eta(t)=oldsymbol{e}^{ih(\eta(t))/\chi}$$

- Flow line of the field with angle θ : $h + \theta \chi$
- Property : monotonicity.
- *h* GFF, "Vector field" $e^{ih/\chi}$
- Flow lines of the field are SLE_κ curves

$$\kappa\in(0,4),\quad \chi=rac{2}{\sqrt{\kappa}}-rac{\sqrt{\kappa}}{2}$$

Interactions of flow lines $\kappa \in (0, 4), \chi = \frac{2}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2}$

Flow lines of $e^{ih/\chi}$ with angles θ_1 and θ_2 : η_1 and η_2

イロト 不得 トイヨト イヨト 二日

Interactions of flow lines $\kappa \in (0, 4), \chi = \frac{2}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2}$

Flow lines of $e^{ih/\chi}$ with angles θ_1 and θ_2 : η_1 and η_2

 $\theta_1 > \theta_2$: η_1 stays to the left of η_2 , but may have intersection

Interactions of flow lines $\kappa \in (0, 4), \chi = \frac{2}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2}$

Flow lines of $e^{ih/\chi}$ with angles θ_1 and θ_2 : η_1 and η_2

 $\theta_1 > \theta_2$: η_1 stays to the left of η_2 , but may have intersection

 $\theta_1 = \theta_2$: η_1 merges with η_2 upon intersecting and never separates

Interactions of flow lines $\kappa \in (0, 4), \chi = \frac{2}{\sqrt{\kappa}} - \frac{\sqrt{\kappa}}{2}$

Flow lines of $e^{ih/\chi}$ with angles θ_1 and θ_2 : η_1 and η_2

 $\theta_1 = \theta_2$:

separates

 $\theta_1 < \theta_2$:

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 η_1 crosses η_2 upon intersecting and never crosses back

 η_1 merges with η_2 upon

intersecting and never

Simulations of the flow lines of GFF

$$\kappa \in (0,4), \quad \chi = rac{2}{\sqrt{\kappa}} - rac{\sqrt{\kappa}}{2}, \quad \exp(ih/\chi)$$

э

イロト イヨト イヨト イヨト

Table of contents

Background and Main Statements

Derive the Hausdorff dimension

Intersection of flow line and the boundary

Proposition [Miller and W.] $\eta \sim SLE_{\kappa}(\rho), \kappa \in (0, 4), \rho \in (-2, \frac{\kappa}{2} - 2),$

$$\dim_{H}(\eta \cap \mathbb{R}) = 1 - \frac{1}{\kappa}(\rho + 2)\left(\rho + 4 - \frac{\kappa}{2}\right), \quad a.s.$$

イロト 不得 トイヨト イヨト 二日

Intersection of flow line and the boundary

Proposition [Miller and W.] $\eta \sim SLE_{\kappa}(\rho), \kappa \in (0, 4), \rho \in (-2, \frac{\kappa}{2} - 2),$

$$\dim_H(\eta \cap \mathbb{R}) = 1 - rac{1}{\kappa}(
ho + 2)\left(
ho + 4 - rac{\kappa}{2}
ight), \quad a.s.$$

- one-point estimate : martingale.
- two-point estimate : Interaction of flow lines.

3 > 4 3

Intersection of two flow lines

Proposition [Miller and W.]

 $\theta_1 < \theta_2, \eta_1 \sim \text{angle } \theta_1, \eta_2 \sim \text{angle } \theta_2, \rho = (\theta_2 - \theta_1)\chi/\lambda - 2$

$$\dim_{H}(\eta_{1} \cap \eta_{2} \cap \mathbb{H}) = 2 - \frac{1}{2\kappa} \left(\rho + \frac{\kappa}{2} + 2 \right) \left(\rho - \frac{\kappa}{2} + 6 \right), \quad a.s.$$

Intersection of two flow lines

Proposition [Miller and W.]

 $\theta_1 < \theta_2, \, \eta_1 \sim \text{angle } \theta_1, \, \eta_2 \sim \text{angle } \theta_2, \, \rho = (\theta_2 - \theta_1)\chi/\lambda - 2$

$$\dim_{\mathcal{H}}(\eta_{1} \cap \eta_{2} \cap \mathbb{H}) = 2 - \frac{1}{2\kappa} \left(\rho + \frac{\kappa}{2} + 2 \right) \left(\rho - \frac{\kappa}{2} + 6 \right), \quad a.s.$$

- one-point estimate : martingale.
- two-point estimate : Interaction of flow lines.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Cut point dimension–Duality

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Hao Wu (MIT)

Cut point dimension–Duality

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• $\eta' \sim \text{SLE}_{\kappa'}$ from *i* to -i. $\kappa' \in (4, 8), \ \kappa = 16/\kappa' \in (2, 4)$

Cut point dimension–Duality

- $\eta' \sim \text{SLE}_{\kappa'}$ from *i* to -i. $\kappa' \in (4, 8), \ \kappa = 16/\kappa' \in (2, 4)$
- $\eta_L \sim$ left boundary of $\eta' \sim$ flow line with angle $\pi/2$

Cut point dimension–Duality

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- $\eta' \sim \text{SLE}_{\kappa'}$ from *i* to -i. $\kappa' \in (4, 8), \ \kappa = 16/\kappa' \in (2, 4)$
- $\eta_L \sim$ left boundary of $\eta' \sim$ flow line with angle $\pi/2$
- $\eta_R \sim$ right boundary of $\eta' \sim$ flow line with angle $-\pi/2$

Cut point dimension–Duality

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- $\eta' \sim \text{SLE}_{\kappa'}$ from *i* to -i. $\kappa' \in (4, 8), \ \kappa = 16/\kappa' \in (2, 4)$
- $\eta_L \sim$ left boundary of $\eta' \sim$ flow line with angle $\pi/2$
- $\eta_R \sim \text{right boundary of } \eta' \sim \text{flow line with angle } -\pi/2$
- The cut point set of η' is $\eta_L \cap \eta_R$.

Cut point dimension–Duality

- $\eta' \sim \text{SLE}_{\kappa'}$ from *i* to -i. $\kappa' \in (4, 8), \ \kappa = 16/\kappa' \in (2, 4)$
- $\eta_L \sim$ left boundary of $\eta' \sim$ flow line with angle $\pi/2$
- $\eta_R \sim \text{right boundary of } \eta' \sim \text{flow line with angle } -\pi/2$
- The cut point set of η' is $\eta_L \cap \eta_R$.
- The angle difference is π

Cut point dimension–Duality

- $\eta' \sim \text{SLE}_{\kappa'}$ from *i* to -i. $\kappa' \in (4, 8), \ \kappa = 16/\kappa' \in (2, 4)$
- $\eta_L \sim$ left boundary of $\eta' \sim$ flow line with angle $\pi/2$
- $\eta_R \sim \text{right boundary of } \eta' \sim \text{flow line with angle } -\pi/2$
- The cut point set of η' is $\eta_L \cap \eta_R$.
- The angle difference is π \rightarrow cut point dimension.

Hao Wu (MIT)

Intersections of SLE paths

Miscellanies

• Dimension for the double points for $\kappa > 4$.

э

Miscellanies

- Dimension for the double points for $\kappa > 4$.
- Radial SLE_{κ}(ρ), $\kappa \in (0, 4), \rho \in (-2, \kappa/2 2)$

э

イロト イポト イヨト イヨト

Miscellanies

- Dimension for the double points for $\kappa > 4$.
- Radial SLE_κ(ρ), κ ∈ (0,4), ρ ∈ (-2, κ/2 2)
 B_j : the points on the boundary that the curve hits *j* times.

Miscellanies

- Dimension for the double points for $\kappa > 4$.
- Radial SLE_κ(ρ), κ ∈ (0,4), ρ ∈ (-2, κ/2 2)
 B_j : the points on the boundary that the curve hits *j* times.
 - $\checkmark \dim_H(B_j)$

Miscellanies

- Dimension for the double points for $\kappa > 4$.
- Radial SLE_κ(ρ), κ ∈ (0,4), ρ ∈ (-2, κ/2 2)
 B_j : the points on the boundary that the curve hits *j* times.
 - $\checkmark \dim_H(B_j)$

 I_j : the points in the interior that the curve hits *j* times.

Miscellanies

- Dimension for the double points for $\kappa > 4$.
- Radial SLE_κ(ρ), κ ∈ (0,4), ρ ∈ (-2, κ/2 2)
 B_j : the points on the boundary that the curve hits *j* times.
 - $\checkmark \dim_H(B_j)$
 - I_j : the points in the interior that the curve hits *j* times.
 - $\checkmark \dim_H(I_j)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Miscellanies

- Dimension for the double points for $\kappa > 4$.
- Radial SLE_κ(ρ), κ ∈ (0,4), ρ ∈ (-2, κ/2 2)
 B_j : the points on the boundary that the curve hits *j* times.
 - $\checkmark \dim_H(B_j)$
 - I_j : the points in the interior that the curve hits *j* times.
 - $\checkmark \dim_H(I_j)$
- *K* : Conformal restriction sample with exponent β

Miscellanies

- Dimension for the double points for $\kappa > 4$.
- Radial SLE_κ(ρ), κ ∈ (0,4), ρ ∈ (-2, κ/2 2)
 B_j : the points on the boundary that the curve hits *j* times.
 - $\checkmark \dim_H(B_j)$
 - I_j : the points in the interior that the curve hits *j* times.
 - $\checkmark \dim_H(I_j)$
- *K* : Conformal restriction sample with exponent β
 C(*K*) : the cut points of *K*

Miscellanies

- Dimension for the double points for $\kappa > 4$.
- Radial SLE_κ(ρ), κ ∈ (0,4), ρ ∈ (-2, κ/2 2)
 B_j : the points on the boundary that the curve hits *j* times.
 - $\checkmark \dim_H(B_j)$
 - I_j : the points in the interior that the curve hits *j* times.
 - $\checkmark \dim_H(I_j)$
- *K* : Conformal restriction sample with exponent β
 C(*K*) : the cut points of *K* (dim u(C(K)))
 - $\checkmark \dim_H(C(K))$

Thanks!

Hao Wu (MIT)

Intersections of SLE paths