Intersections of SLE paths ICM 2014: Seoul, Korea Recent Progress in Random Conformal Geometry

Hao Wu

Massachusetts Institute of Technology Joint work with Jason Miller (MIT)

11-12 August 2014

Outline

(1) Background and Main Statements
(2) Imaginary Geometry
(3) Derive the Hausdorff dimension

Table of contents

(1) Background and Main Statements

(2) Imaginary Geometry

(3) Derive the Hausdorff dimension

SLE (Schramm Loewner Evolution)

Random fractal curves in $D \subset \mathbb{C}$ from a to b. Candidates for the scaling limit of discrete Statistical Physics models.

SLE (Schramm Loewner Evolution)

Random fractal curves in $D \subset \mathbb{C}$ from a to b. Candidates for the scaling limit of discrete Statistical Physics models.

Conformal invariance :

If γ is in D from a to b, and $\varphi: D \rightarrow \varphi(D)$ conformal map, then $\varphi(\gamma) \stackrel{d}{\sim}$ the one in $\varphi(D)$ from $\varphi(a)$ to $\varphi(b)$.

Domain Markov property :

the conditional law of
$\gamma[t, \infty)$ given $\gamma[0, t]$
$\stackrel{d}{\sim}$ the one in $D \backslash \gamma[0, t]$ from $\gamma(t)$ to b.

Examples of SLE

One parameter family of growing processes $\operatorname{SLE}_{\kappa}$ for $\kappa \geq 0$. Simple, $\kappa \in[0,4]$; Self-touching, $\kappa \in(4,8)$; Space-filling, $\kappa \geq 8$.

Thanks to Tom Kennedy

Examples of SLE

One parameter family of growing processes $\operatorname{SLE}_{\kappa}$ for $\kappa \geq 0$. Simple, $\kappa \in[0,4]$; Self-touching, $\kappa \in(4,8)$; Space-filling, $\kappa \geq 8$.

- $\kappa=2$: LERW
(Lawler, Schramm, Werner)
- $\kappa=3$: Critical Ising
(Smirnov, Chelkak et al.)
- $\kappa=4$: Level line of GFF (Schramm, Sheffield, Miller)
- $\kappa=6$: Percolation
(Smirnov, Camia, Newman)
Thanks to Tom Kennedy
- $\kappa=8$: UST
(Lawler, Schramm, Werner)

SLE double point and cut point dimensions

Thanks to Miller

SLE double point and cut point dimensions

Proposition : [Miller, W.]

The Hausdorff dimension of the double points of SLE $_{\kappa}$ is, almost surely,

$$
\begin{gathered}
1+\frac{\kappa}{8}-\frac{6}{\kappa} \text { for } \kappa \in(4,8) \\
1+\frac{2}{\kappa} \text { for } \kappa \geq 8
\end{gathered}
$$

Thanks to Miller

SLE double point and cut point dimensions

Proposition : [Miller, W.]
The Hausdorff dimension of the double points of SLE $_{\kappa}$ is, almost surely,

$$
\begin{gathered}
1+\frac{\kappa}{8}-\frac{6}{\kappa} \text { for } \kappa \in(4,8) \\
1+\frac{2}{\kappa} \text { for } \kappa \geq 8
\end{gathered}
$$

Proposition : [Miller, W.]
The Hausdorff dimension of the cut points of SLE $_{\kappa}$ is, almost surely,

$$
3-\frac{3 \kappa}{8} \quad \text { for } \quad \kappa \in(4,8)
$$

Thanks to Miller

Consistence with previous results

$\kappa \in(4,8)$
Double points

$$
1+\frac{\kappa}{8}-\frac{6}{\kappa}
$$

Cut points

$$
3-\frac{3 \kappa}{8}
$$

Consistence with previous results

$\kappa \in(4,8)$
Double points

$$
1+\frac{\kappa}{8}-\frac{6}{\kappa}
$$

Cut points

$$
3-\frac{3 \kappa}{8}
$$

- Critical percolation : $\kappa=6$ double point dimension : $\frac{3}{4}$, predicted by Duplantier in 1987 cut point dimension : $\frac{3}{4}$, proved by Lawler, Schramm, Werner in 2001

Consistence with previous results

$\kappa \in(4,8)$
Double points

$$
1+\frac{\kappa}{8}-\frac{6}{\kappa}
$$

Cut points

$$
3-\frac{3 \kappa}{8}
$$

- Critical percolation : $\kappa=6$ double point dimension : $\frac{3}{4}$, predicted by Duplantier in 1987 cut point dimension : $\frac{3}{4}$, proved by Lawler, Schramm, Werner in 2001
- Brownian excursion : cut point dimension: $\frac{3}{4}$, proved by Lawler, Schramm, Werner in 2001

Consistence with previous results

$\kappa \in(4,8)$
Double points

$$
1+\frac{\kappa}{8}-\frac{6}{\kappa}
$$

Cut points

$$
3-\frac{3 \kappa}{8}
$$

- Critical percolation : $\kappa=6$ double point dimension: $\frac{3}{4}$, predicted by Duplantier in 1987
cut point dimension : $\frac{3}{4}$, proved by Lawler, Schramm, Werner in 2001
- Brownian excursion : cut point dimension : $\frac{3}{4}$, proved by Lawler, Schramm, Werner in 2001
- FK model : $\kappa \in(4,8)$ double point dimension and cut point dimension, predicted by Duplantier in 1989 and 2004 respectively.

Relation with other dimensions

	Beffara	Miller and Wu	
SLE $_{\kappa}$	$\kappa \in(0,4]$	$\kappa \in(4,8)$	$\kappa \geq 8$
Trace	$1+\frac{\kappa}{8}$	$1+\frac{\kappa}{8}$	2
Double point	\emptyset	$1+\frac{\kappa}{8}-\frac{6}{\kappa}$	$1+\frac{2}{\kappa}$
Triple point	\emptyset	\emptyset	countable
Cut point	$1+\frac{\kappa}{8}$	$3-\frac{3 \kappa}{8}$	\emptyset
Boundary point	\emptyset	$2-\frac{8}{\kappa}$	1

Key in the proof

Key in the proof :

one-point estimate : martingale.
two-point estimate : coupling between SLE and GFF, work by Sheffield and Miller

- Imaginary Geometry I, II, III, IV

Table of contents

(1) Background and Main Statements

(2) Imaginary Geometry

(3) Derive the Hausdorff dimension

GFF (Gaussian Free Field)

DGFF with mean zero : a measure h on functions
$\rho: D \rightarrow \mathbb{R}$ and $\rho=0$ on ∂D with density

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(\rho(x)-\rho(y))^{2}\right)
$$

for $D \subset \mathbb{Z}^{2}$.

- For each vertex $x, h(x)$ Gaussian r.v.
- Covariance : Green's function for SRW
- Mean value : zero.

Thanks to Miller, Sheffield

GFF (Gaussian Free Field)

DGFF with mean zero : a measure h on functions $\rho: D \rightarrow \mathbb{R}$ and $\rho=0$ on ∂D with density

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(\rho(x)-\rho(y))^{2}\right)
$$

for $D \subset \mathbb{Z}^{2}$.

- For each vertex $x, h(x)$ Gaussian r.v.
- Covariance : Green's function for SRW
- Mean value : zero.

DGFF with mean h_{∂} : DGFF with mean zero plus a harmonic function h_{∂}.

- For each vertex $x, h(x)$ Gaussian r.v.
- Covariance : Green's function for SRW
- Mean value : $h_{\partial}(x)$

GFF (Gaussian Free Field)

DGFF \rightarrow GFF h

- (h, ρ) Gaussian r.v.
- Covariance :

$$
\operatorname{cov}\left(\left(h, \rho_{1}\right),\left(h, \rho_{2}\right)\right)=\iint d x d y G_{D}(x, y) \rho_{1}(x) \rho_{2}(y)
$$

- Mean value :

$$
\mathbb{E}((h, \rho))=\left(h_{\partial}, \rho\right)
$$

Thanks to Miller, Sheffield

GFF (Gaussian Free Field)

Thanks to Miller, Sheffield

DGFF \rightarrow GFF h

- (h, ρ) Gaussian r.v.
- Covariance :

$$
\operatorname{cov}\left(\left(h, \rho_{1}\right),\left(h, \rho_{2}\right)\right)=\iint d x d y G_{D}(x, y) \rho_{1}(x) \rho_{2}(y)
$$

- Mean value : $\mathbb{E}((h, \rho))=\left(h_{\partial}, \rho\right)$.
- Conformal invariance Domain Markov Property

Flow lines of GFF

- h smooth, $\chi>0$ constant. Vector field $e^{i h / \chi}$

Flow lines of GFF

- h smooth, $\chi>0$ constant. Vector field $e^{i h / \chi}$
- Flow line of the field :

$$
\frac{d}{d t} \eta(t)=e^{i h(\eta(t)) / \chi}
$$

Flow lines of GFF

- h smooth, $\chi>0$ constant. Vector field $e^{i h / \chi}$
- Flow line of the field :

$$
\frac{d}{d t} \eta(t)=e^{i h(\eta(t)) / \chi}
$$

- Flow line of the field with angle $\theta: h+\theta \chi$

Flow lines of GFF

- h smooth, $\chi>0$ constant. Vector field $e^{i h / \chi}$
- Flow line of the field :

$$
\frac{d}{d t} \eta(t)=e^{i h(\eta(t)) / \chi}
$$

- Flow line of the field with angle $\theta: h+\theta \chi$
- Property : monotonicity.

Flow lines of GFF

- h smooth, $\chi>0$ constant. Vector field $e^{i h / \chi}$
- Flow line of the field :

$$
\frac{d}{d t} \eta(t)=e^{i h(\eta(t)) / \chi}
$$

- Flow line of the field with angle $\theta: h+\theta \chi$
- Property : monotonicity.
- h GFF, "Vector field" $e^{i h / \chi}$

Flow lines of GFF

- h smooth, $\chi>0$ constant. Vector field $e^{i h / \chi}$
- Flow line of the field :

$$
\frac{d}{d t} \eta(t)=e^{i h(\eta(t)) / \chi}
$$

- Flow line of the field with angle $\theta: h+\theta \chi$
- Property : monotonicity.
- h GFF, "Vector field" $e^{i h / \chi}$
- Flow lines of the field are SLE $_{\kappa}$ curves

$$
\kappa \in(0,4), \quad \chi=\frac{2}{\sqrt{\kappa}}-\frac{\sqrt{\kappa}}{2}
$$

Interactions of flow lines $\kappa \in(0,4), \chi=\frac{2}{\sqrt{\kappa}}-\frac{\sqrt{\kappa}}{2}$

Flow lines of $e^{i h / \chi}$ with angles θ_{1} and $\theta_{2}: \eta_{1}$ and η_{2}

Interactions of flow lines $\kappa \in(0,4), \chi=\frac{2}{\sqrt{k}}-\frac{\sqrt{\kappa}}{2}$

Flow lines of $e^{i h / \chi}$ with angles θ_{1} and $\theta_{2}: \eta_{1}$ and η_{2}

$\theta_{1}>\theta_{2}$:
η_{1} stays to the left of
η_{2}, but may have
intersection

Interactions of flow lines $\kappa \in(0,4), \chi=\frac{2}{\sqrt{k}}-\frac{\sqrt{k}}{2}$

Flow lines of $e^{i h / \chi}$ with angles θ_{1} and $\theta_{2}: \eta_{1}$ and η_{2}

$\theta_{1}>\theta_{2}$:
η_{1} stays to the left of
η_{2}, but may have intersection

$\theta_{1}=\theta_{2}$:
η_{1} merges with η_{2} upon intersecting and never separates

Interactions of flow lines $\kappa \in(0,4), \chi=\frac{2}{\sqrt{k}}-\frac{\sqrt{k}}{2}$

Flow lines of $e^{i h / \chi}$ with angles θ_{1} and $\theta_{2}: \eta_{1}$ and η_{2}

$\theta_{1}>\theta_{2}$:
η_{1} stays to the left of η_{2}, but may have intersection

$\theta_{1}=\theta_{2}$:
η_{1} merges with η_{2} upon intersecting and never separates

$\theta_{1}<\theta_{2}$:
η_{1} crosses η_{2} upon intersecting and never crosses back

Simulations of the flow lines of GFF

$$
\kappa \in(0,4), \quad \chi=\frac{2}{\sqrt{\kappa}}-\frac{\sqrt{\kappa}}{2}, \quad \exp (i h / \chi)
$$

$\kappa=1 / 8$

$\kappa=1$
$\kappa=2$

Table of contents

(1) Background and Main Statements

(2) Imaginary Geometry
(3) Derive the Hausdorff dimension

Intersection of flow line and the boundary

Proposition [Miller and W.]

$\eta \sim \operatorname{SLE}_{\kappa}(\rho), \kappa \in(0,4), \rho \in\left(-2, \frac{\kappa}{2}-2\right)$,

$$
\operatorname{dim}_{H}(\eta \cap \mathbb{R})=1-\frac{1}{\kappa}(\rho+2)\left(\rho+4-\frac{\kappa}{2}\right), \quad \text { a.s. }
$$

Intersection of flow line and the boundary

Proposition [Miller and W.]
$\eta \sim \operatorname{SLE}_{\kappa}(\rho), \kappa \in(0,4), \rho \in\left(-2, \frac{\kappa}{2}-2\right)$,

$$
\operatorname{dim}_{H}(\eta \cap \mathbb{R})=1-\frac{1}{\kappa}(\rho+2)\left(\rho+4-\frac{\kappa}{2}\right), \quad \text { a.s. }
$$

- one-point estimate : martingale.
- two-point estimate : Interaction of flow lines.

Intersection of two flow lines

Proposition [Miller and W.]

$\theta_{1}<\theta_{2}, \eta_{1} \sim$ angle $\theta_{1}, \eta_{2} \sim$ angle $\theta_{2}, \rho=\left(\theta_{2}-\theta_{1}\right) \chi / \lambda-2$

$$
\operatorname{dim}_{H}\left(\eta_{1} \cap \eta_{2} \cap \mathbb{H}\right)=2-\frac{1}{2 \kappa}\left(\rho+\frac{\kappa}{2}+2\right)\left(\rho-\frac{\kappa}{2}+6\right), \quad \text { a.s. }
$$

Intersection of two flow lines

Proposition [Miller and W.]
$\theta_{1}<\theta_{2}, \eta_{1} \sim$ angle $\theta_{1}, \eta_{2} \sim$ angle $\theta_{2}, \rho=\left(\theta_{2}-\theta_{1}\right) \chi / \lambda-2$

$$
\operatorname{dim}_{H}\left(\eta_{1} \cap \eta_{2} \cap \mathbb{H}\right)=2-\frac{1}{2 \kappa}\left(\rho+\frac{\kappa}{2}+2\right)\left(\rho-\frac{\kappa}{2}+6\right), \quad \text { a.s. }
$$

- one-point estimate : martingale.
- two-point estimate : Interaction of flow lines.

Cut point dimension-Duality

Cut point dimension-Duality

- $\eta^{\prime} \sim \operatorname{SLE}_{\kappa^{\prime}}$ from i to $-i$.

$$
\kappa^{\prime} \in(4,8), \kappa=16 / \kappa^{\prime} \in(2,4)
$$

Cut point dimension-Duality

- $\eta^{\prime} \sim \operatorname{SLE}_{\kappa^{\prime}}$ from i to $-i$. $\kappa^{\prime} \in(4,8), \kappa=16 / \kappa^{\prime} \in(2,4)$
- $\eta_{L} \sim$ left boundary of η^{\prime} \sim flow line with angle $\pi / 2$

Cut point dimension-Duality

- $\eta^{\prime} \sim \operatorname{SLE}_{\kappa^{\prime}}$ from i to $-i$. $\kappa^{\prime} \in(4,8), \kappa=16 / \kappa^{\prime} \in(2,4)$
- $\eta_{L} \sim$ left boundary of η^{\prime} \sim flow line with angle $\pi / 2$
- $\eta_{R} \sim$ right boundary of η^{\prime} \sim flow line with angle $-\pi / 2$

Cut point dimension-Duality

- $\eta^{\prime} \sim \operatorname{SLE}_{\kappa^{\prime}}$ from i to $-i$. $\kappa^{\prime} \in(4,8), \kappa=16 / \kappa^{\prime} \in(2,4)$
- $\eta_{L} \sim$ left boundary of η^{\prime} \sim flow line with angle $\pi / 2$
- $\eta_{R} \sim$ right boundary of η^{\prime} \sim flow line with angle $-\pi / 2$
- The cut point set of η^{\prime} is $\eta_{L} \cap \eta_{R}$.

Cut point dimension-Duality

- $\eta^{\prime} \sim \operatorname{SLE}_{\kappa^{\prime}}$ from i to $-i$. $\kappa^{\prime} \in(4,8), \kappa=16 / \kappa^{\prime} \in(2,4)$
- $\eta_{L} \sim$ left boundary of η^{\prime} \sim flow line with angle $\pi / 2$
- $\eta_{R} \sim$ right boundary of η^{\prime} \sim flow line with angle $-\pi / 2$
- The cut point set of η^{\prime} is $\eta_{L} \cap \eta_{R}$.
- The angle difference is π

Cut point dimension-Duality

- $\eta^{\prime} \sim \operatorname{SLE}_{\kappa^{\prime}}$ from i to $-i$. $\kappa^{\prime} \in(4,8), \kappa=16 / \kappa^{\prime} \in(2,4)$
- $\eta_{L} \sim$ left boundary of η^{\prime} \sim flow line with angle $\pi / 2$
- $\eta_{R} \sim$ right boundary of η^{\prime} \sim flow line with angle $-\pi / 2$
- The cut point set of η^{\prime} is $\eta_{L} \cap \eta_{R}$.
- The angle difference is π \rightarrow cut point dimension.

Miscellanies

- Dimension for the double points for $\kappa>4$.

Miscellanies

- Dimension for the double points for $\kappa>4$.
- Radial $\operatorname{SLE}_{\kappa}(\rho), \kappa \in(0,4), \rho \in(-2, \kappa / 2-2)$

Miscellanies

- Dimension for the double points for $\kappa>4$.
- Radial $\operatorname{SLE}_{\kappa}(\rho), \kappa \in(0,4), \rho \in(-2, \kappa / 2-2)$ B_{j} : the points on the boundary that the curve hits j times.

Miscellanies

- Dimension for the double points for $\kappa>4$.
- Radial $\operatorname{SLE}_{\kappa}(\rho), \kappa \in(0,4), \rho \in(-2, \kappa / 2-2)$ B_{j} : the points on the boundary that the curve hits j times.
$\checkmark \operatorname{dim}_{H}\left(B_{j}\right)$

Miscellanies

- Dimension for the double points for $\kappa>4$.
- Radial $\operatorname{SLE}_{\kappa}(\rho), \kappa \in(0,4), \rho \in(-2, \kappa / 2-2)$ B_{j} : the points on the boundary that the curve hits j times.
$\checkmark \operatorname{dim}_{H}\left(B_{j}\right)$
I_{j} : the points in the interior that the curve hits j times.

Miscellanies

- Dimension for the double points for $\kappa>4$.
- Radial $\operatorname{SLE}_{\kappa}(\rho), \kappa \in(0,4), \rho \in(-2, \kappa / 2-2)$ B_{j} : the points on the boundary that the curve hits j times.
$\checkmark \operatorname{dim}_{H}\left(B_{j}\right)$
I_{j} : the points in the interior that the curve hits j times.
$\checkmark \operatorname{dim}_{H}\left(l_{j}\right)$

Miscellanies

- Dimension for the double points for $\kappa>4$.
- Radial $\operatorname{SLE}_{\kappa}(\rho), \kappa \in(0,4), \rho \in(-2, \kappa / 2-2)$ B_{j} : the points on the boundary that the curve hits j times.
$\checkmark \operatorname{dim}_{H}\left(B_{j}\right)$
I_{j} : the points in the interior that the curve hits j times.
$\checkmark \operatorname{dim}_{H}\left(I_{j}\right)$
- K : Conformal restriction sample with exponent β

Miscellanies

- Dimension for the double points for $\kappa>4$.
- Radial $\operatorname{SLE}_{\kappa}(\rho), \kappa \in(0,4), \rho \in(-2, \kappa / 2-2)$ B_{j} : the points on the boundary that the curve hits j times.
$\checkmark \operatorname{dim}_{H}\left(B_{j}\right)$
I_{j} : the points in the interior that the curve hits j times.
$\checkmark \operatorname{dim}_{H}\left(l_{j}\right)$
- K : Conformal restriction sample with exponent β
$C(K)$: the cut points of K

Miscellanies

- Dimension for the double points for $\kappa>4$.
- Radial $\operatorname{SLE}_{\kappa}(\rho), \kappa \in(0,4), \rho \in(-2, \kappa / 2-2)$ B_{j} : the points on the boundary that the curve hits j times.
$\checkmark \operatorname{dim}_{H}\left(B_{j}\right)$
I_{j} : the points in the interior that the curve hits j times.
$\checkmark \operatorname{dim}_{H}\left(l_{j}\right)$
- K : Conformal restriction sample with exponent β
$C(K)$: the cut points of K $\checkmark \operatorname{dim}_{H}(C(K))$

Thanks!

