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Plan:

I Background + motivation

I The model

I Statement

I Main ingredients of the proof
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Conformally invariant scaling limits

Attempts to understand concretely and mathematically
(probabilistically) one aspect of a standard (typically non-rigorous)
description of conformally invariant continuum limits of critical
lattice models.

Critical percolation, Ising model, loop-erased random walk,
self-avoiding walks, other O(n) models, etc...

Physicists [BPZ ’84, ...]: model using certain 2D field theories with
conformal invariance built in: Conformal Field Theories (CFTs).

Limiting model described by correlation functions of a collection of
local “fields”/“operators” indexed by points. Nice transformation
rules with respect to conformal maps. Formal (Laurent) series
expansions of products, etc.
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Conformally invariant scaling limits

Several algebraic structures are important in this approach.

The Virasoro algebra:

[Lm, Ln] = (m − n)Lm+n +
c

12
(m3 −m)δ0(m + n).

A Lie algebra that appears when studying how certain fields are
affected by infinitesimal transformations.

The CFTs form a one-parameter family indexed by the central
charge c ∈ R.
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Conformally invariant scaling limits

CFTs corresponding to lattice models (typically) turn out to be
particularly simple: Finite number of “primary” fields which are
conformally covariant, and which generate all the other fields of
the model.

Representation theory arguments produce linear relations between
Ln:s paired with suitable fields; can be written as linear differential
equations for the correlation functions.

→ predictions for correlation function formulas, various critical
exponents, classifications, etc, etc.
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Conformally invariant scaling limits

Works well from the physics point of view.

But difficult to make sense of mathematically, in particular the
connection between discrete and continuum limit models. Many
interesting mathematical problems.

A lot of progress, in particular in two directions...

I SLE interpretations of CFT statements (in the continuum);
c(κ) = (3κ− 8)(6− κ)/2κ, restriction, loops,...;

I Discrete complex analysis (prove CFT formulas hold in the
scaling limit; transfer matrix)

I ...

(LSW, Friedrich-Werner, Bauer-Bernard, Kang-Makarov, Dubedat,
Kenyon, Smirnov, Hongler, -Kytölä, ...)
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Conformally invariant scaling limits

We would like to better understand the connection between the
discrete and continuum limit descriptions.

I E.g., are the algebraic structures that are important in CFT
also present on the discrete level?

I Is there a direct connection between the discrete and
continuum structures that allow for “exact solvability”?

Preferably with simple and concrete interpretations, constructions,
etc. Also to clarify the source of these structures. We are looking
for exact results.
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Discrete Gaussian free field and Virasoro algebra

Model: discrete Gaussian field on Z2. Random surface model.
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Discrete Gaussian free field and Virasoro algebra

We work with φ(z), a “pinned” mean 0 real Gaussian field indexed
by the vertices of Z2 such that φ(0) = 0. The correlation functions
are: 〈

φ(z)φ(w)
〉

= G (z , 0) + G (0,w)− G (z ,w).

Here G (z ,w) = G (w , z) := a(z − w), where a is the free Green’s
function (or “potential kernel”) for random walk on Z2 with

[∆a](z) = δ0(z);

a(z) =
2

π
log |z |+ O(1), |z | → ∞;

[∆f ](z) =
1

4

∑
w∼z

[f (w)− f (z)] .

Extend (a and φ) to vertices of dual graph Z2
∗ by setting 0 there ⇒

definition on vertices of diamond graph Z2
� = Z2 ∪ Z2

∗.
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Discrete Gaussian free field and Virasoro algebra

We get the multipoint correlations from the two-point functions
via Wick’s formula: if Xj are centered Gaussians, then〈

X1 · · ·Xn

〉
=
∑∏

k

〈
XikXjk

〉
,

where the sum is over all partitions of {1, . . . , n} into disjoint pairs
(ik , jk).
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Discrete Gaussian free field and Virasoro algebra

Terminology to state the theorem... Representation: vector space
with a set of linear operators whose commutation relations are
those of the Virasoro algebra.

We work with a vector space of measures.

I We call (complex) Gibbs measures on Z2 assignments of a
complex Borel measure µ|G on R|G| to each finite G ⊂ Z2 with
the natural compatibility condition. The law of φ on Z2 gives
such a measure, µGFF . (Write also µGFF |G .)

I If ν|G << µ|G for all finite subgraphs G, then ν is called a
change of measure of µ.

I If M is a linear space of complex Gibbs measures, we call a
linear operator T :M→M such that Tµ is a change of
measure of µ a change of measure operator.
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Discrete Gaussian free field and Virasoro algebra

Thm. There is a space M of changes of measure of µGFF and for
n ∈ Z explicit change of measure operators Ln :M→M that
yield a representation of the Virasoro algebra of central charge
c = 1, i.e.,

[Lm, Ln] = (m − n)Lm+n +
1

12
(m3 −m)δm+n,0IdM.

We will give the main ideas for the construction of the Ln. Easier
to work on the level of “insertions”, i.e., directly with correlation
functions. Then we will “lift” to M.
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Discrete Gaussian free field and Virasoro algebra

Basic idea: define discrete version of “modes”, an:s, of the current
J(z) := ∂φ acting by contour integrals:

“
〈
an(0)φ(z1) · · ·φ(zk)

〉
=

∮
C

〈
J(z)φ(z1) · · ·φ(zk)

〉
zndz ′′.

(By inserting polynomials, defines a measure using Lp space duality.

Look at commutations of an:s, then build Ln:s by summing suitable
“products” of an:s. Similar constructions (in the continuum)
appear in the physics literature – Sugawara construction.)

To discretize: Need four ingredients: discrete - derivatives, current,
monomials, contour integrals (+ formulas).
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Discrete Gaussian free field and Virasoro algebra

The diamond graph, Z2
� = Z2 ∪ Z2

∗ (green). The medial graph, Z2
m

(red) is the dual.

Ingredient 1: If f defined on either of these,

2[∂f ](z) := f

(
z +

1

2

)
− f

(
z − 1

2

)
− i

[
f

(
z +

i

2

)
− f

(
z − i

2

)]
.

If [∂̄f ](z) = 0, then f is called discrete holomorphic at z .

We call J(z) := [∂φ](z) the “current”. (z is on the medial graph.)
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Discrete Gaussian free field and Virasoro algebra

Ingredient 2: discrete monomials. Duffin, Mercat, and others. For
n ≥ 0 we define z [n] living on the medial and dual medial graphs:
start with

z [0] ≡ 1, z [1] = z .

Then define higher powers by successive discrete integration so that

∂z [n] = nz [n−1]

with z [n] discrete holomorphic for each n ≥ 0. Straight-forward,
some normalizations needed. Integral here means∫

exy

f (z)dz = (y − x)f (
1

2
(x + y)).
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Discrete Gaussian free field and Virasoro algebra

What about n 6 −1?

A discrete version of 1/z , the discrete Cauchy kernel in the plane:

K (z) := [∂a](z),

with
[∂̄K ](z) = δ0(z), K (z)→ 0, (|z | → ∞).

Define
z [−1] := 2πK (z), z ∈ Z2

m;

+ use a linear combination and translation to define on Z2
�.

Then repeatedly differentiate and multiply by constants:

z [−2] := −2π [∂K ] (z), . . .

Then z [n], n 6 −1, are discrete holomorphic sufficiently far away
from 0 and [∂z [n]](z) = nz [n−1].
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Discrete Gaussian free field and Virasoro algebra

Ingredient 3: With a proper notion of discrete contour integral
(contours live between the medial and diamond grids) one has a
discrete residue formula for the product of two functions on each
of these grids,

e.g., for [γ] sufficiently large:

1

2πi

∮
[γ]

z [m]z [n]dz = δm+n,−1.
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Discrete Gaussian free field and Virasoro algebra

Ingredient 4: The current again. Recall that J(z) := ∂φ(z) is a
centered Gaussian field defined on the medial graph. The relevant
correlations are, e.g.,〈

J(z)φ(w)
〉

= K (z)− K (z − w); (w ∈ Z2)〈
J(z)J(w)

〉
= [∂K ](w − z).

...putting these things together, the following makes sense∫
[γ]

〈
J(z)φ(z1) · · ·φ(zk)

〉
z [n]dz ,

if [γ] encircles 0 and the {zj}. Doesn’t depend on [γ]. (At least if
[γ] sufficiently large, can be quantified.)
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Discrete Gaussian free field and Virasoro algebra

Can consider modes of the current J(z) “acting by contour
integrals on field insertions” of any f in Lp(µGFF ) for some p > 1:〈

anf (φ|G)
〉
µ

:=
1√
π

∮
[γ]

〈
J(z)f (φ|G)g(φ|G)

〉
z [n] dz ,

where [γ] is a sufficiently large discrete contour separating G from
∞. Independent on choice of contour. g is the RN derivative
coming from µ on G. Varying f , this determines µ 7→ anµ.

〈
anj · · · an1f (φ|G)

〉
µ

defined iteratively using radially ordered

contours.
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Discrete Gaussian free field and Virasoro algebra

Using Wick’s formula and the discrete residue formula we can
compute (via insertions of polynomials) the commutation relations
of the an:

Thm. The discrete current mode operators (an), n ∈ Z, satisfy the
commutation relations

[am, an] = mδm+n,0Id.
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Discrete Gaussian free field and Virasoro algebra

Example computation... For example, if [γ2] separates [γ1] from
∞:〈

amanφ(z1) · · ·φ(zk)
〉

=
1

π

∮
[γ2]

∮
[γ1]

〈
J(z)J(w)φ(z1) · · ·φ(zk)

〉
z [n]w [m] dz dw .

Expanding using Wick’s formula gives commuting terms +.

1

π

∮
[γ2]

∮
[γ1]

〈
J(z)J(w)

〉
z [n]w [m] dz dw ×

〈
φ(z1) · · ·φ(zk)

〉
.
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Discrete Gaussian free field and Virasoro algebra

Subtracting
〈
anamφ(z1) · · ·φ(zk)

〉
gives a “satellite integral”

 

and using a discrete Cauchy formula one ends up with an integral
of the type:∮

[γ1]

∮
[γz ]

〈
J(z)J(w)

〉
w [m]z [n]dwdz

=
−im

2

∮
[γ1]

z [m−1]z [n]dz = πmδ0(m + n).
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Discrete Gaussian free field and Virasoro algebra

Using the an we define, via insertions,:

Ln :=
1

2

∑
j≥0

an−jaj +
1

2

∑
j6−1

ajan−j , n ∈ Z.

Only finitely many terms are non-zero for a given correlation
function: z [n] = 0 for |z | 6 R and n ≥ N(R).

So, 〈
Lnφ(z1) · · ·φ(zk)

〉
makes sense to consider and also defines an operator acting on the
space of complex measures.
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Discrete Gaussian free field and Virasoro algebra

We can compute the commutation relations [Lm, Ln] from those of
the an.

Tedious exercise in keeping track of indices. E.g., if m ≥ 1 then
one gets (m − n)Lm+n +

1

2

m−1∑
j=0

(m − j)[aj , am+n−j ]

=
1

2

m−1∑
i=0

(m − j)jδ0(m + n) =
1

12
(m3 −m)δ0(m + n).

So, our operators yield a representation of the Virasoro algebra with
central charge c = 1.
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Discrete Gaussian free field and Virasoro algebra

Summary: We constructed Ln-operators acting on a space of
changes of measures of the discrete Gaussian free field. The Ln:s
give a representation of the Virasoro algebra, and we can identify
the “correct” central charge 1 directly on the discrete level.

Main ingredients:

I discrete current ∂φ of the dGFF;

I discrete complex analysis: nice form for correlations, Wick’s
formula, contour integrals + Cauchy formulas, discrete
monomials;

I Discrete current modes acting on insertions, which lift to
operators;

I Sugawara construction from the current modes.

Thank you for your attention!
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Discrete Gaussian free field and Virasoro algebra

Additional remarks:

I A similar construction for the dGFF in H with 0 bundary
condition also works.

I Coulomb gas: Take b ∈ R, and define Lbn = Ln + b(n + 1)an.
The commutations of Lbn are those of the Virasoro algebra
with central charge c = 1− 12b2. However, only b = 0 gives
parity preserving Lbn:s; we loose the +/− symmetry of φ.

I We (strongly) believe an analogous result is true for the Ising
model, but with c = 1/2. Work in progress.
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Discrete Gaussian free field and Virasoro algebra

A similar construction for the upper half-plane also works:

Let φ̃(z) be a discrete Gaussian field on H with Dirichlet boundary

condition. Then
〈
φ̃(z)φ̃(w)

〉
= G̃ (z ,w) := G (z ,w)− G (z , w̄).

Define

〈
ãn

k∏
j=1

φ̃(zj)
〉

=
1

i

∫
S

〈
∂φ̃(z)

k∏
j=1

φ̃(zj)
〉
z [n]dz

+
1

i

∫
S

〈
∂̄φ̃(z)

k∏
j=1

φ̃(zj)
〉
z̄ [n]dz̄ ,

where S is a discrete “half-contour”. The half-contour integrals
combine exactly to full contour integrals. (After Wick expansion
and using reflection symmetries.)
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A similar construction for the upper half-plane also works:

Let φ̃(z) be a discrete Gaussian field on H with Dirichlet boundary

condition. Then
〈
φ̃(z)φ̃(w)

〉
= G̃ (z ,w) := G (z ,w)− G (z , w̄).

Define

〈
ãn

k∏
j=1

φ̃(zj)
〉

=
1

i

∫
S

〈
∂φ̃(z)

k∏
j=1

φ̃(zj)
〉
z [n]dz

+
1

i

∫
S

〈
∂̄φ̃(z)

k∏
j=1

φ̃(zj)
〉
z̄ [n]dz̄ ,

where S is a discrete “half-contour”. The half-contour integrals
combine exactly to full contour integrals. (After Wick expansion
and using reflection symmetries.)
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Remark: Formally, in the continuum CFT, the Ln are often given
as modes of the so-called stress-energy tensor, T (z):〈

Lnφ(z1) · · ·φ(zk)
〉

=
1

2πi

∮
C

〈
T (z)φ(z1) · · ·φ(zk)

〉
zn+1dz .

T (z) is an object that in CFT represents the variation of the
fields/correlations under z 7→ z + εα(z), e.g.:

1

2πi

∮
C

〈
T (z)φ(z1) · · ·φ(zk)

〉
α(z)dz

=
∑
j

(hα′(zj) + α(zj)∂zj )
〈
φ(z1) · · ·φ(zk)

〉
.
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Remark: why this definition of Ln? Formal computation:

∂φ(z) ∼
∑
n

an
zn+1

, [∂φ(z)]2 ∼
∑
n

∑
j ajan−j

zn+2
.

If T = (1/2)[∂φ]2 and

T (z) ∼
∑
n

Ln
zn+2

,

we can try to identify coefficients.
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