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SLE

@ Introduced by Oded Schramm in 1999 as a candidate for the scaling limit of
loop erased random walk and the interfaces in critical percolation;

@ It been shown to be the scaling limit of a number of models.
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HALF-PLANE LOWNER EQUATION

Lowner 1923 (radial version). From 1946 Kufarev and his students (chordal
version)

dg:(z) 2 2t 1
p— P P JE— O —_—
dt ge(z) — ur’ g@) =2 &lz)=z+ z * z2 )’
7 y
Ve
&:(2)
Ht A H
0 § g: (0) o L0 &' (0) x
ug /
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SLE

The driving term u; = \/;Bt, 1-dimensional standard Brownian motion:

dge(z) 2 2t (1)

= - — ;1 02
dt ge(z) — ue’ g(2) =2 &l Z+z+ z2

n y
Tt
&(2)
w4y - .
0 3 g (0) ° 0 gt_(o) X
ug /

A.Vasil'ev (Bergen) Slit holomorphic stochastic flows Random Conformal Geometry 4 /35



SLE

@ The driving term u; = VkBy;

@ Depending on k we can have:

V) V) Kt

0< K<4 4<K <8 K >8

(courtesy of S. Rohde)

@ Scale invariance: given g¢(z) SLE, for any A > 0 = $g)2,(\z) is also SLE,.
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SLE-HULL

@ The solution to SLE, equation exists as long as g:(z) — u; remains away
from zero. Denote by T, the first time such that lim;—, 1, _o(g:(z) — ut) = 0;

o Ky ={zeH: T, <t} SLE-hull;
o H;, =H\Ki={zeH: T, > t}.

H\ K,
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INVARIANT APPROACH TO SLE

Certain probability measures on non-self-crossing random curves in a domain Q
connecting two given points a, b € 09 and satisfying

@ Conformal invariance;

@ Domain Markov property.
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CONFORMAL INVARIANCE
Family of curves

F(Q,a,) = {7 : 7 is a non-self-traversing curve connecting a and b},
T is the set of all possible triples

T :={(2,a,b): Qis a hyperbolic simply connected domain, a, b € 90Q}
M is a family of measures indexed by T, that is,

M = {i,ap) : (2,3,b) € T, p1(0,a,p) is a measure on Fo ,p}-

a Q
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CONFORMAL INVARIANCE

DEFINITION
The family of measures M indexed by 7T is conformally invariant if for each pair
of triples (£, a, b) and (', a’, b’) from T

Q! ,a’,b%) ¢* H(Q,a,b)>

where ¢: Q — Q' is the unique conformal isomorphism a+— a’, b b', ¢, is
pushforward of u by ¢.

For example,
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DoOMAIN MARKOV PROPERTY

DEFINITION

The family of measures M indexed by T satisfies the domain Markov property if
for any Borel set B the conditional law jiq 5 p)(- | 7[0, t] = 70) is such that

14(2,2,6)(B" | 7[0, t] = Y0) = 1402, 70(e),5) (B)-

B’ = {4: 4lt, 00) € B}

Y(t+ s)
\ #(2) = g(2) — ue
3 y(t) T T g )
AT MM

+conformal invariance=> fu(11,0,00) (B | V[0, t] = 70) = s 11(81,0,00)-
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INFINITESIMAL GENERATOR

o SLE: z e H, u; = /rkdB;
dg:(z) 2 2t < 1 )

dt :gt(z)_Uty g-()(z):Z7 gt(z):z_’_;_’_o _2
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INFINITESIMAL GENERATOR

o SLE: z e H, u; = /rkdB;

dge(z) _ 2 _ 2 1
dt 7gt(z)_ut7 go(Z)—Z7 gt(z)*z—’_ = +O<Z2) 3

@ SDE for hi(z) = gi(z) — ut is

dhe(z) = ﬁdt _ JFdB,.

A.Vasil'ev (Bergen) Slit holomorphic stochastic flows Random Conformal Geometry 11 /35



INFINITESIMAL GENERATOR

o SLE: ZEH ug = \/_dBt

dg:(z) 2 2t 1
= = = _— O —_— R
dt gt(z) _ Ut7 gO(z) z, gf(z) Zz + z + 22
@ SDE for hi(z) = ge(z) — uy is
2
dh = ——dt — dB:;.
t(Z) ht(z) \/E t
@ For any holomorphic function M(z) we have the It6 formula
(dM)(he) = —dugl_1M(he) + dt( —20_,)M(hy),
where ¢, — —zn+19, | Infinitesimal generator (5%, —2(_5). |
@ M(z) is a local martingale if (§¢2; —2(_2)M(z) = 0.
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QUESTION?

Analogously to
dht(Z) =

2
— B;.
) dt — \/kdB;

Define the process G:(z) solving the Stratonovich SDE

{dct(z) = —b(G(2))dt + VEa(G(2) odBr,

Go(2) = z,

For which vector fields b and o is the process G; a slit holomorphic flow?

In the chordal case b(z) = —2 and o(z) = —1.
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GENERAL (DETERMINISTIC) LOWNER THEORY

Filippo Bracci, Manuel Contreras, Santiago Diaz-Madrigal, Pavel Gumenyuk,
Christian Pommerenke (2000-2012).
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HERGLOTZ VECTOR FIELDS

DEFINITION

A (generalized) Herglotz vector field of order d is
V :D X [0, +00) — C satisfying the following conditions:

@ the function [0, 4+00) 5 t — V/(t, z) is measurable for every z € D;
@ the function z — V/(t,z) is holomorphic in the unit disk for t € [0, +00);

@ for any compact set K C D and for every T > 0, there exists a non-negative
function kx 1 € L9([0, T],R), such that

[V(t, 2)| < kk,7(2)
for all z € K, and for almost every t € [0, T];

@ for almost every t € [0, +00), the function V(:,t) is a semicomplete vector
field.

.
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GENERAL LOWNER EQUATION

THEOREM (CONTRERAS, DfAZ-MADRIGAL, GUMENYUK)

Let V' be a Herglotz vector field of order d € [1,+oc]. Then,

@ For every z € D, there exists a unique maximal solution g:(z) € D to the
following initial value problem

0gi(z)
ot - _V(t7gt(z))7

go(z) = z.

® For every t > 0, the set D; of all z € D, for which g+(z) is defined at the
moment t, is a simply connected domain, and the function g:(z) defined for
all z € Dy maps D, conformally onto D.

v
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SEMICOMPLETE VECTOR FIELDS

Laurent polynomial vector fields in the upper half-plane H
M(z):=—-z""1 neZ.
The push-forward of the vector fields ¢: H — D:

by = ¢*€H,jl.

PROPOSITION

® o is a complete holomorphic vector field in D if and only if it admits a
decomposition
o=0_14_1+00lo+ 0141,

where _1, 09,01 € R.

@ Vector fields ¢_, and —¢5 are semicomplete in D.
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SEMICOMPLETE VECTOR FIELDS

PROPOSITION

® o is a complete holomorphic vector field in D if and only if it admits a
decomposition
o=0_14_1+00lo+ 0141,

where 0_1,00,01 € R.

@ Vector fields ¢_, and —¢5 are semicomplete in D.

Vector field £_1 Vector field £y Vector field £1

A.Vasil'ev (Bergen) Slit holomorphic stochastic flows Random Conformal Geometry 17 / 35



SLIT HOLOMORPHIC VECTOR FIELDS

In the unit disk ID:
PROPOSITION

The following statements are equivalent.

@ b(z) is a semicomplete vector field in D satisfying

lim Re b(re’) re=% = 0
r—1

for all e’® € 9D, except perhaps for e’ = 1.
@ b(z) can be written as
b(z) = b_olP,(2) + b_1£21(2) + bol5(2) + b1 D(2),
for some b_» >0, b_1, by, by € R.

@ The flow of b is generically a slit flow in D starting at 1.
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IDEA OF TIME SUBSTITUTION

In the unit disk ID:

@ Take

b(z) = —zi—’—z

= 2%5(2) + 3 B8(2), ol2) = —iz = 2(2) + ()
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IDEA OF TIME SUBSTITUTION

In the unit disk ID:

@ Take

b(z) = —zi—’—z

= 2%5(2) + 3 B8(2), ol2) = —iz = 2(2) + ()

@ The flow of o is h(z) = ze it
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IDEA OF TIME SUBSTITUTION

In the unit disk ID:

@ Take

b(z) = —zi—’—z

= 2%5(2) + 3 B8(2), ol2) = —iz = 2(2) + ()

@ The flow of o is h,(z) = ze™'%;

@ For a continuous function u; : [0,+00) — R, ug = 0, define a Herglotz
vector field V/(z,t) := (h;l* b)(z) = h,;(z) b(h,(2)) =

efte z

eite — 7z’
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IDEA OF TIME SUBSTITUTION

In the unit disk ID:

@ Take

b(z) = —zi—’—z

4

@ The flow of o is h,(z) = ze™'%;

@ For a continuous function u; : [0,+00) — R, ug = 0, define a Herglotz
vector field V/(z,t) := (h;l* b)(z) = h,;(z) b(h,(2)) =

efte z

eite — 7z’

@ The family of maps {g:}+>0
eiut +gt

9 _ —_
Egt(z) - —V(t,gt(Z)) = 8t v ) t> Oa
ert — g
g(z) =2z, zeD,
is a radial decreasing Lowner chain.
A.Vasil'ev (Bergen) Slit holomorphic stochastic flows Random Conformal Geometry
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GENERAL SLIT LOWNER CHAINS

o Take b(z) a slit vector field in D,
b=b_ol o+ b 101+ bylo+bils, bo>0,b_1, by, by € R;
o Take o(z) a complete vector field in D,
o=o0_1l1 + ool + 01f1, 0_1, 09, 01 € R;

such that o_; # 0.

A.Vasil'ev (Bergen) Slit holomorphic stochastic flows Random Conformal Geometry 20 / 35



GENERAL SLIT LOWNER CHAINS

o Take b(z) a slit vector field in D,
b=b_ol o+ b 101+ bylo+bils, bo>0,b_1, by, by € R;
o Take o(z) a complete vector field in D,
o=o0_1l1 + ool + 01f1, 0_1, 09, 01 € R;

such that o_; # 0.
o Let {h:}ier be the flow of automorphisms of D generated by o(z).
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GENERAL SLIT LOWNER CHAINS

o Take b(z) a slit vector field in D,
b=b_ol o+ b 101+ bylo+bils, bo>0,b_1, by, by € R;
o Take o(z) a complete vector field in D,
o=o0_1l1 + ool + 01f1, 0_1, 09, 01 € R;

such that o_; # 0.
o Let {h:}ier be the flow of automorphisms of D generated by o(z).

@ For a continuous function u; : [0,+00) — R, ug = 0, define a

Herglotz vector field V(z,t) := (h;!, b)(z) = 1(2) b(hy,(2));
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GENERAL SLIT LOWNER CHAINS

o Take b(z) a slit vector field in D,
b=b_ol o+ b 101+ bylo+bils, bo>0,b_1, by, by € R;
o Take o(z) a complete vector field in D,
o=o0_1l1 + ool + 01f1, 0_1, 09, 01 € R;

such that o_; # 0.
o Let {h:}ier be the flow of automorphisms of D generated by o(z).

@ For a continuous function u; : [0,+00) — R, ug = 0, define a

Herglotz vector field V(z,t) := (h;!, b)(z) = h/ 1( ) b(hy,(2));

o The family of maps {g¢}+>0
atgt(z) —V(t,g(z)), t=>0,
g(z) =2z, zeD,

we call a general slit Lowner chain.
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SLIT HOLOMORPHIC STOCHASTIC FLOWS

Take the driving function u; = \/k By k > 0, then G; := h,, o g; satisfies

{th(z) = ~b(Ge(2)) dt +/Eo(Ge(2) 0 dBe, t20,
Go(z) = z, '

In this case we call {G;}+>0 a slit holomorphic stochastic flow driven by
b and o.

4
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SLIT HOLOMORPHIC STOCHASTIC FLOWS

Take the driving function u; =
th(Z)
Go(z) = z,

In this case we call {G;}+>0 a slit holomorphic stochastic flow driven by
b and o.

VKBt k>0, then G; := h,, o g; satisfies

—b(Ge(2)) dt + /Eo(Ge(2)) 0 dB;, t>0,

zeD.

o

A.Vasil'ev (Bergen)

SLE type b o
Chordal 20_» f_1
Radial 20_5 + %50 {_1+ %51
Dipolar 26_2 — %fo ﬁ_l — %61

Slit holomorphic stochastic flows

Random Conformal Geometry
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SLIT HOLOMORPHIC STOCHASTIC FLOWS

SLE type b o
Chordal 20_» f_1
Radial 20_5 + %fo {_1+ %51
Dipolar 2f_2 — %60 f_l — %fl

Vector field 2¢_» Vector field 24 _5 + %[0
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ABP SLE

Some other examples: Attractive Boundary Point SLE:

Gfl(—l)/ T /Gt(z)\)‘

[y
Lﬁ\’ 5 X
\e

b =2¢_5 as in the chordal SLE, 0 = ¢_; + ;1161 as in the radial SLE,

de - _2672tht + \/;(lgfl + [1)(Gt) e} dBt,
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ABP SLE

In terms of the solution of ODE with a random entry:

n y

&'(n) / q A /
o

D

w = g¢(z) is a solution to

dw 1 _ Tt — W
E = Z(Tt — W)(TtW — 1) t

Tt+W7

with the initial condition w|,_, =z, 7 = V"B,
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ABP SLE

Some sample ABP curves:
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ANOTHER EXAMPLE OF SLE

b(z) as in the radial case, and o(z) as in the chordal case:
1
b=20_5+ 550, o=1/0_1.

Some sample curves:
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NORMALIZATION

If b_o =2 and o_; = 1 we call normalized slit Lowner chains.
‘SIMPLE’ TRANSFORMS
@ Scaling of the driving function (b, o, u;) — (b, co, 2ue);

@ Time scaling (b, 0, ut) = (cb, 0, u(cr))-

Normalization can be always achieved.
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RELATIONSHIP BETWEEN SLES

Motivated by G. Lawler, O. Schramm, and W. Werner (Acta Math. 2001):

THEOREM

Let {K:}+>0 be the family of hulls generated by a slit Léwner chain driven by

b, o and u,. Given another pair of vector fields, b and &, there exists and unique
a driving function @; and a time reparametrization t = \(t), so that the
corresponding slit Lowner chain generates the same family of hulls at least locally
in time 0 < t < Thax-

4
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RELATIONSHIP BETWEEN SLES

Motivated by G. Lawler, O. Schramm, and W. Werner (Acta Math. 2001):

THEOREM

Let {K:}+>0 be the family of hulls generated by a slit Léwner chain driven by

b, o and u,. Given another pair of vector fields, b and &, there exists and unique
a driving function @; and a time reparametrization t = \(t), so that the
corresponding slit Lowner chain generates the same family of hulls at least locally
in time 0 < t < Thax- )
THEOREM

Let {K:}+>0 be the family of random hulls generated by a normalized slit Lowner
chain driven by v/ B;. Let {K;}¢>o be the family of radial SLE.-hulls. There
exists a family of positive stopping times { Tp}ten, Tn — Tmax, such that the

laws of (K, t € [0, T,]) and (R,\(t), t €10, T,,]) are absolutely continuous with
respect to each other.
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RELATIONSHIP BETWEEN SLES

As a corollary:

Let {G;}+>0 be a normalized slit holomorphic stochastic flow driven by b, o and

u(t) = /kB:. Let 7y denote the curve generating the hulls {K;}:>0. Then, with
probability 1,

@ if 0 < Kk <4, ~isasimple curve,
9 if 4 < Kk < 8, v has self-intersections,

o if Kk > 8, v is a space-filling curve.

The Hausdorff dimension of the curve generating the hulls of a normalized slit
Léwner chain driven by \/k B; is equal to min(2,1 + x/8) with probability 1.
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CONFORMAL INVARIANCE AND DOMAIN MARKOV PROPERTY

@ We have no fixed points = no triples of type (2, a, b);

@ BUT we have embeddable curves.

THEOREM

Let &: [0, T] — D be a simple curve in D starting at 1. For a given pair of vector
fields b and o there exists to and at most one function gz, embeddable into a slit
Lowner chain {g:}¢>o driven by b and o, such that g;,;'(D) =D\ &.

We are able to formulate conformal invariance and domain Markov property for
0< k<4,
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CONFORMAL INVARIANCE AND DOMAIN MARKOV PROPERTY

@ Family of curves in D:

Fe = {v:7is a non-self-traversing curve starting from the tip of
a (b, o)-embeddable curve £};

@ T is the set of all possible (b, o)-embeddable curves &;

® M is a family of measures indexed by T, that is,

M = {pe: £ € T, pe is a measure on Fe}.
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CONFORMAL INVARIANCE

DEFINITION

The family of measures M indexed by T is conformally invariant if for each pair
of curves £ and & from T

Her = ¢*/1'£7

where ¢: D\ & — D\ ¢’ is the unique conformal isomorphism, ¢, is pushforward
of i by ¢.

4

(The unique ¢ is defined by ¢ = g¢r o ggl)
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DoOMAIN MARKOV PROPERTY

DEFINITION

The family of measures M indexed by T satisfies the domain Markov property if
for any Borel set B the conditional law po(- | [0, t] = &) is such that

po(B"[[0, 1] = §) = pe(B).

(Here 0 stands for the degenerate curve)

@ This is equivalent to the fact that the slit holomorphic flow is a
time-homogeneous diffusion;

@ In the chordal, radial and dipolar cases Cl and DMP coincide with the
classical ones.
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GFF

Ongoing project (G.l., A.V., Nam-Gyu Kang)

PROBLEM

Traces of which slit holomorphic stochastic flows can be regarded as ‘level’ lines
of Gaussian Free Field modifications?

More precise, which slit holomorphic stochastic flows G; admit coupling with
Dirichlet modifications ® of the GFF such that

Law (% ’ ;t) = Law(®p o G, | F), forall t >0,

where F; is the sigma algebra of G;.
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GFF

Ongoing project (G.l., A.V., Nam-Gyu Kang)

PROBLEM

Traces of which slit holomorphic stochastic flows can be regarded as ‘level’ lines
of Gaussian Free Field modifications?

More precise, which slit holomorphic stochastic flows G; admit coupling with
Dirichlet modifications ® of the GFF such that

Law (% ’ .7-}) = Law(®p o G, | F,), forall t >0,
where F; is the sigma algebra of G;.

We found that for kK = 4 a 2-parameter family of HSFs admits such coupling.
This includes, in particular, chordal and dipolar SLE4 with drifts and some other
new SLEs.
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END

Thank youl!

AR o,
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