Alexander Vasil'ev

알렉산더

(joint work with Georgy Ivanov and Alexey Tochin)

University of Bergen, Norway

Random Conformal Geometry, August 11-12th, 2014

SLE

- Introduced by Oded Schramm in 1999 as a candidate for the scaling limit of loop erased random walk and the interfaces in critical percolation;
- It been shown to be the scaling limit of a number of models.

HALF-PLANE LÖWNER EQUATION

Löwner 1923 (radial version). From 1946 Kufarev and his students (chordal version)

$$\frac{dg_t(z)}{dt} = \frac{2}{g_t(z) - u_t}, \quad g_0(z) = z, \quad g_t(z) = z + \frac{2t}{z} + O\left(\frac{1}{z^2}\right),$$

SLE

The driving term $u_t = \sqrt{k}B_t$, 1-dimensional standard Brownian motion:

$$\frac{dg_t(z)}{dt} = \frac{2}{g_t(z) - u_t}, \quad g_0(z) = z, \quad g_t(z) = z + \frac{2t}{z} + O\left(\frac{1}{z^2}\right),$$

SLE

- The driving term $u_t = \sqrt{k}B_t$;
- Depending on k we can have:

(courtesy of S. Rohde)

• Scale invariance: given $g_t(z)$ SLE $_{\kappa}$ for any $\lambda > 0 \Rightarrow \frac{1}{\lambda} g_{\lambda^2 t}(\lambda z)$ is also SLE $_{\kappa}$.

SLE-HULL

- The solution to SLE_k equation exists as long as $g_t(z) u_t$ remains away from zero. Denote by T_z the first time such that $\lim_{t \to T_z 0} (g_t(z) u_t) = 0$;
- $K_t = \{z \in \mathbb{H} : T_z \le t\}$ SLE-hull;
- $\bullet \ \mathbb{H}_t = \mathbb{H} \setminus K_t = \{z \in \mathbb{H} \colon T_z > t\}.$

(courtesy of Kazumitsu Sakai)

INVARIANT APPROACH TO SLE

Certain probability measures on non-self-crossing random curves in a domain Ω connecting two given points $a,b\in\partial\Omega$ and satisfying

- Conformal invariance;
- Domain Markov property.

CONFORMAL INVARIANCE

Family of curves

 $\mathcal{F}_{(\Omega,a,b)} = \{ \gamma : \gamma \text{ is a non-self-traversing curve connecting } \textbf{\textit{a}} \text{ and } \textbf{\textit{b}} \},$

 ${\mathcal T}$ is the set of all possible triples

 $\mathcal{T}:=\{(\Omega,a,b)\colon \Omega \text{ is a hyperbolic simply connected domain, } a,b\in\partial\Omega\}.$

M is a family of measures indexed by \mathcal{T} , that is,

 $M = \{\mu_{(\Omega,a,b)} : (\Omega,a,b) \in \mathcal{T}, \mu_{(\Omega,a,b)} \text{ is a measure on } \mathcal{F}_{\Omega,a,b}\}.$

Conformal invariance

DEFINITION

The family of measures M indexed by \mathcal{T} is conformally invariant if for each pair of triples (Ω, a, b) and (Ω', a', b') from \mathcal{T}

$$\mu_{(\Omega',a',b')} = \phi_* \mu_{(\Omega,a,b)},$$

where $\phi \colon \Omega \to \Omega'$ is the unique conformal isomorphism $a \mapsto a', \ b \mapsto b', \ \phi_* \mu$ is pushforward of μ by ϕ .

For example,

Domain Markov Property

DEFINITION

The family of measures M indexed by $\mathcal T$ satisfies the domain Markov property if for any Borel set B the conditional law $\mu_{(\Omega,a,b)}(\cdot\,|\,\gamma[0,t]=\gamma_0)$ is such that

$$\mu_{(\Omega,a,b)}(B' \mid \gamma[0,t] = \gamma_0) = \mu_{(\Omega_t,\gamma_0(t),b)}(B).$$

 $B' = \{ \gamma \colon \gamma[t, \infty) \in B \}$

+conformal invariance $\Rightarrow \mu_{(\mathbb{H},0,\infty)}(B \mid \gamma[0,t] = \gamma_0) = \phi_*\mu_{(\mathbb{H},0,\infty)}.$

Infinitesimal generator

• SLE: $z \in \mathbb{H}$, $u_t = \sqrt{\kappa} dB_t$

$$\frac{dg_t(z)}{dt} = \frac{2}{g_t(z) - u_t}, \quad g_0(z) = z, \quad g_t(z) = z + \frac{2t}{z} + O\left(\frac{1}{z^2}\right),$$

• SDE for $h_t(z) = g_t(z) - u_t$ is

$$dh_t(z) = rac{2}{h_t(z)}dt - \sqrt{\kappa}dB_t.$$

• For any holomorphic function M(z) we have the Itô formula

$$(dM)(h_t) = -du_t\ell_{-1}M(h_t) + dt(\frac{\kappa}{2}\ell_{-1}^2 - 2\ell_{-2})M(h_t),$$

where $\ell_n = -z^{n+1}\partial$. Infinitesimal generator $(\frac{\kappa}{2}\ell_{-1}^2 - 2\ell_{-2})$.

• M(z) is a local martingale if $(\frac{\kappa}{2}\ell_{-1}^2 - 2\ell_{-2})M(z) = 0$.

Infinitesimal generator

• SLE: $z \in \mathbb{H}$, $u_t = \sqrt{\kappa} dB_t$

$$\frac{dg_t(z)}{dt} = \frac{2}{g_t(z) - u_t}, \quad g_0(z) = z, \quad g_t(z) = z + \frac{2t}{z} + O\left(\frac{1}{z^2}\right),$$

• SDE for $h_t(z) = g_t(z) - u_t$ is

$$dh_t(z) = \frac{2}{h_t(z)}dt - \sqrt{\kappa}dB_t.$$

• For any holomorphic function M(z) we have the Itô formula

$$(dM)(h_t) = -du_t\ell_{-1}M(h_t) + dt(\frac{\kappa}{2}\ell_{-1}^2 - 2\ell_{-2})M(h_t),$$

where $\ell_n = -z^{n+1}\partial$. Infinitesimal generator $(\frac{\kappa}{2}\ell_{-1}^2 - 2\ell_{-2})$.

• M(z) is a local martingale if $(\frac{\kappa}{2}\ell_{-1}^2 - 2\ell_{-2})M(z) = 0$.

Infinitesimal generator

• SLE: $z \in \mathbb{H}$, $u_t = \sqrt{\kappa} dB_t$

$$\frac{dg_t(z)}{dt} = \frac{2}{g_t(z) - u_t}, \quad g_0(z) = z, \quad g_t(z) = z + \frac{2t}{z} + O\left(\frac{1}{z^2}\right),$$

• SDE for $h_t(z) = g_t(z) - u_t$ is

$$dh_t(z) = \frac{2}{h_t(z)}dt - \sqrt{\kappa}dB_t.$$

• For any holomorphic function M(z) we have the Itô formula

$$(dM)(h_t) = -du_t\ell_{-1}M(h_t) + dt(\frac{\kappa}{2}\ell_{-1}^2 - 2\ell_{-2})M(h_t),$$

where $\ell_n = -z^{n+1}\partial$. Infinitesimal generator $(\frac{\kappa}{2}\ell_{-1}^2 - 2\ell_{-2})$.

• M(z) is a local martingale if $(\frac{\kappa}{2}\ell_{-1}^2 - 2\ell_{-2})M(z) = 0$.

QUESTION?

Analogously to

$$dh_t(z) = \frac{2}{h_t(z)}dt - \sqrt{\kappa}dB_t.$$

Define the process $G_t(z)$ solving the Stratonovich SDE

$$\begin{cases} dG_t(z) = -b(G_t(z)) dt + \sqrt{\kappa} \, \sigma(G_t(z)) \circ dB_t, \\ G_0(z) = z, \end{cases} \quad z \in \mathbb{D}.$$

For which vector fields b and σ is the process G_t a slit holomorphic flow?

In the chordal case $b(z) = -\frac{2}{z}$ and $\sigma(z) = -1$.

General (Deterministic) Löwner Theory

Filippo Bracci, Manuel Contreras, Santiago Díaz-Madrigal, Pavel Gumenyuk, Christian Pommerenke (2000-2012).

HERGLOTZ VECTOR FIELDS

DEFINITION

A (generalized) Herglotz vector field of order d is

 $V: \mathbb{D} \times [0, +\infty) \to \mathbb{C}$ satisfying the following conditions:

- the function $[0, +\infty) \ni t \mapsto V(t, z)$ is measurable for every $z \in \mathbb{D}$;
- the function $z \mapsto V(t,z)$ is holomorphic in the unit disk for $t \in [0,+\infty)$;
- for any compact set $K \subset \mathbb{D}$ and for every T > 0, there exists a non-negative function $k_{K,T} \in L^d([0,T],\mathbb{R})$, such that

$$|V(t,z)| \leq k_{K,T}(t)$$

for all $z \in K$, and for almost every $t \in [0, T]$;

• for almost every $t \in [0, +\infty)$, the function $V(\cdot, t)$ is a **semicomplete** vector field.

GENERAL LÖWNER EQUATION

THEOREM (CONTRERAS, DÍAZ-MADRIGAL, GUMENYUK)

Let V be a Herglotz vector field of order $d \in [1, +\infty]$. Then,

• For every $z \in \mathbb{D}$, there exists a unique maximal solution $g_t(z) \in \mathbb{D}$ to the following initial value problem

$$\begin{cases} \frac{\partial g_t(z)}{\partial t} = -V(t, g_t(z)), \\ g_0(z) = z. \end{cases}$$

• For every $t \geq 0$, the set D_t of all $z \in \mathbb{D}$, for which $g_t(z)$ is defined at the moment t, is a simply connected domain, and the function $g_t(z)$ defined for all $z \in D_t$ maps D_t conformally onto \mathbb{D} .

SEMICOMPLETE VECTOR FIELDS

Laurent polynomial vector fields in the upper half-plane $\ensuremath{\mathbb{H}}$

$$\ell_n^{\mathbb{H}}(z) := -z^{n+1}, \quad n \in \mathbb{Z}.$$

The push-forward of the vector fields $\phi \colon \mathbb{H} \to D$:

$$\ell_n := \phi_* \ell_n^{\mathbb{H}}.$$

PROPOSITION

 $oldsymbol{\sigma}$ is a complete holomorphic vector field in D if and only if it admits a decomposition

$$\sigma = \sigma_{-1} \, \ell_{-1} + \sigma_0 \, \ell_0 + \sigma_1 \, \ell_1,$$

where $\sigma_{-1}, \sigma_0, \sigma_1 \in \mathbb{R}$.

• Vector fields ℓ_{-2} and $-\ell_2$ are semicomplete in D.

SEMICOMPLETE VECTOR FIELDS

PROPOSITION

 \bullet σ is a complete holomorphic vector field in D if and only if it admits a decomposition

$$\sigma = \sigma_{-1} \,\ell_{-1} + \sigma_0 \,\ell_0 + \sigma_1 \,\ell_1,$$

where $\sigma_{-1}, \sigma_0, \sigma_1 \in \mathbb{R}$.

• Vector fields ℓ_{-2} and $-\ell_2$ are semicomplete in D.

Vector field ℓ_{-1}

Vector field ℓ_0

Vector field ℓ₁

SLIT HOLOMORPHIC VECTOR FIELDS

In the unit disk \mathbb{D} :

PROPOSITION

The following statements are equivalent.

• b(z) is a semicomplete vector field in $\mathbb D$ satisfying

$$\lim_{r\to 1} \operatorname{Re} b(re^{i\theta}) re^{-i\theta} = 0$$

for all $e^{i\theta} \in \partial \mathbb{D}$, except perhaps for $e^{i\theta} = 1$.

• b(z) can be written as

$$b(z) = b_{-2}\ell_{-2}^{\mathbb{D}}(z) + b_{-1}\ell_{-1}^{\mathbb{D}}(z) + b_{0}\ell_{0}^{\mathbb{D}}(z) + b_{1}\ell_{1}^{\mathbb{D}}(z),$$

for some $b_{-2} \geq 0, b_{-1}, b_0, b_1 \in \mathbb{R}$.

• The flow of b is generically a slit flow in $\mathbb D$ starting at 1.

In the unit disk \mathbb{D} :

Take

$$b(z) = -z \frac{1+z}{1-z} = 2\ell_{-2}^{\mathbb{D}}(z) + \frac{1}{2}\ell_{0}^{\mathbb{D}}(z), \quad \sigma(z) = -iz = \ell_{-1}^{\mathbb{D}}(z) + \frac{1}{4}\ell_{1}^{\mathbb{D}}(z);$$

- The flow of σ is $h_t(z) = ze^{-it}$;
- For a continuous function $u_t:[0,+\infty)\to\mathbb{R},\ u_0=0$, define a Herglotz vector field $V(z,t):=(h_{u_t}^{-1}{}_*b)(z)=\frac{1}{h_{u_t}'(z)}\,b(h_{u_t}(z))=$

$$=-z\frac{e^{iu_t}+z}{e^{iu_t}-z};$$

• The family of maps $\{g_t\}_{t\geq 0}$

$$\begin{cases} \frac{\partial}{\partial t}g_t(z) = -V(t, g_t(z)) = g_t \frac{e^{iu_t} + g_t}{e^{iu_t} - g_t}, & t \ge 0\\ g_0(z) = z, & z \in \mathbb{D}, \end{cases}$$

is a radial decreasing Löwner chain

In the unit disk \mathbb{D} :

Take

$$b(z) = -z \frac{1+z}{1-z} = 2\ell_{-2}^{\mathbb{D}}(z) + \frac{1}{2}\ell_{0}^{\mathbb{D}}(z), \quad \sigma(z) = -iz = \ell_{-1}^{\mathbb{D}}(z) + \frac{1}{4}\ell_{1}^{\mathbb{D}}(z);$$

- The flow of σ is $h_t(z) = ze^{-it}$;
- For a continuous function $u_t:[0,+\infty)\to\mathbb{R},\ u_0=0$, define a Herglotz vector field $V(z,t):=(h_{u_t}^{-1}{}_*b)(z)=\frac{1}{h_{u_t}'(z)}\,b(h_{u_t}(z))=$

$$=-z\frac{e^{iu_t}+z}{e^{iu_t}-z};$$

• The family of maps $\{g_t\}_{t\geq 0}$

$$\begin{cases} \frac{\partial}{\partial t}g_t(z) = -V(t, g_t(z)) = g_t \frac{e^{iu_t} + g_t}{e^{iu_t} - g_t}, & t \ge 0 \\ g_0(z) = z, & z \in \mathbb{D}, \end{cases}$$

In the unit disk \mathbb{D} :

Take

$$b(z) = -z \frac{1+z}{1-z} = 2\ell_{-2}^{\mathbb{D}}(z) + \frac{1}{2}\ell_{0}^{\mathbb{D}}(z), \quad \sigma(z) = -iz = \ell_{-1}^{\mathbb{D}}(z) + \frac{1}{4}\ell_{1}^{\mathbb{D}}(z);$$

- The flow of σ is $h_t(z) = ze^{-it}$;
- For a continuous function $u_t:[0,+\infty)\to\mathbb{R},\ u_0=0$, define a Herglotz vector field $V(z,t) := (h_{u_t}^{-1} b)(z) = \frac{1}{h'(z)} b(h_{u_t}(z)) =$

$$=-z\frac{e^{iu_t}+z}{e^{iu_t}-z};$$

• The family of maps $\{g_t\}_{t>0}$

$$\begin{cases} \frac{\partial}{\partial t}g_t(z) = -V(t, g_t(z)) = g_t \frac{e^{iu_t} + g_t}{e^{iu_t} - g_t}, & t \ge 0\\ g_0(z) = z, & z \in \mathbb{D}, \end{cases}$$

In the unit disk \mathbb{D} :

Take

$$b(z) = -z \frac{1+z}{1-z} = 2\ell_{-2}^{\mathbb{D}}(z) + \frac{1}{2}\ell_{0}^{\mathbb{D}}(z), \quad \sigma(z) = -iz = \ell_{-1}^{\mathbb{D}}(z) + \frac{1}{4}\ell_{1}^{\mathbb{D}}(z);$$

- The flow of σ is $h_t(z) = ze^{-it}$;
- For a continuous function $u_t:[0,+\infty)\to\mathbb{R},\ u_0=0$, define a Herglotz vector field $V(z,t):=(h_{u_t}^{-1}{}_*b)(z)=\frac{1}{h_{u_t}'(z)}b(h_{u_t}(z))=$

$$=-z\frac{e^{iu_t}+z}{e^{iu_t}-z};$$

• The family of maps $\{g_t\}_{t\geq 0}$

$$egin{cases} rac{\partial}{\partial t}g_t(z) = -V(t,g_t(z)) = g_trac{e^{iu_t}+g_t}{e^{iu_t}-g_t}, \quad t\geq 0, \ g_0(z) = z, \quad z\in \mathbb{D}, \end{cases}$$

is a radial decreasing Löwner chain.

• Take b(z) a slit vector field in D,

$$b = b_{-2}\ell_{-2} + b_{-1}\ell_{-1} + b_0\ell_0 + b_1\ell_1, \quad b_{-2} > 0, \ b_{-1}, \ b_0, \ b_1 \in \mathbb{R};$$

• Take $\sigma(z)$ a complete vector field in D,

$$\sigma = \sigma_{-1}\ell_1 + \sigma_0\ell_0 + \sigma_1\ell_1, \quad \sigma_{-1}, \sigma_0, \sigma_1 \in \mathbb{R};$$

such that $\sigma_{-1} \neq 0$.

- Let $\{h_t\}_{t\in\mathbb{R}}$ be the flow of automorphisms of D generated by $\sigma(z)$.
- For a continuous function $u_t:[0,+\infty)\to\mathbb{R},\ u_0=0,$ define a Herglotz vector field $V(z,t):=(h_{u_t}^{-1}{}_*b)(z)=\frac{1}{h_{u_t}'(z)}b(h_{u_t}(z))$
- The family of maps $\{g_t\}_{t\geq 0}$

$$\begin{cases} \frac{\partial}{\partial t} g_t(z) = -V(t, g_t(z)), & t \ge 0, \\ g_0(z) = z, & z \in D, \end{cases}$$

• Take b(z) a slit vector field in D,

$$b = b_{-2}\ell_{-2} + b_{-1}\ell_{-1} + b_0\ell_0 + b_1\ell_1, \quad b_{-2} > 0, \ b_{-1}, \ b_0, \ b_1 \in \mathbb{R};$$

• Take $\sigma(z)$ a complete vector field in D,

$$\sigma = \sigma_{-1}\ell_1 + \sigma_0\ell_0 + \sigma_1\ell_1, \quad \sigma_{-1}, \, \sigma_0, \, \sigma_1 \in \mathbb{R};$$

such that $\sigma_{-1} \neq 0$.

- Let $\{h_t\}_{t\in\mathbb{R}}$ be the flow of automorphisms of D generated by $\sigma(z)$.
- For a continuous function $u_t:[0,+\infty)\to\mathbb{R},\ u_0=0,$ define a Herglotz vector field $V(z,t):=(h_{u_t}^{-1},b)(z)=\frac{1}{h_{u_t}'(z)}b(h_{u_t}(z))$
- The family of maps $\{g_t\}_{t\geq 0}$

$$\begin{cases} \frac{\partial}{\partial t} g_t(z) = -V(t, g_t(z)), & t \ge 0, \\ g_0(z) = z, & z \in D, \end{cases}$$

• Take b(z) a slit vector field in D,

$$b = b_{-2}\ell_{-2} + b_{-1}\ell_{-1} + b_0\ell_0 + b_1\ell_1, \quad b_{-2} > 0, \ b_{-1}, \ b_0, \ b_1 \in \mathbb{R};$$

• Take $\sigma(z)$ a complete vector field in D,

$$\sigma = \sigma_{-1}\ell_1 + \sigma_0\ell_0 + \sigma_1\ell_1, \quad \sigma_{-1}, \, \sigma_0, \, \sigma_1 \in \mathbb{R};$$

such that $\sigma_{-1} \neq 0$.

- Let $\{h_t\}_{t\in\mathbb{R}}$ be the flow of automorphisms of D generated by $\sigma(z)$.
- For a continuous function $u_t: [0, +\infty) \to \mathbb{R}$, $u_0 = 0$, define a Herglotz vector field $V(z, t) := (h_{u_t}^{-1}, b)(z) = \frac{1}{h'_{u_t}(z)} b(h_{u_t}(z))$;
- The family of maps $\{g_t\}_{t\geq 0}$

$$\begin{cases} \frac{\partial}{\partial t} g_t(z) = -V(t, g_t(z)), & t \ge 0, \\ g_0(z) = z, & z \in D, \end{cases}$$

• Take b(z) a slit vector field in D,

$$b = b_{-2}\ell_{-2} + b_{-1}\ell_{-1} + b_0\ell_0 + b_1\ell_1, \quad b_{-2} > 0, \ b_{-1}, \ b_0, \ b_1 \in \mathbb{R};$$

• Take $\sigma(z)$ a complete vector field in D,

$$\sigma = \sigma_{-1}\ell_1 + \sigma_0\ell_0 + \sigma_1\ell_1, \quad \sigma_{-1}, \, \sigma_0, \, \sigma_1 \in \mathbb{R};$$

such that $\sigma_{-1} \neq 0$.

- Let $\{h_t\}_{t\in\mathbb{R}}$ be the flow of automorphisms of D generated by $\sigma(z)$.
- For a continuous function $u_t:[0,+\infty)\to\mathbb{R},\ u_0=0$, define a Herglotz vector field $V(z,t):=(h_{u_t}^{-1},b)(z)=\frac{1}{h_{u_t}'(z)}b(h_{u_t}(z));$
- The family of maps $\{g_t\}_{t\geq 0}$

$$\begin{cases} \frac{\partial}{\partial t}g_t(z) = -V(t, g_t(z)), & t \geq 0, \\ g_0(z) = z, & z \in D, \end{cases}$$

Take the driving function $u_t = \sqrt{\kappa} B_t \ \kappa > 0$, then $G_t := h_{u_t} \circ g_t$ satisfies

$$\left\{ egin{aligned} dG_t(z) &= -b(G_t(z))\,dt + \sqrt{\kappa}\,\sigma(G_t(z))\circ dB_t, & t\geq 0, \ G_0(z) &= z, \end{aligned}
ight. \quad z\in\mathbb{D}.$$

In this case we call $\{G_t\}_{t\geq 0}$ a **slit holomorphic stochastic flow** driven by b and σ .

SLE type	b	σ
Chordal	$2\ell_{-2}$	ℓ_{-1}
Radial	$2\ell_{-2} + \frac{1}{2}\ell_0$	$\ell_{-1} + \frac{1}{4}\ell_{1}$
Dipolar	$2\ell_{-2} - \frac{1}{2}\ell_0$	$\ell_{-1} - \frac{1}{4} \ell_1$

Take the driving function $u_t = \sqrt{\kappa} B_t \ \kappa > 0$, then $G_t := h_{u_t} \circ g_t$ satisfies

$$\begin{cases} dG_t(z) = -b(G_t(z)) dt + \sqrt{\kappa} \, \sigma(G_t(z)) \circ dB_t, & t \geq 0, \\ G_0(z) = z, \end{cases} \quad z \in \mathbb{D}.$$

In this case we call $\{G_t\}_{t\geq 0}$ a **slit holomorphic stochastic flow** driven by b and σ .

SLE type	b	σ
Chordal	$2\ell_{-2}$	ℓ_{-1}
Radial	$2\ell_{-2} + \frac{1}{2}\ell_0$	$\ell_{-1} + \frac{1}{4}\ell_1$
Dipolar	$2\ell_{-2} - \frac{1}{2}\ell_0$	$\ell_{-1}-rac{1}{4}\ell_1$

SLE type	b	σ
Chordal	$2\ell_{-2}$	ℓ_{-1}
Radial	$2\ell_{-2} + \frac{1}{2}\ell_0$	$\ell_{-1} + \frac{1}{4}\ell_1$
Dipolar	$2\ell_{-2} - \frac{1}{2}\ell_0$	$\ell_{-1}-rac{1}{4}\ell_1$

Vector field $2\ell_{-2} + \frac{1}{2}\ell_0$

ABP SLE

Some other examples: Attractive Boundary Point SLE:

 $b=2\ell_{-2}$ as in the chordal SLE, $\sigma=\ell_{-1}+\frac{1}{4}\ell_1$ as in the radial SLE,

$$dG_t = -2\ell_{-2}G_tdt + \sqrt{\varkappa}(\ell_{-1} + \ell_1)(G_t) \circ dB_t,$$

ABP SLE

In terms of the solution of ODE with a random entry:

 $w = g_t(z)$ is a solution to

$$\frac{dw}{dt} = \frac{1}{4}(\tau_t - w)(\bar{\tau}_t w - 1)\frac{\tau_t - w}{\tau_t + w},$$

with the initial condition $w\big|_{t=0}=z$, $au_t=\mathrm{e}^{i\sqrt{\kappa}B_t}$.

ABP SLE

Some sample ABP curves:

ANOTHER EXAMPLE OF SLE

b(z) as in the radial case, and $\sigma(z)$ as in the chordal case:

$$b = 2\ell_{-2} + \frac{1}{2}\ell_0, \quad \sigma = \ell_{-1}.$$

Some sample curves:

NORMALIZATION

If $b_{-2} = 2$ and $\sigma_{-1} = 1$ we call **normalized slit Löwner chains**.

'SIMPLE' TRANSFORMS

- Scaling of the driving function $(b, \sigma, u_t) \mapsto (b, c\sigma, \frac{1}{c}u_t)$;
- Time scaling $(b, \sigma, u_t) \mapsto (cb, \sigma, u_{(ct)})$.

Normalization can be always achieved.

RELATIONSHIP BETWEEN SLES

Motivated by G. Lawler, O. Schramm, and W. Werner (Acta Math. 2001):

THEOREM

Let $\{K_t\}_{t\geq 0}$ be the family of hulls generated by a slit Löwner chain driven by b, σ and u_t . Given another pair of vector fields, \tilde{b} and $\tilde{\sigma}$, there exists and unique a driving function $\tilde{u}_{\tilde{t}}$ and a time reparametrization $\tilde{t}=\lambda(t)$, so that the corresponding slit Löwner chain generates the same family of hulls at least locally in time $0 \leq t \leq T_{\text{max}}$.

THEOREM

Let $\{K_t\}_{t\geq 0}$ be the family of random hulls generated by a normalized slit Löwner chain driven by $\sqrt{\kappa}\,B_t$. Let $\{\tilde{K}_{\tilde{t}}\}_{\tilde{t}\geq 0}$ be the family of radial SLE_{κ} -hulls. There exists a family of positive stopping times $\{T_n\}_{t\in\mathbb{N}},\ T_n\to T_{\max}$, such that the laws of $(K_t,t\in[0,T_n])$ and $(\tilde{K}_{\lambda(t)},t\in[0,T_n])$ are absolutely continuous with respect to each other.

RELATIONSHIP BETWEEN SLES

Motivated by G. Lawler, O. Schramm, and W. Werner (Acta Math. 2001):

THEOREM

Let $\{K_t\}_{t\geq 0}$ be the family of hulls generated by a slit Löwner chain driven by b, σ and u_t . Given another pair of vector fields, \tilde{b} and $\tilde{\sigma}$, there exists and unique a driving function $\tilde{u}_{\tilde{t}}$ and a time reparametrization $\tilde{t}=\lambda(t)$, so that the corresponding slit Löwner chain generates the same family of hulls at least locally in time $0 \leq t \leq T_{\text{max}}$.

THEOREM

Let $\{K_t\}_{t\geq 0}$ be the family of random hulls generated by a normalized slit Löwner chain driven by $\sqrt{\kappa}\,B_t$. Let $\{\tilde{K}_{\tilde{t}}\}_{\tilde{t}\geq 0}$ be the family of radial SLE_κ -hulls. There exists a family of positive stopping times $\{T_n\}_{t\in\mathbb{N}},\ T_n\to T_{\max}$, such that the laws of $(K_t,t\in[0,T_n])$ and $\left(\tilde{K}_{\lambda(t)},t\in[0,T_n]\right)$ are absolutely continuous with respect to each other.

RELATIONSHIP BETWEEN SLES

As a corollary:

Let $\{G_t\}_{t\geq 0}$ be a normalized slit holomorphic stochastic flow driven by b, σ and $u(t) = \sqrt{\kappa} B_t$. Let γ denote the curve generating the hulls $\{K_t\}_{t\geq 0}$. Then, with probability 1,

- if $0 \le \kappa \le 4$, γ is a simple curve,
- if $4 < \kappa < 8$, γ has self-intersections,
- if $\kappa \geq 8$, γ is a space-filling curve.

The Hausdorff dimension of the curve generating the hulls of a normalized slit Löwner chain driven by $\sqrt{\kappa} B_t$ is equal to $\min(2, 1 + \kappa/8)$ with probability 1.

Conformal invariance and domain Markov property

- We have no fixed points \Rightarrow no triples of type (Ω, a, b) ;
- BUT we have embeddable curves.

THEOREM

Let $\xi\colon [0,T]\to \mathbb{D}$ be a simple curve in \mathbb{D} starting at 1. For a given pair of vector fields b and σ there exists t_0 and at most one function g_{t_0} embeddable into a slit Löwner chain $\{g_t\}_{t\geq 0}$ driven by b and σ , such that $g_{t_0}^{-1}(\mathbb{D})=\mathbb{D}\setminus \xi$.

We are able to formulate conformal invariance and domain Markov property for $0 \le \kappa \le 4$.

Conformal invariance and domain Markov property

• Family of curves in \mathbb{D} :

 $\mathcal{F}_{\xi} = \{ \gamma : \gamma \text{ is a non-self-traversing curve starting from the tip of a } (b, \sigma)\text{-embeddable curve } \xi \};$

- \mathcal{T} is the set of all possible (b, σ) -embeddable curves ξ ;
- ullet M is a family of measures indexed by ${\mathcal T}$, that is,

$$M = \{\mu_{\xi} : \xi \in \mathcal{T}, \, \mu_{\xi} \text{ is a measure on } \mathcal{F}_{\xi} \}.$$

Conformal invariance

DEFINITION

The family of measures M indexed by $\mathcal T$ is conformally invariant if for each pair of curves ξ and ξ' from $\mathcal T$

$$\mu_{\xi'} = \phi_* \mu_{\xi},$$

where $\phi \colon \mathbb{D} \setminus \xi \to \mathbb{D} \setminus \xi'$ is the unique conformal isomorphism, $\phi_* \mu$ is pushforward of μ by ϕ .

(The unique ϕ is defined by $\phi = g_{\xi'} \circ g_{\xi}^{-1}$)

Domain Markov Property

DEFINITION

The family of measures M indexed by $\mathcal T$ satisfies the domain Markov property if for any Borel set B the conditional law $\mu_0(\cdot\,|\,\gamma[0,t]=\xi)$ is such that

$$\mu_0(B' | \gamma[0, t] = \xi) = \mu_{\xi}(B).$$

(Here 0 stands for the degenerate curve)

- This is equivalent to the fact that the slit holomorphic flow is a time-homogeneous diffusion;
- In the chordal, radial and dipolar cases CI and DMP coincide with the classical ones.

GFF

Ongoing project (G.I., A.V., Nam-Gyu Kang)

PROBLEM

Traces of which slit holomorphic stochastic flows can be regarded as 'level' lines of Gaussian Free Field modifications?

More precise, which slit holomorphic stochastic flows G_t admit coupling with Dirichlet modifications $\tilde{\Phi}$ of the GFF such that

$$\mathsf{Law}\left(\tilde{\Phi}_{\mathbb{D}}\,\Big|\,\mathcal{F}_t\right) = \mathsf{Law}(\tilde{\Phi}_{\mathbb{D}}\circ \textit{G}_t\,|\,\mathcal{F}_t), \quad \text{ for all } t>0,$$

where \mathcal{F}_t is the sigma algebra of G_t .

We found that for $\kappa=4$ a 2-parameter family of HSFs admits such coupling. This includes, in particular, chordal and dipolar SLE₄ with drifts and some other new SLEs.

GFF

Ongoing project (G.I., A.V., Nam-Gyu Kang)

PROBLEM

Traces of which slit holomorphic stochastic flows can be regarded as 'level' lines of Gaussian Free Field modifications?

More precise, which slit holomorphic stochastic flows G_t admit coupling with Dirichlet modifications $\tilde{\Phi}$ of the GFF such that

$$\mathsf{Law}\left(\tilde{\Phi}_{\mathbb{D}}\,\Big|\,\mathcal{F}_{t}\right) = \mathsf{Law}(\tilde{\Phi}_{\mathbb{D}}\circ \mathit{G}_{t}\,|\,\mathcal{F}_{t}), \quad \text{ for all } t>0,$$

where \mathcal{F}_t is the sigma algebra of G_t .

We found that for $\kappa=4$ a 2-parameter family of HSFs admits such coupling. This includes, in particular, chordal and dipolar SLE₄ with drifts and some other new SLEs.

END

Thank you!

감사합니다.