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One dimensional TASEP with a slow bond: density of particles ρ = 1/2;

Particles jump at rate 1 if they are not at the origin;

Particles jump at rate 1− r, 0 < r < 1 if they are at the origin.
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One of the fundamental questions of equilibrium and non-equilibrium dynamics refers to

the following problem: how can localized defect, especially if it is small with respect to

certain dynamic parameters, affect the macroscopic behavior of a system?

• First/last passage percolation.

• Polymer pinning.

• Driven flows in channels with obstructions.

Such a vanishing presence of the macroscopic effect as a function of the strength

of obstruction represents what sometimes in physics literature is called dynamic phase

transition. The existence of such a transition, its scaling properties, the behavior of the

system near the obstruction are among the most important issues.
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Ulam’s problem or maximal increasing sequence.

Let Π be a Poisson point process of intensity 1 on R2. For points u = (0, 0) and

u′ = (n, n) let Ln denote the maximum number of points which can be collected along

an increasing path from u to u′. We call Ln the length of a maximal path from (0, 0)

to (n, n). It is well known (Vershik and Kerov, Logan and Shep 1977 and Aldous and

Diaconis 1995 an alternative proof), that

lim
n→∞

ELn
n

= 2.

,
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Now, for λ > 0, let Σλ be a one dimensional poisson process of intensity λ on the line

x = y independent of Π. Let Πλ be the point process obtained by superimposing Π and

Σλ. Let Lλn denote the maximum number of points of Πλ on an increasing path from

(0, 0) to (n, n).

Theorem .1. (R. Basu, V.S., A. Sly 2014) For every λ > 0,

lim
n→∞

ELλn
n

> 2.
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Slow bond problem. Consider a discrete last passage percolation on Z2
+, defined by

associating with each vertex x ∈ Z2
+ a random variable ξx ∼ exp(1), and ξx are i.i.d.

for all x ∈ Z2
+. Let π = {x0 = (0, 0), x1, . . . , xn = (n, n)} be an oriented path

connecting (0, 0) to (n, n). Define

L
1
n = max

π

n∑
i=0

ξxi;

It is well known that

lim
n→∞

EL1
n

n
= 4

This description corresponds to totally asymmetric exclusion process X(t) in continuous

time, where the initial configuration is I(−∞,0](k), i.e. so called “step initial condition”.
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Variable ξx=(i,j) represents the time, which particle η−i has to wait to perform j-th jump,

after the time instant that such jump was permitted.
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Now let us modify the distribution of passage times, by taking

ξ(x,y) ∼
{

exp(1) if x 6= y,

exp (1− ε) if x = y.

and ask the same question: does the law of large numbers change for any ε > 0.

In TASEP representation this change corresponds to local modification of the dynamics:

particles are jumping across the edges of E(Z) \ 〈0, 1〉 with intensity 1, and the edge

〈0, 1〉 is crossed at intensity 1− ε.

This version of the process with “slow bond” was proposed by Janowsky and Lebowitz

1991 in an attempt to understand non-equilibrium stationary states.
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The jump-rate decrease at the origin will increase the particle density to the immediate left

of such ”blockage” bond, and decrease the density to its immediate right.

The difficulty to analyze this process comes from the fact that effect of any local

perturbation in non-equilibrium systems carrying fluxes of conserved quantities is felt at

large scales, and what was not obvious, if this perturbation, in addition to local effects,

may have a global effect, in particular change the current in the system. i.e. weather

εc > 0 or LLN for Lεn changes for any value ε > 0.
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The question generated certain controversy in theoretical physics and mathematical

community, which was supported from opposite sides by numerical analysis and some

theoretical arguments, and became known in the literature as “slow bond problem”. Our

second result settles this problem:

Theorem .2. (R. Basu, V.S., A. Sly 2014) In discrete last passage percolation model

for every ε > 0,

lim
n→∞

ELεn
n

> 4. (1)
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Tracy-Widom Limit, Moderate Deviations and n2/3 Fluctuations

The two models that we consider (i.e., the longest increasing subsequence and the

exponential last passage percolation) are exactly solvable in absence of defect and it is

possible to obtain scaling limits and precise moderate deviation tail bounds for Ln. We shall

treat these results from the exactly solvable models as ‘black box’ in our arguments, and as

we shall see using these estimates the problems at hand can be treated as percolation type

questions. Here we collect these ‘black box’ results for the longest increasing subsequence

model as this is the model we shall primarily work with in this paper.
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Scaling limit Baik, Deift and Johansonn in 1999 proved the following fundamental result

about fluctuations of Ln. Let Π be a homogeneous Poisson point process on R2 with

rate 1. Let uλ be a point on the first quadrant of R2 such that the area of the rectangle

with bottom left corner (0, 0) and the top right corner uλ (λ here is unrelated to the

reinforcement parameter). Let Xuλ
denote the maximum number of points on Π on an

increasing path from (0, 0) to uλ. By the scaling of Possion point process it is clear that

the distribution of Xλ = Xuλ
depends on uλ only through λ.

Theorem .3. (BDJ99) Let FTW be the Tracy-Widom distribution. As λ→∞,

Xλ − 2
√
λ

λ1/6

d→ FTW (2)

where
d→ denotes convergence in distribution.
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Moderate deviation estimates We quote the following moderate deviation estimates for

upper and lower tails of longest increasing subsequence by Löwe, Merkl and Löve, Merkl

and Rolles, respectively.

Theorem .4. There exists absolute constants C1, t0 and λ0 > 0 such that for all

λ > λ0 and t > t0, the following holds.

P[Xλ ≥ 2
√
λ+ tλ

1/6
] ≤ e−C1t

3/2
. (3)

Theorem .5. There exists absolute constants C1, t0 and λ0 > 0 such that for all

λ > λ0 and t > t0, the following holds.

P[Xu,u′ ≤ 2
√
λ− tλ1/6

] ≤ e−C1t
3/2
. (4)

Observe that λ0, t0 and C1 can be taken to be same in Theorem .4 and Theorem .5

above.

It is also clear by the translation invariance of Poisson process that the same bounds

can be obtained for the the number of points on a maximal increasing path on any pair of

points that determine a rectangle with area λ.
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Transversal Fluctuation

Consider all increasing paths γ from (0, 0) to (n, n) in Π containing the maximum number

of points from. The maximum transversal fluctuation Fn is defined asmaxx∈[0,n],γ|γ(x)−
x|. The scaling exponent for the transversal fluctuation ξ is defined by

ξ = inf{θ > 0 : lim inf
n

P[Fn ≥ nθ] = 0}.
Johansson (2000) proved the following theorem.

Theorem .6. In the above set-up we have ξ = 2
3.

So this theorem tell us the the maximal fluctuation of the maximal paths from the

diagonal is typically of the order n2/3. This motivates a lot of our construction. However

for our proof, we need a slightly sharper estimate which we establish using Theorem .5 and

Theorem .4.
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Outline of the proof for the case of the continuum last passage percolation.

Due to superadditivity of the passage times

ELλn+m ≥ ELλn + ELλm

for any λ > 0, it suffices to prove that for some N

E[L
λ
N ] > 2N. (5)
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Using Tracy-Widom Limit Theorem.3 and moderate deviation inequalities from Theorem.4

and Theorem.5 we have

E[L
λ
N ] = 2N −O(N

1/3
). (6)

Thus, in order to obtain (5), it is enough to prove that

in the environment with the diagonal reinforced by one-dimensional Poisson

point process of intensity λ > 0, the length of longest increasing path (7)

increases by at least cN
1/3

for arbitrarily large positive constant c > 0.

Most of the work is dedicated to show (7). It is done in several steps.
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Small improvement

First, we observe that the maximal path in unperturbed environment, i.e. with λ = 0, is

expected to spend O(N1/3) of time near the diagonal (within finite distance from it). If

this happens, then essentially without an additional cost it results in average increase of

the length of the maximal path by λO(N1/3), once the reinforcement λ > 0 is added to

the diagonal.

On the other hand, if the maximal path in unperturbed environment deviates from the

diagonal for substantially long time, then we search for an alternative path in unperturbed

environment which returns to the diagonal more frequently and does it in such a manner,

that the loss of the length due to such maneuver in unperturbed configuration at the end

becomes compensated, and actually improved once the reinforcement λ > 0 is added to

the diagonal.
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Bootstrap

Next, we need to “bootstrap” small improvement λN1/3 to cN1/3 for arbitrarily large

constant c > 0.

Consider translates of the diagonal `m = {y = x+m}, where m ∈ [−Kn2/3, Kn2/3],

for some large K ∈ N.

For each m ∈ [−Kn2/3, Kn2/3] and λ > 0 consider new reinforced environment,

obtained from the original one, by adding Poisson point process of intensity λ on `m.

Let Lλ,mn be the length of the longest increasing path from (0, 0) to (n, n) in the

environment with reinforced `m.

Claim. For any λ > 0 and arbitrarily large c1 > 0 there exists m ∈ [−Kn2/3, Kn2/3],

such that

E[L
λ,m
n ] > 2n+ c1n

1/3
, (8)

for any n large enough. Once this is obtained, a little extra work is needed to show that

E[L
λ
n] ≡ E[L

λ,0
n ] > 2n+ c2n

1/3
, (9)

where c2 > 0 can be chosen arbitrarily large, which implies (7).
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To obtain (8) we analyze the unperturbed environment at different scales simultaneously.

• For fixed length scale r, and spatial location x = kr, k ∈ [n/r], we define a

rectangular box Br,x := [kr, (k + 1)r)× [0, n] of width r and hight n.

• Unperturbed environment in the unique way determines the top most maximal path from

(0, 0) to (n, n), a random curve which we denote by π∗.

Our argument relies on the fact that there is a reasonable chance that π∗ “behaves nicely”

while crossing Br,x. By saying that we mean that with probability pλ > 0, bounded away

from 0 and independent of the scale r, the following event occurs:
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there exists non-empty random set of indices Ir,x ⊂ [−Kn2/3, Kn2/3], depending on

the chosen scale r and location x, or, more precisely, depending on the shape and spatial

localization of π∗ within Br,x, such that if the line `i, for some fixed i ∈ Ir,x, was

reinforced by an independent one dimensional Poisson point process of intensity λ > 0,

then there exists a modification of π∗ within Br,x, called a local modification at scale r

and denoted by π∗r,x, which has the following properties:

• π∗x,r coincides with π∗ from (0, 0) to the last Poisson point in unperturbed configuration

before entering Br,x, denote this point by x∗r,x, and coincides with π∗ from the first

Poisson point in unperturbed configuration after exiting Br,x, denote this point by y∗r,x,

till reaching (n, n).

• the restriction of the new path π∗x,r within the box Bx,r, i.e. starting at x∗r,x and

ending at y∗r,x, has transversal fluctuations of order O(r2/3);

• Increase of the length obtained from such local modification at the scale r within Br,x,

integrated over all lines `i, i ∈ [−Kn2/3, Kn2/3], and averaged over reinforcements

by λ > 0 is at least c(λ)r.

Thus the total average improvement from doing local perturbations at fixed scale r in all

boxes of scale r between (0, 0) and (n, n) would result in increase c̃(λ)n.
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By choosing scales properly we ensure that at given location and given m the

improvement is obtained only at one scale. This allows us to sum up the integrated

improvement over different scales, and by considering a large number of scales we obtain

a total improvement
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