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Joint work with Nikolai Makarov

— Topology of quadrature domains (arXiv:1307.0487)
— Sharpness of connectivity bounds for quadrature domains (arXiv:14?77.7777)



QUADRATURE DOMAIN

An open connected set Q2 C Cisa quadrature domain (QD) if the identity
/ f(2)dA(z) = D> _ " (z)
Q -
J
holds for any f analytic on Q.

¢j's are complex numbers, k;'s are the orders of derivatives.

Using residue calculation, above can be rewritten.

1
/ f(z) dA(z) = —_?{ f(w) r(w) dw,
Q 2i Jaq
for some rational function r.

We call the above identity quadrature identity and the function r quadrature
function.



ExamMpLES OF QD

ool B g

(The complements of QDs are shaded.)

- disk centered at a with radius R: r(z) = R?*/(z — a);
L
222'

cardioid: r(z) = ; +
b

z +a’
- exterior of an ellipse: r(z) =az+ b;

- deltoid: r(z) = Z°.

- Neumann oval: r(z) =

(Given Q, the quadrature function r is unique. Not the other way.)
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CONNECTIVITY OF QUADRATURE DOMAIN

Let us define the connectivity of Q2 by

conn 2 = (number of components in Q°)
In general, for a given r, conn Q is hard to find.
Theorem [Lee-Makarov] When Q is an unbounded QD:

connQ < min{d +n—1,2d — 2}.
When Q is a bounded QD:

connQ < min{d + n— 2,2d — 4}.
Here, we defined d:

the degree of the rational map r;
n:

the number of distinct poles in r.
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PROOF: THE MAIN STEPS

The proof of this theorem uses Schwarz function of quadrature domain.

We deform the Schwarz function into a rational map, r(z), such that each
component of Q° (whose boundary is fixed under the Schwarz reflection)
becomes the attracting fixed point of the map z — r(z).

Then we count the attracting fixed point using the Fatou argument in complex
dynamics.
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SHARPNESS

Theorem [Lee-Makarov] The connectivity bounds are sharp. l.e. there exists a
quadrature domain that saturates the bound.

We will show this by explicitly constructing a “maximal” quadrature domain.



DROPLET

Given an external potential Q with appropriate boundary condition, consider
the equilibrium measure that minimizes the Coulomb (logarithmic potential)

energy:
i) = / Q) du(z) + | [ tog =7 dn(z)d(w).

Let droplet = support of equilibrium measure, and denote it by K.

Let us say Q is an “Algebraic Hele-Shaw potential” if

Q(z) = |z)> —2Re /.Z R(w) dw z € supp K,
for some rational function R. (All "che poles of R are then outside K.)
Examples:

— For R(z) = az, |a| <1 the droplet is an ellipse.
— For R(z) = z* the droplet can be a deltoid.



DROPLET® = QDs

If Q is an “algebraic Hele-Shaw potential”, the complement of droplet satisfies

quadrature identity:
f(z) 7{ f(z) R
KC

(If K¢ is connected, K€ is a QD with quadrature function R.)

For K¢ with multiple components, let us denote each connected component of
K€ by Q;, i.e.
K =]
J

Then there is a corresponding decomposition of R:
R(z) = n(2)
j

such that rj(z) has singularities only on €; and rj(co) = 0 for any bounded ;.



DROPLET® = QDS (CONTINUED)

Lemma. Q; is a QD with quadrature function r;.

Lemma (converse) Given QDs Q;'s with quadrature functions rj(z)’s, the
complement of | |, €; makes a droplet with the external potential:

Q(z) = |z|> —2Re / R(w), R(z)=>_r(2).

j

el 1
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DEFORMATION OF DROPLET/QD

Consider deformation of unbounded QD such that the quadrature function
remains fixed.

By the previous observation, it corresponds to deformation of droplet under a
fixed R or under a fixed external potential Q.

Changing the total mass (area of K) = Hele-Shaw flow from a source at oc.

R(z) = 37° <Q(z) =|z]* + 2Roz3>

(Deformation of bounded QD = Hele-Shaw from a finite source.)



TwWO PROPERTIES OF THE HELE-SHAW FLOW

For algebraic Hele-Shaw potential, the boundary 0K is an algebraic curve
(Gustafsson ‘83), i.e.

0K = {(x,y) : Poly(x,y) = 0}.

For such boundary, K shrinks monotonically as t ™\, where t is the area of the
droplet. That is,
K(t') C Int K(t) for t' < t.

(In fact, K should be the polynomial convex hull of K to be exact.)

Continuity: K(t) = clos U K(t").

t/ <t



STRATEGY OF THE PROOF

1. Existence of a special QDs called Suffridge domains. These will be used as
“building blocks" .

2. Construction of “maximal” QD by combining (i.e. disjoint union of)
“building blocks" .

3. Hele-Shaw flow to glue these multiple QDs into a single QD.



EXPLICIT CONSTRUCTION

(Apollonian) packing of m disks Packing m cardioids

L DA D

The “quadrature function” of the union of QDs is given by the summation of
each quadrature function.

Small (backward) Hele-Shaw flow = A connected (unbounded) QD

connQ = 2m, conn Q) = 3m.
d=m+1, d=2m+1.
n=m+1, n=m+ 1.

Theorem says that the maximal connectivities are:

(m+1)+(m+1)—2=2m (Left);

Q<d+n—-2=
conn ) < n {(2m+1)+(m+1)—2:3m (Right).
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FOR HIGHER ORDER POLES IN QUADRATURE FUNCTION

THEOREM (AHARONOV-SHAPIRO '76)

Given a univalent polynomial P of degree d (with P(0) = 0), the conformal
image P(D) is a @D whose quadrature function has a pole singularity (of order
d) only at the origin.

Example: Cardioid is the simplest non-trivial case, with double pole at the
origin.

(Cardioid) = P(D), P(z) =z + %z ,
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Suffridge curves (building blocks)

Suffridge domains: Conformal image P(ID) the univalent polynomial, P, of
degree d such that all the d — 1 critical points are on the unit circle, and there
are exactly d — 1 components in the complement of clos P(D) (or, d — 2
double points).

BCE

d=3 d=4 d=5

THEOREM (SUFFRIDCE ’72)
For any d > 1 there exists a Suffridge curve.

We will give more geometric proof than the original proof by Suffridge.
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PACKING BY SUFFRIDGE CURVES

Jordan curve is Cardioid-like if it is smooth with positive curvature (convex)
except a single cusp.

Jordan curve is deltoid-like if it has three outward cusps and at least one
concave side (i.e. negative curvature).

All the Suffridge curves have Cardioid-like outer boundary
and Deltoid-like inner boundaries.

The following guarantees the packing construction.

Lemma. Given a cardioid-like curve and a deltoid-like curve, one can inscribe
the former in the latter with four intersection such that there are four deltoid-like
curves.

[BT} conc P € AQ
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UNIVALENT POLYNOMIALS WITH A CONSTANT CONFORMAL CURVATURE

Let Sy ={P(z) =z+ @z’ + -+ ag_1z97' + %zd: P is univalent in D}.

Lemma. For P € Sy, P(0D) has a constant conformal curvature:

d . dP(e’’) d+1
a0 g0 T 2

Proof) The product of d — 1 critical points is £1.

By the univalency, there should not be any critical point in .
= All the critical points of P(z) are on the unit circle.

— P'(z) = 2% *P'(1/Z) (Self-inversive polynomial).

= P'(z) 2% for z € OD. QED.
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EXISTENCE OF SUFFRIDGE CURVE

Theorem [Lee-Makarov]. Extremal points of S, are Suffridge polynomials.
l.e. the conformal image of the circle is a Suffridge curve (having d — 2 double
points and d — 1 cusps).

Proof is by contradiction. We assume that the extremal point, say P, of Sy is
not a Suffridge polynomial, i.e. P(T) has N < d — 2 double points.

i) P € Sq has d — 2 real dimension.

ii) At each double point, the tangential deformation is allowed. But the
perpendicular deformation is not allowed. So there are N constraints.

iii) There remains d — 2 — N real dimensional space where one can wiggle P
within Sg. CONTRADICTION.
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APPLICATION

Fundamental theorem of algebra for harmonic polynomials:

Given (deg p,deg g) = (n, m), find the maximal number of roots satisfying:

p(z) —q(z) = 0.

— For m =0, n is the maximal number of roots.

— For m = n—1, n* is the maximal number of roots (Wilmshurst '94).

— For m=1, 3n — 2 is the maximal number of roots (Khavinson—éwiatek, '03;
Geyer, '08).

— For an arbitrary (n, m), Wilmshurst conjectured that m(m — 1) +3n— 2 is
the maximal number of roots. However, counter-examples were found in
[Lee-Lerario-Lundberg, ‘14].



RELATION

For m = 1: the roots of P(z) = Z is the critical points of
Q(z) = |z)* — 2Re /P(W) dw.
Critical points are either local minima or saddle points.

Local minimum is where one can have a birth of droplet.

#(local minima) = #(droplet components) = #(connectivity of K°).



OPEN PROBLEMS

For a degree d polynomial P(z), how many roots are there for the following
equation?

Conjecture: 3d.

N
N

N



Thank you!



