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Joint work with Nikolai Makarov

– Topology of quadrature domains (arXiv:1307.0487)
– Sharpness of connectivity bounds for quadrature domains (arXiv:14??.????)
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Quadrature domain

An open connected set Ω ⊂ Ĉ is a quadrature domain (QD) if the identity∫
Ω

f (z) dA(z) =
∑
j

cj f
(kj )(zj)

holds for any f analytic on Ω.

cj ’s are complex numbers, kj ’s are the orders of derivatives.

Using residue calculation, above can be rewritten.∫
Ω

f (z) dA(z) =
1

2i

∮
∂Ω

f (w) r(w) dw ,

for some rational function r .

We call the above identity quadrature identity and the function r quadrature
function.
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Examples of QD

(The complements of QDs are shaded.)

- disk centered at a with radius R: r(z) = R2/(z − a);

- cardioid: r(z) =
3

2z
+

1

2z2
;

- Neumann oval: r(z) =
b

z − a
+

b

z + a
;

- exterior of an ellipse: r(z) = az + b;

- deltoid: r(z) = z2.

(Given Ω, the quadrature function r is unique. Not the other way.)
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Connectivity of quadrature domain

Let us define the connectivity of Ω by

connΩ = (number of components in Ωc).

In general, for a given r , connΩ is hard to find.

Theorem [Lee-Makarov] When Ω is an unbounded QD:

connΩ ≤ min{d + n − 1, 2d − 2}.

When Ω is a bounded QD:

connΩ ≤ min{d + n − 2, 2d − 4}.

Here, we defined d : the degree of the rational map r ;

n : the number of distinct poles in r .
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Proof: The main steps

The proof of this theorem uses Schwarz function of quadrature domain.

We deform the Schwarz function into a rational map, r(z), such that each
component of Ωc (whose boundary is fixed under the Schwarz reflection)
becomes the attracting fixed point of the map z 7→ r(z).

Then we count the attracting fixed point using the Fatou argument in complex
dynamics.
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Sharpness

Theorem [Lee-Makarov] The connectivity bounds are sharp. I.e. there exists a
quadrature domain that saturates the bound.

We will show this by explicitly constructing a “maximal” quadrature domain.
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Droplet

Given an external potential Q with appropriate boundary condition, consider
the equilibrium measure that minimizes the Coulomb (logarithmic potential)
energy:

I [µ] :=

∫
C

Q(z) dµ(z) +

∫∫
log

1

|z − w | dµ(z)dµ(w).

Let droplet = support of equilibrium measure, and denote it by K .

Let us say Q is an “Algebraic Hele-Shaw potential” if

Q(z) = |z |2 − 2Re

∫ z

R(w) dw z ∈ suppK ,

for some rational function R. (All the poles of R are then outside K .)

Examples:
– For R(z) = a z , |a| < 1 the droplet is an ellipse.
– For R(z) = z2 the droplet can be a deltoid.
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dropletc = QDs

If Q is an “algebraic Hele-Shaw potential”, the complement of droplet satisfies
quadrature identity: ∫

Kc

f (z) dA(z) =
1

2i

∮
∂K

f (z) R(z) dz .

(If K c is connected, K c is a QD with quadrature function R.)

For K c with multiple components, let us denote each connected component of
K c by Ωj , i.e.

K c =
⊔
j

Ωj .

Then there is a corresponding decomposition of R:

R(z) =
∑
j

rj(z)

such that rj(z) has singularities only on Ωj and rj(∞) = 0 for any bounded Ωj .
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dropletc = QDs (continued)

Lemma. Ωj is a QD with quadrature function rj .

Lemma (converse) Given QDs Ωj ’s with quadrature functions rj(z)’s, the
complement of

⊔
j Ωj makes a droplet with the external potential:

Q(z) = |z |2 − 2Re

∫ z

R(w), R(z) =
∑
j

rj(z).

R(z) =
1

6(z − 1)

(
Q(z) = |z |2 +

1

3
log

1

|z − 1|

)
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Deformation of droplet/QD

Consider deformation of unbounded QD such that the quadrature function
remains fixed.

By the previous observation, it corresponds to deformation of droplet under a
fixed R or under a fixed external potential Q.

Changing the total mass (area of K) = Hele-Shaw flow from a source at ∞.

R(z) = 3z2
(

Q(z) = |z |2 + 2Re z3
)

(Deformation of bounded QD = Hele-Shaw from a finite source.)
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Two properties of the Hele-Shaw flow

For algebraic Hele-Shaw potential, the boundary ∂K is an algebraic curve
(Gustafsson ‘83), i.e.

∂K = {(x , y) : Poly(x , y) = 0}.

For such boundary, K shrinks monotonically as t ↘ where t is the area of the
droplet. That is,

K(t′) ⊂ IntK(t) for t′ < t.

(In fact, K should be the polynomial convex hull of K to be exact.)

Continuity: K(t) = clos
⋃
t′<t

K(t′).
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Strategy of the proof

1. Existence of a special QDs called Suffridge domains. These will be used as
“building blocks”.

2. Construction of “maximal” QD by combining (i.e. disjoint union of)
“building blocks”.

3. Hele-Shaw flow to glue these multiple QDs into a single QD.
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Explicit construction

(Apollonian) packing of m disks Packing m cardioids

The “quadrature function” of the union of QDs is given by the summation of
each quadrature function.

Small (backward) Hele-Shaw flow ⇒ A connected (unbounded) QD

connΩ = 2m, connΩ = 3m.

d = m + 1, d = 2m + 1.

n = m + 1, n = m + 1.

Theorem says that the maximal connectivities are:

connΩ ≤ d + n − 2 =

{
(m + 1) + (m + 1)− 2 = 2m (Left);

(2m + 1) + (m + 1)− 2 = 3m (Right).

14 / 23



For higher order poles in quadrature function

Theorem (Aharonov-Shapiro ’76)

Given a univalent polynomial P of degree d (with P(0) = 0), the conformal
image P(D) is a QD whose quadrature function has a pole singularity (of order
d) only at the origin.

Example: Cardioid is the simplest non-trivial case, with double pole at the
origin.

(Cardioid) = P(D), P(z) = z +
1

2
z2, r(z) =

3

2z
+

1

2z2
.
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Suffridge curves (building blocks)

Suffridge domains: Conformal image P(D) the univalent polynomial, P, of
degree d such that all the d − 1 critical points are on the unit circle, and there
are exactly d − 1 components in the complement of closP(D) (or, d − 2
double points).

d = 3 d = 4 d = 5 d = 6 d = 7

Theorem (Suffridge ’72)

For any d ≥ 1 there exists a Suffridge curve.

We will give more geometric proof than the original proof by Suffridge.
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Packing by Suffridge curves

Jordan curve is Cardioid-like if it is smooth with positive curvature (convex)
except a single cusp.

Jordan curve is deltoid-like if it has three outward cusps and at least one
concave side (i.e. negative curvature).

All the Suffridge curves have Cardioid-like outer boundary
and Deltoid-like inner boundaries.

The following guarantees the packing construction.

Lemma. Given a cardioid-like curve and a deltoid-like curve, one can inscribe
the former in the latter with four intersection such that there are four deltoid-like
curves.
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Univalent polynomials with a constant conformal curvature

Let Sd = {P(z) = z + a2z2 + · · ·+ ad−1zd−1 + 1
d

zd : P is univalent in D}.

Lemma. For P ∈ Sd , P(∂D) has a constant conformal curvature:

d

dθ
arg

dP(e iθ)

dθ
=

d + 1

2
.

Proof) The product of d − 1 critical points is ±1.

By the univalency, there should not be any critical point in D.

=⇒ All the critical points of P(z) are on the unit circle.

=⇒ P ′(z) = zd−1P ′(1/z) (Self-inversive polynomial).

=⇒ P ′(z) ∝ z
d−1

2 for z ∈ ∂D. QED.
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Existence of Suffridge curve

Theorem [Lee-Makarov]. Extremal points of Sd are Suffridge polynomials.
I.e. the conformal image of the circle is a Suffridge curve (having d − 2 double
points and d − 1 cusps).

Proof is by contradiction. We assume that the extremal point, say P, of Sd is
not a Suffridge polynomial, i.e. P(T) has N < d − 2 double points.
i) P ∈ Sd has d − 2 real dimension.
ii) At each double point, the tangential deformation is allowed. But the
perpendicular deformation is not allowed. So there are N constraints.

iii) There remains d − 2− N real dimensional space where one can wiggle P
within Sd . CONTRADICTION.
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Application

Fundamental theorem of algebra for harmonic polynomials:

Given (deg p, deg q) = (n,m), find the maximal number of roots satisfying:

p(z)− q(z) = 0.

– For m = 0, n is the maximal number of roots.
– For m = n − 1, n2 is the maximal number of roots (Wilmshurst ’94).
– For m = 1, 3n − 2 is the maximal number of roots (Khavinson-Świa̧tek, ’03;
Geyer, ’08).
– For an arbitrary (n,m), Wilmshurst conjectured that m(m − 1) + 3n − 2 is
the maximal number of roots. However, counter-examples were found in
[Lee-Lerario-Lundberg, ‘14].

20 / 23



Relation

For m = 1: the roots of P(z) = z is the critical points of

Q(z) = |z |2 − 2Re

∫
P(w) dw .

Critical points are either local minima or saddle points.

Local minimum is where one can have a birth of droplet.

#(local minima) = #(droplet components) = #(connectivity of K c).
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Open problems

For a degree d polynomial P(z), how many roots are there for the following
equation?

P(z) = z2.

Conjecture: 3d .
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Thank you!
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