Topology of Quadrature Domains

Seung-Yeop Lee (University of South Florida)

August 12, 2014

Joint work with Nikolai Makarov

- Topology of quadrature domains (arXiv:1307.0487)
- Sharpness of connectivity bounds for quadrature domains (arXiv:14??.????)

An open connected set $\Omega \subset \widehat{\mathbb{C}}$ is a quadrature domain (QD) if the identity

$$
\int_{\Omega} f(z) d A(z)=\sum_{j} c_{j} f^{\left(k_{j}\right)}\left(z_{j}\right)
$$

holds for any f analytic on Ω.
c_{j} 's are complex numbers, k_{j} 's are the orders of derivatives.
Using residue calculation, above can be rewritten.

$$
\int_{\Omega} f(z) d A(z)=\frac{1}{2 i} \oint_{\partial \Omega} f(w) r(w) d w,
$$

for some rational function r.
We call the above identity quadrature identity and the function r quadrature function.

Examples of QD

(The complements of QDs are shaded.)

- disk centered at a with radius $R: r(z)=R^{2} /(z-a)$;
- cardioid: $r(z)=\frac{3}{2 z}+\frac{1}{2 z^{2}}$;
- Neumann oval: $r(z)=\frac{b}{z-a}+\frac{b}{z+a}$;
- exterior of an ellipse: $r(z)=a z+b$;
- deltoid: $r(z)=z^{2}$.
(Given Ω, the quadrature function r is unique. Not the other way.)

Connectivity of quadrature domain

Let us define the connectivity of Ω by

$$
\operatorname{conn} \Omega=\left(\text { number of components in } \Omega^{c}\right)
$$

In general, for a given r, conn Ω is hard to find.

Theorem [Lee-Makarov] When Ω is an unbounded QD:

$$
\operatorname{conn} \Omega \leq \min \{d+n-1,2 d-2\}
$$

When Ω is a bounded QD :

$$
\operatorname{conn} \Omega \leq \min \{d+n-2,2 d-4\}
$$

Here, we defined d : the degree of the rational map r; n : the number of distinct poles in r.

Proof: The main steps

The proof of this theorem uses Schwarz function of quadrature domain.
We deform the Schwarz function into a rational map, $r(z)$, such that each component of Ω^{c} (whose boundary is fixed under the Schwarz reflection) becomes the attracting fixed point of the map $z \mapsto \overline{r(z)}$.

Then we count the attracting fixed point using the Fatou argument in complex dynamics.

Sharpness

Theorem [Lee-Makarov] The connectivity bounds are sharp. I.e. there exists a quadrature domain that saturates the bound.

We will show this by explicitly constructing a "maximal" quadrature domain.

Droplet

Given an external potential Q with appropriate boundary condition, consider the equilibrium measure that minimizes the Coulomb (logarithmic potential) energy:

$$
I[\mu]:=\int_{\mathbb{C}} Q(z) d \mu(z)+\iint \log \frac{1}{|z-w|} d \mu(z) d \mu(w)
$$

Let droplet $=$ support of equilibrium measure, and denote it by K.

Let us say Q is an "Algebraic Hele-Shaw potential" if

$$
Q(z)=|z|^{2}-2 \operatorname{Re} \int^{z} R(w) d w \quad z \in \operatorname{supp} K
$$

for some rational function R. (All the poles of R are then outside K.)
Examples:

- For $R(z)=a z,|a|<1$ the droplet is an ellipse.
- For $R(z)=z^{2}$ the droplet can be a deltoid.

DROPLET $^{c}=$ QDS

If Q is an "algebraic Hele-Shaw potential", the complement of droplet satisfies quadrature identity:

$$
\int_{K^{c}} f(z) d A(z)=\frac{1}{2 i} \oint_{\partial K} f(z) R(z) d z .
$$

(If K^{c} is connected, K^{c} is a QD with quadrature function R.)
For K^{c} with multiple components, let us denote each connected component of K^{c} by Ω_{j}, i.e.

$$
K^{c}=\bigsqcup_{j} \Omega_{j} .
$$

Then there is a corresponding decomposition of R :

$$
R(z)=\sum_{j} r_{j}(z)
$$

such that $r_{j}(z)$ has singularities only on Ω_{j} and $r_{j}(\infty)=0$ for any bounded Ω_{j}.

DROPLET $^{c}=$ QDs (CONTINUED)

Lemma. Ω_{j} is a QD with quadrature function r_{j}.
Lemma (converse) Given QDs Ω_{j} 's with quadrature functions $r_{j}(z)$'s, the complement of $\bigsqcup_{j} \Omega_{j}$ makes a droplet with the external potential:

$$
Q(z)=|z|^{2}-2 \operatorname{Re} \int^{z} R(w), \quad R(z)=\sum_{j} r_{j}(z)
$$

$$
R(z)=\frac{1}{6(z-1)} \quad\left(Q(z)=|z|^{2}+\frac{1}{3} \log \frac{1}{|z-1|}\right)
$$

Deformation of droplet/QD

Consider deformation of unbounded QD such that the quadrature function remains fixed.

By the previous observation, it corresponds to deformation of droplet under a fixed R or under a fixed external potential Q.

Changing the total mass (area of K) $=$ Hele-Shaw flow from a source at ∞.

$$
R(z)=3 z^{2} \quad\left(Q(z)=|z|^{2}+2 \operatorname{Re} z^{3}\right)
$$

(Deformation of bounded $\mathrm{QD}=$ Hele-Shaw from a finite source.)

Two properties of the Hele-Shaw flow

For algebraic Hele-Shaw potential, the boundary ∂K is an algebraic curve (Gustafsson '83), i.e.

$$
\partial K=\{(x, y): \operatorname{Poly}(x, y)=0\}
$$

For such boundary, K shrinks monotonically as $t \searrow$ where t is the area of the droplet. That is,

$$
K\left(t^{\prime}\right) \subset \operatorname{Int} K(t) \quad \text { for } t^{\prime}<t
$$

(In fact, K should be the polynomial convex hull of K to be exact.)
Continuity: $K(t)=\operatorname{clos} \bigcup_{t^{\prime}<t} K\left(t^{\prime}\right)$.

Strategy of the proof

1. Existence of a special QDs called Suffridge domains. These will be used as "building blocks".
2. Construction of "maximal" QD by combining (i.e. disjoint union of) "building blocks".
3. Hele-Shaw flow to glue these multiple QDs into a single QD.

Explicit construction

(Apollonian) packing of m disks
Packing m cardioids

The "quadrature function" of the union of QDs is given by the summation of each quadrature function.
Small (backward) Hele-Shaw flow \Rightarrow A connected (unbounded) QD

$$
\begin{array}{ll}
\operatorname{conn} \Omega=2 m, & \operatorname{conn} \Omega=3 m \\
d=m+1, & d=2 m+1 \\
n=m+1, & n=m+1
\end{array}
$$

Theorem says that the maximal connectivities are:

$$
\operatorname{conn} \Omega \leq d+n-2=\left\{\begin{array}{l}
(m+1)+(m+1)-2=2 m \quad(\text { Left }) \\
(2 m+1)+(m+1)-2=3 m \quad \text { (Right })
\end{array}\right.
$$

For higher order poles in quadrature function

Theorem (Aharonov-Shapiro '76)

Given a univalent polynomial P of degree d (with $P(0)=0$), the conformal image $P(\mathbb{D})$ is a $Q D$ whose quadrature function has a pole singularity (of order d) only at the origin.

Example: Cardioid is the simplest non-trivial case, with double pole at the origin.

$$
(\text { Cardioid })=P(\mathbb{D}), \quad P(z)=z+\frac{1}{2} z^{2}, \quad r(z)=\frac{3}{2 z}+\frac{1}{2 z^{2}} .
$$

Suffridge curves (building blocks)

Suffridge domains: Conformal image $P(\mathbb{D})$ the univalent polynomial, P, of degree d such that all the $d-1$ critical points are on the unit circle, and there are exactly $d-1$ components in the complement of $\operatorname{clos} P(\mathbb{D})$ (or, $d-2$ double points).

Theorem (SuFfridge '72)

For any $d \geq 1$ there exists a Suffridge curve.
We will give more geometric proof than the original proof by Suffridge.

Packing by Suffridge curves

Jordan curve is Cardioid-like if it is smooth with positive curvature (convex) except a single cusp.

Jordan curve is deltoid-like if it has three outward cusps and at least one concave side (i.e. negative curvature).

All the Suffridge curves have Cardioid-like outer boundary and Deltoid-like inner boundaries.

The following guarantees the packing construction.
Lemma. Given a cardioid-like curve and a deltoid-like curve, one can inscribe the former in the latter with four intersection such that there are four deltoid-like curves.

Univalent polynomials with a constant conformal curvature

Let $\mathcal{S}_{d}=\left\{P(z)=z+a_{2} z^{2}+\cdots+a_{d-1} z^{d-1}+\frac{1}{d} z^{d}: P\right.$ is univalent in $\left.\mathbb{D}\right\}$.
Lemma. For $P \in \mathcal{S}_{d}, P(\partial \mathbb{D})$ has a constant conformal curvature:

$$
\frac{d}{d \theta} \arg \frac{d P\left(e^{i \theta}\right)}{d \theta}=\frac{d+1}{2}
$$

Proof) The product of $d-1$ critical points is ± 1.
By the univalency, there should not be any critical point in \mathbb{D}.
\Longrightarrow All the critical points of $P(z)$ are on the unit circle.
$\Longrightarrow P^{\prime}(z)=z^{d-1} \overline{P^{\prime}(1 / \bar{z})}$ (Self-inversive polynomial).
$\Longrightarrow P^{\prime}(z) \propto z^{\frac{d-1}{2}}$ for $z \in \partial \mathbb{D}$. QED.

Existence of Suffridge curve

Theorem [Lee-Makarov]. Extremal points of \mathcal{S}_{d} are Suffridge polynomials. I.e. the conformal image of the circle is a Suffridge curve (having $d-2$ double points and $d-1$ cusps).

Proof is by contradiction. We assume that the extremal point, say P, of \mathcal{S}_{d} is not a Suffridge polynomial, i.e. $P(\mathbb{T})$ has $N<d-2$ double points.
i) $P \in \mathcal{S}_{d}$ has $d-2$ real dimension.
ii) At each double point, the tangential deformation is allowed. But the perpendicular deformation is not allowed. So there are N constraints.

iii) There remains $d-2-N$ real dimensional space where one can wiggle P within \mathcal{S}_{d}. CONTRADICTION.

Fundamental theorem of algebra for harmonic polynomials:
Given $(\operatorname{deg} p, \operatorname{deg} q)=(n, m)$, find the maximal number of roots satisfying:

$$
p(z)-\overline{q(z)}=0
$$

- For $m=0, n$ is the maximal number of roots.
- For $m=n-1, n^{2}$ is the maximal number of roots (Wilmshurst '94).
- For $m=1,3 n-2$ is the maximal number of roots (Khavinson-Świątek, '03;

Geyer, '08).

- For an arbitrary (n, m), Wilmshurst conjectured that $m(m-1)+3 n-2$ is the maximal number of roots. However, counter-examples were found in [Lee-Lerario-Lundberg, '14].

Relation

For $m=1$: the roots of $P(z)=\bar{z}$ is the critical points of

$$
Q(z)=|z|^{2}-2 \operatorname{Re} \int P(w) d w .
$$

Critical points are either local minima or saddle points.
Local minimum is where one can have a birth of droplet.
$\#($ local minima $)=\#($ droplet components $)=\#\left(\right.$ connectivity of $\left.K^{c}\right)$.

Open problems

For a degree d polynomial $P(z)$, how many roots are there for the following equation?

$$
P(z)=\bar{z}^{2} .
$$

Conjecture: 3d.

Thank you!

