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OUTLINE OF TALK

Statement of main theorem (w. C. Beneš and F. Viklund) on planar
loop-erased random walk (LERW)

Restatement in terms of scaling limit

History of previous results

Natural parametrization and conjecture on scaling limit of LERW

Ideas behind proof

Loop measures (random walk and Brownian motion)
Negative weights (“zippers” of Kenyon; “spinors”)
Combinatorial identity
Estimating the quantities in the limit
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Setup for problem

A — finite simply connected subset of Z2 = Z + i Z containing the
origin. ∂A = {z : dist(z ,A) = 1}.
Associated to A is a simply connected domain DA which is the interior
of the union of the closed squares of side one containing ζ ∈ A.

a, b distinct elements of the “edge boundary” of A,
a = (wa, za), b = (zb,wb) with wa,wb ∈ ∂A, za, zb ∈ A. We also
write a, b for the midpoints of these edges which are on ∂DA.

fA : D → D the conformal transformation with fA(0) = 0, fA(a) = 1.
We define θ by f (b) = e2iθ.

rA = 1/|f ′A(0)| is the conformal radius of DA (with respect to 0).
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We write p(x , y) = 1/4 if |x − y | = 1 for the usual random walk edge
weight.

ω = [ω0, ω1, . . . , ωn] for a nearest neighbor path

p(ω) =
n∏

j=1

p(ωj−1, ωj) = (1/4)|ω|.

If a, b are boundary edges in A, we let KA(a, b) denote the set of
paths ω : a→ b in A.

HA(a, b) =
∑

ω∈KA(a,b)

p(ω).

In this case it is just the probability that a random walk starting with
edge a exits A at edge b.
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A path is a self-avoiding walk (SAW) if ωj 6= ωk for j < k . We will use

η = [η0, . . . , ηk ],

for SAWs.

Let WA(a, b) denote the set of paths in KA(a, b) that are
self-avoiding walks.

There is a deterministic operation that assigns to each ω ∈ KA(a, b) a
self-avoiding subpath LE (ω) ∈ WA(a, b) by (chronological) loop
erasure.
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We define

p̂(η) = p̂A(η; a, b) =
∑

ω∈KA(a,b),LE(ω)=η

p(ω),

Then ∑
η∈WA(a,b)

p̂(η) = HA(a, b).

Let W+ (W−) denote the set η ∈ WA(a, b) that use the directed
edge ~01 (resp., ~10). Let W∗ =W+ ∪W−.

The probability that the loop-erased walk from a to b in A goes
through the undirected edge (0, 1) is

HA(a, b)−1
∑
η∈W∗

p̂(η).
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Theorem ( with C. Beneš and F. Viklund)

There exist c <∞ and u > 0 such that if A is a simply connected subset
of Z× iZ containing the origin, and a, b are points on the edge boundary,
then the probability that the LERW from a to b uses the undirected edge
{0, 1} is

c r
−3/4
A

[
sin3 θ + O(r−uA )

]
.
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Suppose D is a Jordan domain containing the origin and a, b are
distinct points in ∂D.

Let f : D → D with f (0) = 0, f (a) = 1, f (b) = e2iθ and
rD = |f ′(0)|−1.

Suppose we put in D a grid with lattice spacing 1/n and let an, bn be
boundary points near a, b.

Then as n→∞, the probability that the loop-erased walk goes
though the unordered edge [0, 1/n] is asymptotic to

c n−3/4 r
3/4
A sin3 θ.

The function GD(z) = rD(z)−3/4 sin3 argD(z ; a, b) is the Green’s
function for the Schramm-Loewner evolution (SLE ) with parameter 2.
If γ is an SLE2 path from a to b in D then the probability that it gets
within distance ε of 0 is asymptotic to

ĉ ε3/4 r
−3/4
A sin3 θ.
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PREVIOUS RESULTS

Majumdar and Duplantier (independently) gave nonrigorous
predictions of the exponent 3

4 (often phrased as the fractal dimension
d = 2− 3

4 = 5
4).

Kenyon (2000) used relation between LERW and dimers and uniform
spanning trees as well as another idea (zippers) to show that the
probability that of going through the edge 0, 1 in a square is
logarithmically asymptotic to n−3/4. He also gave a partial result
giving the angular dependence.

Schramm (2000) showed that if LERW has a conformally invariant
limit, then in some sense the limit is SLE2.

L, Schramm, Werner (2003) showed that the scaling limit of LERW
in the capacity parametrization is SLE2. The exponent 3/4 (as an
intersection exponent) was proved rigorously for SLE .
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Masson (2008) used the SLE results to give an alternative proof that
the probability for LERW was logarithmically asymptotic to n−3/4.
His result was more universal than that of Kenyon and LSW.

Yadin and Yehudayoff (2011) gave a different unversality result for
planar graphs.

L (2014) proved a version of the combinatorial identity and used it to
give up-to-constants estimates for LERW in a square. (Although not
directly related, recent work of Kenyon and Wilson was useful in
helping to understand the key ideas in Kenyon’s 2000 paper.)
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NATURAL PARAMETRIZATION CONJECTURE

Suppose D is a simply connected domains with (say) analytic
boundary and distinct boundary points a, b.

Approximate D by a lattice of spacing 1/n. Consider LERW from a
to b as a probability measure.

CONJECTURE: If Yn denotes the number of steps, then Yn � n5/4.
In fact, Yn/n

5/4 has a limit distribution (the distribution depends on
D, a, b.)

For each scaled SAW η at level n, reparametrize time, that is if

η = [η0, . . . , ηk ],

consider
η(t) =

ηtn

n5/4
.

CONJECTURE: this converges to SLE2 in the natural
parameterization.
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NATURAL PARAMETRIZATION

The Green’s function for SLE2 is given by

GD(z ; a, b) = lim
ε↓0

ε−3/4 P{dist(γ, z) < ε}

= ĉ rD(z)−3/4 sin3 θD(z ; a, b)

(Rohde-Schramm,...,L-Rezaei)

Using this as motivation, L-Sheffield constructed directly for SLE2 the
candidate for the scaled limit of the number of steps of the walk. It
was called natural parametrization or natural length
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(L-Rezaei) The natural parametrization is given by the Minkowski
content

Cont5/4(γ[0, s]) = lim
ε↓0

ε−5/4 area{z : dist(z , γ[0, t]) < ε}.

Alberts, Kozdron, Masson (2013) gave a program to establish the
convergence of SLE2 in natural parametrization.

The key step in making such a program work is to establish the limit
in our result.

We are optimistic (but have not yet proved) that our result can
establish the convergence result.
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Rooted Loop measure

Although this can be done in more generality, we only consider the
random walk measure p and a second measure

q(x , y) = Q(x , y) p(x , y), Q(x , y) = Q(y , x) = ±1,

q(ω) =
n∏

j=1

q(ωj−1, ωj) = ±p(ω)

A rooted loop (in Z2) is a nearest neighbor path ω = [ω0, . . . , ω2n]
with ω0 = ω2n.

Let O(A) denote the set of (rooted) loops that stay in A.

The rooted loop measures are given by

m(ω) =
p(ω)

|ω|
, mq(ω) =

q(ω)

|ω|
= ±m(ω).

for ω ∈ O(A) with |ω| ≥ 1.
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Unrooted loops

An unrooted loop ω̃ ∈ Õ is an equivalence class of rooted loops
generated by the equivalence

[ω0, . . . , ωn] ∼ [ω1, . . . , ωn, ω1].

In other words, an unrooted loop is a loop that has forgotten its
starting point (but not its orientation).

We write ω ∼ ω̃ if ω is in the equivalence class for ω̃.

The unrooted loop measure is defined by

m̃(ω̃) =
∑
ω∼ω̃

m(ω), m̃q(ω̃) =
∑
ω∼ω̃

mq(ω).

Let d(ω̃) be the number of ω in the equivalence class. Then d(ω̃) is
an integer dividing |ω| and

m̃(ω̃) =
d(ω̃)

|ω̃|
p(ω̃), m̃q(ω̃) =

d(ω̃)

|ω̃|
q(ω̃)
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Relationship between Loop Measure and LERW
(See, e.g., L-Limic, Random Walk, A Modern Introduction)

If V ⊂ A, let If V ⊂ A.

FV (A) = exp

 ∑
ω∈O(A),ω∩V 6=∅

m(ω)

 .

F (A) = FA(A) exp

 ∑
ω∈O(A)

m(ω)

 = exp

 ∑
ω̃∈Õ(A)

m̃(ω̃)

 .

Define F q
V (Z ),F q(A) similarly with mq.
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Recall that if A finite, simply connected subset of Z2 with boundary
edges a = (wa, za), b = (zb,wb).

HA(a, b) =
∑

ω∈K(a,b)

p(ω),

p̂(η) =
∑

ω∈K(a,b),LE(ω)=η

p(ω).

Define Hq
A(a, b), q̂(η) similarly.

Straightforward analysis of loop-erasing shows that

p̂(η) = p(η)Fη(A), q̂(η) = q(η)F q
η (A).
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Zipper

A ⊂ Z× iZ, simply connected containing origin.

w0 = 1
2 −

1
2 .

Draw a vertical line from w0 downward to ∂A.

Set q(z ,w) = −1/4 if {z ,w} crosses the zipper. Otherwise
q(z ,w) = 1/4.

Closely related to spinors.

Observable

If ω is a path, let Y+(ω),Y−(ω) denote the number of traverses of
the ordered edge ~01 (resp., ~10) and Y = Y+ − Y− the number of
signed traverses.
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Combinatorial identity

Let
Λ = 〈Y 〉q,A,a,b =

∑
ω∈K(a,b)

q(ω)Y (ω).

We give two different expressions for Λ and then equate them.

FIrst expression:

Λ = exp{−2m(J )}
∑

e⊂LE(ω)

p(ω)

where the sum is over all ω whose loop erasure uses the undirected
edge e = {0, 1} and J = JA is the set of loops in A with odd
winding number about w0.

A key topological fact that is used is that if η is a SAW going through
0, 1 and l is a loop with odd winding number about w0 then l ∩ η 6= ∅.
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Let Ã = A \ {0, 1},

∆q(A; a, b) =
∣∣∣Hq

∂Ã
(0, a)Hq

∂Ã
(1, b)− Hq

∂Ã
(1, a)Hq

∂Ã
(0, b)

∣∣∣ .
Using a determinant formula (Fomin’s identity) applied to the signed
measure q, we get the second expression

Λ =
1

4
F q
0,1(A) ∆q(A; a, b).

A cancellation of signs in Fomin’s identity when applied to q can be
considered the primary idea from Kenyon’s work that we use.

Equating the two expressions gives∑
e⊂LE(ω)

p(ω) = exp{2m(JA)} 1

4
F q
0,1(A) ∆q(A; a, b).
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Our expression does not uses anything from dimers, spanning trees, or
SLE.

We only need to do estimates for simple random walk (including
random walk loop measure.)

Need asymptotics as rA →∞. Recall that we want good estimates

exp{2m(JA)} 1

4
F q
0,1(A) ∆q(A; a, b) = φ(A; a, b) [1 + O(r−uA )].

The sharp estimates are needed to solve the natural parametrization
conjecture (at least in the program set out).

Not difficult to show that ∃c > 0 with

F q
0,1(A) = c + O(r−uA ).

The difficult terms are F q
0,1(A) and ∆q(A; a, b).
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Theorem

There exists c1 ∈ (−∞,∞) and u > 0 such that

m(JA) =
log rA

8
+ c1 + O(r−uA ).

Theorem

There exists c2 > 0 and u > 0 such that

∆q(A; a, b)

∂HA(a, b)
= c2 r

−1
A

[
sin3 θA(0; a, b) + O(r−uA )

]
.

We do not find the optimal u.

We probably could determine the constant c2 but we do not know
how to determine c1.

The second theorem is proved by analyzing Hq(0, a), . . . ,H1(1, b)
separately.
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Rooted Brownian loop measure

A (rooted) loop γ in C of time duration tγ is a continuous function
γ : [0, tγ ]→ C with γ(0) = γ(tγ).

We can write such a loop as (z , tγ , γ̃) where z ∈ C, tγ > 0 and
γ̃(0) = γ̃(1) = 0.

We get γ from (z , tγ , γ̃) by translation and Brownian scaling:

γ(t) = z +
√
tγ γ̃(t/tγ), 0 ≤ t ≤ tγ .

The rooted (Brownian) loop measure is given by

(Lebesgue)×
(

dt

2πt2

)
× (Brownian bridge).

Think of 1/(2πt2) as pt(0, 0)/t.

Gregory F. Lawler (Univ. of Chicago) Conformal invariance of the Green’s function for loop-erased random walkAugust, 2014 23 / 32



(Unrooted) Brownian loop measure (L. - Werner)

An unrooted root is an equivalence class of rooted loops similarly to
the discrete case.

The (unrooted) Brownian loop measure µ is the measure induced by
the rooted loop measure.

If D ⊂ C, then µD is µ restricted to loops that stay in D.

The collection of measures {µD} satisfy the restriction property: if
D ′ ⊂ D, then µD′ is µD restricted to loops in D ′;

For bounded D, µD is an infinite measure, but loops of diameter > ε
have finite measure.
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The unrooted loop measure is conformally invariant: if f : D → f (D)
is a conformal transformation, then f ◦ µD = µf (D). (This does not
require D to be simple connected.)

The rooted measure is not conformally invariant.

An important conformally invariant quantity is the following: if V1,V2

are closed disjoint subsets,

ΛD(V1,V2)

is the µD measure of loops that intersect both V1 and V2.

The loop measure arises in analysis of SLE and describes how the
measure changes when the domain is perturbed.

(Sheffield-Werner) Brownian loop soups can be used to construct
conformal loop ensembles (CLE).
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Theorem (L- Trujillo Ferreras, TAMS, 2007)

The Brownian loop measure is the scaling limit of the random walk loop
measure.

More precisely, consider the random walk loop measure where the
walks are scaled to the lattice n−1 Z 2. (The measure is scaled.)

The limit measure, considered as a measure on macroscopic loops is
the Brownian loop measure.

The loops that “collapse to a point” are thrown away —this is one of
many examples of subtracting infinity to get a limit.

Precise statement uses a coupling and the Hungarian/dyadic coupling
of random walk and Brownian motion.
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The Brownian loop measure of loops in the disk or radius en+1 that
are not contained in the disk of radius en with odd winding number
about the origin is a constant independent of n by conformal
invariance. This constant is 1/8. (A similar calculation was done by
Kenyon is his proof of the exponent.)

Loops with odd winding number are macroscopic and hence random
walk and Brownian loop measures are very close. Can use L. - Trujillo
Ferreras coupling to give very good error bounds.

One has to handle issues about when a random walk loop stays in a
domain and a Brownian loop does not (or vice versa). Beurling
estimates are used for this.

One also has to consider then the random walk has odd winding
number but the Brownian motion has even winding (or vice versa).
This only happens when loops get near the origin in which case the
probability of having odd winding number is very close to 1/2.
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Eventually get that measure of random walk loops in the disk or
radius en+1 that are not contained in the disk of radius en with odd
winding number about the origin equals

1

8
+ O(n−2).

We need n−(1+u) for our result.

Similarly if D is a domain containing the origin of conformal radius r ,
then we consider loops with odd winding number about the origin
that are contained in D but not in the disk of radius r/5.

For Brownian loops this can be given in terms of the conformal radius
by conformal invariance,
For random walk loops use the fact that these are macroscopic loops.
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Computing a signed Poisson kernel

Problem: Given A with weights q given by a vertical “zipper”
compute

Hq

∂Ã
(0, a), Ã = A \ {0, 1}.

Can also be written as
E [Q ST 1E ] ,

where

S is a simple random walk starting at the origin,
T is the first visit to Z2 \ Ã after time 0,
E is the event that ST = a.
Q = ±1 depending on the parity of the number of times that the walk
crosses the zipper.

Good guess can be given by a continuous problem for Brownian
motion that can be solved explicitly.
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On the microscopic level away from the boundary, we use the detail of
the square lattice. (Random walk problem discussed on next slide.)

After “getting away from the origin” we can use strong
(Hungarian/dyadic) approximation of random walk by Brownian
motion.
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Random Walk Problem

Let An = {z ∈ Z2 : |z | < n} \ [0,∞) be the slit square .

S be a simple random walk starting at the origin and
T = min{j > 0 : Sj 6∈ An}.
It is known that P{ST 6∈ R} � n−1/2.

Need
P{ST = x + iy} = c n−3/2 [h(x + iy) + O(n−u)],

where h(x + iy) is the prediction given by the (boundary) Poisson
kernel for Brownian motion in a slit square.

We showed a u existed. Open problem: find best u. For a non-slit
square, one gets

P{ST = x + iy} = n−1 [ĥ(x + iy) + O(n−2)],
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THANK YOU!
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