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Self-avoiding walks

Square lattice: Z
2

Self-avoiding walk (SAW): a non-self-intersecting walk

a 36-step SAW from origin
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Why? Polymerization

Paul Flory (1910–1985)

• statistical mechanics of polymers

• how many are there?
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Basic questions

σn := number of n-step SAWs from origin of Z
2

What can be said about the sequence σn?

• σn grows approximately exponentially: σn = µn(1+o(1))

• what is the value of the connective constant µ = µ(Z2)?

• finer order asymptotics?

• known that µ exists and 2.6256 < µ ≤ 2.6792

• believed that σn ∼ An11/32µn

• known that σn+2/σn → µ2

• believed that σn+1/σn → µ

Hammersley, Kesten, Hara, Slade +
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Hammersley and Kesten 1993
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What does a typical n-step SAW look like?

SAW in plane - 1,000,000 steps

Tom Kennedy

Problem: Prove that random SAW ⇒ SLE8/3

Where is the starting point?
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SAWs on a general graph G

G : infinite, quasi-transitive, connected (possibly multi/di-) graph

σn(v): number of n-step SAWs from v

σn := supv σn(v)

subadditivity: σm+n ≤ σmσn

Theorem (Hammersley 1957)

For a quasi-transitive graph G, there exists a connective constant

µ = µ(G ) such that

σ
1/n
n → µ

and

σn(v)1/n → µ, v ∈ V .
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Properties of connective constants?

• calculate µ

• approximate µ

• is µ(G ) strictly monotone in G?

Which graphs?: infinite, connected, (vertex-)transitive, d-regular
(multi-)graphs
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Bounds for µ

Theorem (G + Li 2012)

Let G be an infinite, connected, d-regular, vertex-transitive, simple

graph. Then
√

d − 1 ≤ µ(G ) ≤ d − 1.

Upper bound: trivial, sharp iff tree

Lower bound: less trivial, less sharp?

Question: What is the sharp lower bound for µ(G )?
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Cubic graphs, d = 3

µ(ladder) = 1
2 (1 +

√
5), µ(hex) =

√

2 +
√

2, µ(bridge) =
√

2.

Question: For simple G : µ(G ) ≥ 1
2(1 +

√
5) ?

d-regular graphs?
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A question

Question: How about the square–octagon lattice, (4, 82)?

Is it the case that µ ≥ 1
2 (1 +

√
5)?
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Why not quasi-transitive graphs?

d = 3 d = 4
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Strict inequalities I

G : infinite, connected, transitive, simple

G : G plus extra non-trivial edge-set

Theorem (G + Li 2013)

Let Γ be a group acting transitively on G, and let A ⊆ Aut(G ) be

a normal subgroup of Γ acting quasi-transitively on G. Then

µ(G ) < µ(G).

Question: can normality be relaxed at all?

Kesten pattern theorem
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Strict inequalities II
G : infinite, connected, transitive, simple
~G : (directed) quotient graph G/A
L = length of shortest SAW in G with distinct endpoints in same
orbit of A

Theorem (G + Li 2013)

Let Γ be a group acting transitively on G, and let A be a

non-trivial, normal subgroup of Γ. Then

µ(~G) < µ(G ),

if either:

1. L 6= 2,
2. L = 2 and a further condition holds.

Question: can normality be relaxed at all?
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Example

ω

α

G : binary tree with end ω

Γ: automorphisms that preserve ω

A: normal subgroup of Γ generated by α

but µ(~G ) = µ(G ) = 2
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Applications to Cayley graphs

G = 〈S | R〉: infinite group

S : finite set of generators (satisfying S = S−1)

R : set of relators

Cayley graph G : vertex-set G, edges 〈g , gs〉 for g ∈ G, s ∈ S

Theorem (G + Li 2013)

• Adding a new generator increases strictly the connective

constant.

• Adding a new relator decreases strictly the connective

constant.
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Example

Square–octagon lattice SO as a Cayley graph:

S = {s1, s2, s3}, R =
{

s2
1 , s2

2 , s2
3 , s1s2s1s2, s1s3s2s3s1s3s2s3

}

Ladder graph: obtained by adding the relator s2s3s2s3

Therefore, µ(SO) > 1
2(1 +

√
5)
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Proof of µ ≥
√

2 for cubic graphs

v0 vn

v0 vn

π

Each vertical edge is blue if it extends to an infinite SAW from v0

#{blue edges} − #{red edges} ≥ 0

#{blue edges} + #{red edges} = n

Therefore, #{blue edges} ≥ 1
2n
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SAW tree

v0

vn

The blue extendable’ tree is a binary tree of height 1
2n. Therefore,

σn ≥ #{n-step extendable walks} ≥ 2n/2 = (
√

2)n
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Extendable SAWs

a SAW is forward extendable if extendable forwards to ∞
similarly, backward extendable and doubly extendable

hence σF
n , σB

n , σFB
n , etc

Theorem (G, Holroyd, Peres 2013)

Let G be an infinite, strongly connected, quasi-transitive digraph.

The connective constants µF, µB, µFB exist and satisfy

µ = µF = µB = µFB.
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Idea I of proof

Tree T , rooted at ρ.

Wn = {vertices at depth n}
growth(T )= limn→∞ |Wn|1/n

branching rate(T )= sup

{

λ : inf
Π

∑

e∈Π

λ−|e| > 0

}

, where infimum is

over cutsets Π separating ρ from ∞

Theorem (Furstenberg 1967)

If T is subperiodic, growth(T ) = branching rate(T ).

Apply this to the various SAW trees, so that growth rates are
connective constants. Hence µ = µF and µB = µFB.
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Idea II of proof

Two cases:

• G unimodular: use mass-transport principle to obtain µB = µ.

• G non-unimodular: use the fact that the modular function is
unbounded to construct a certain type of ‘geodesic’. Then use
combinatorics of paths to obtain µB = µ.

Question: is there a unified proof?
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A problem

Question: For what graphs is it the case that 0 < c ≤ σF
n

σn

≤ 1, etc?

YES: for Z
d and d ≥ 5

PERHAPS: for Z
2

Hara/Slade, lace expansion

approximation by SLE8/3

23/28



Locality of connective constants

Question: If G and H are alike on a ball around the origin, are
µ(G ) and µ(H) close?

1. critical percolation probabilities (Benjamini, Nachmias, Peres
for tree-like graphs, Martineau, Tassion for Cayley graphs of
abelian groups)

2. Ising critical temperature?
3. random-cluster critical point?

Warning: at least as hard as proving

“slab critical points → full-space critical point”

Grimmett–Marstrand, Aizenman, Bodineau
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Graphs as a metric space

Rooted graphs G , H

Bk(G ) = ball within distance k from root

Distance d(G ,H):

K = max
{

k : Bk(G ) ≃ Bk(H)
}

d(G ,H) = 2−K

Babai 1991

Question: For what types of graph is it the case that

|µ(G ) − µ(H)| is small when d(G ,H) is small?
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Partial answer

Theorem (G and Li 2014)

OK for the class of vertex-transitive graphs having a ‘height

function’.

OK for many Cayley graphs of finitely presented groups, e.g., of

infinite abelian groups, free nilpotent, free solvable, + others

satisfying a certain condition on the presentation.

Ideas of proof . . .
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A percolation problem

For any connected graph G with bounded degrees,

µp(v) := lim sup
n→∞

{

σn(v)1/n
}

exists and is independent of v .

Let G := the infinite cluster of supercritical bond percolation on Z
d

Question: does σn(v)1/n converge a.s.?

Theorem (Lacoin 2012: annealed < quenched)

We have µp < pµ1 for pc < p < pc(d), where pc(2) = 1 and

pc(d) > pc for large d.
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Finally

SAW in plane - 1,000,000 steps

Problem: Prove that random SAW ⇒ SLE8/3
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