Counting Self-Avoiding Walks

Geoffrey Grimmett

Cambridge University

Seoul, 12 August 2014

Self-avoiding walks

Square lattice: \mathbb{Z}^{2}
Self-avoiding walk (SAW): a non-self-intersecting walk

a 36 -step SAW from origin

Why? Polymerization

Paul Flory (1910-1985)

- statistical mechanics of polymers
- how many are there?

Basic questions

$\sigma_{n}:=$ number of n-step SAWs from origin of \mathbb{Z}^{2}
What can be said about the sequence σ_{n} ?

Basic questions

$\sigma_{n}:=$ number of n-step SAWs from origin of \mathbb{Z}^{2}
What can be said about the sequence σ_{n} ?

- σ_{n} grows approximately exponentially: $\sigma_{n}=\mu^{n(1+o(1))}$

Basic questions

$\sigma_{n}:=$ number of n-step SAWs from origin of \mathbb{Z}^{2}
What can be said about the sequence σ_{n} ?

- σ_{n} grows approximately exponentially: $\sigma_{n}=\mu^{n(1+o(1))}$
- what is the value of the connective constant $\mu=\mu\left(\mathbb{Z}^{2}\right)$?

Basic questions

$\sigma_{n}:=$ number of n-step SAWs from origin of \mathbb{Z}^{2}
What can be said about the sequence σ_{n} ?

- σ_{n} grows approximately exponentially: $\sigma_{n}=\mu^{n(1+o(1))}$
- what is the value of the connective constant $\mu=\mu\left(\mathbb{Z}^{2}\right)$?
- finer order asymptotics?

Basic questions

$\sigma_{n}:=$ number of n-step SAWs from origin of \mathbb{Z}^{2}
What can be said about the sequence σ_{n} ?

- σ_{n} grows approximately exponentially: $\sigma_{n}=\mu^{n(1+o(1))}$
- what is the value of the connective constant $\mu=\mu\left(\mathbb{Z}^{2}\right)$?
- finer order asymptotics?
- known that μ exists and $2.6256<\mu \leq 2.6792$
- believed that $\sigma_{n} \sim A n^{11 / 32} \mu^{n}$

Basic questions

$\sigma_{n}:=$ number of n-step SAWs from origin of \mathbb{Z}^{2}
What can be said about the sequence σ_{n} ?

- σ_{n} grows approximately exponentially: $\sigma_{n}=\mu^{n(1+o(1))}$
- what is the value of the connective constant $\mu=\mu\left(\mathbb{Z}^{2}\right)$?
- finer order asymptotics?
- known that μ exists and $2.6256<\mu \leq 2.6792$
- believed that $\sigma_{n} \sim A n^{11 / 32} \mu^{n}$
- known that $\sigma_{n+2} / \sigma_{n} \rightarrow \mu^{2}$
- believed that $\sigma_{n+1} / \sigma_{n} \rightarrow \mu$

Hammersley, Kesten, Hara, Slade +

Hammersley and Kesten 1993

What does a typical n-step SAW look like?

SAW in plane - $1,000,000$ steps

Tom Kennedy
Problem: Prove that random $\mathrm{SAW} \Rightarrow \mathrm{SLE}_{8 / 3}$
Where is the starting point?

SAWs on a general graph G

G : infinite, quasi-transitive, connected (possibly multi/di-) graph $\sigma_{n}(v)$: number of n-step SAWs from v
$\sigma_{n}:=\sup _{v} \sigma_{n}(v)$
subadditivity: $\sigma_{m+n} \leq \sigma_{m} \sigma_{n}$

SAWs on a general graph G

G : infinite, quasi-transitive, connected (possibly multi/di-) graph $\sigma_{n}(v)$: number of n-step SAWs from v
$\sigma_{n}:=\sup _{v} \sigma_{n}(v)$
subadditivity: $\sigma_{m+n} \leq \sigma_{m} \sigma_{n}$

Theorem (Hammersley 1957)
For a quasi-transitive graph G, there exists a connective constant $\mu=\mu(G)$ such that

$$
\sigma_{n}^{1 / n} \rightarrow \mu
$$

and

$$
\sigma_{n}(v)^{1 / n} \rightarrow \mu, \quad v \in V .
$$

Properties of connective constants?

- calculate μ
- approximate μ
- is $\mu(G)$ strictly monotone in G ?

Which graphs?: infinite, connected, (vertex-)transitive, d-regular (multi-)graphs

Bounds for μ

Theorem ($G+$ Li 2012)
Let G be an infinite, connected, d-regular, vertex-transitive, simple graph. Then $\sqrt{d-1} \leq \mu(G) \leq d-1$.

Upper bound: trivial, sharp iff tree
Lower bound: less trivial, less sharp?

Bounds for μ

Theorem ($G+$ Li 2012)
Let G be an infinite, connected, d-regular, vertex-transitive, simple graph. Then $\sqrt{d-1} \leq \mu(G) \leq d-1$.

Upper bound: trivial, sharp iff tree
Lower bound: less trivial, less sharp?

Question: What is the sharp lower bound for $\mu(G)$?

Cubic graphs, $d=3$

$\mu($ ladder $)=\frac{1}{2}(1+\sqrt{5}), \quad \mu($ hex $)=\sqrt{2+\sqrt{2}}, \quad \mu($ bridge $)=\sqrt{2}$.
Question: For simple $G: \mu(G) \geq \frac{1}{2}(1+\sqrt{5})$?
d-regular graphs?

A question

Question: How about the square-octagon lattice, $\left(4,8^{2}\right)$?

Is it the case that $\mu \geq \frac{1}{2}(1+\sqrt{5})$?

Why not quasi-transitive graphs?

Strict inequalities I

G: infinite, connected, transitive, simple
\bar{G} : G plus extra non-trivial edge-set

Theorem ($G+$ Li 2013)
Let Γ be a group acting transitively on G, and let $\mathcal{A} \subseteq \operatorname{Aut}(\bar{G})$ be a normal subgroup of Γ acting quasi-transitively on G. Then

$$
\mu(G)<\mu(\bar{G})
$$

Question: can normality be relaxed at all?
Kesten pattern theorem

Strict inequalities II

G : infinite, connected, transitive, simple
\vec{G} : (directed) quotient graph G / \mathcal{A}
$L=$ length of shortest SAW in G with distinct endpoints in same orbit of \mathcal{A}

Theorem ($G+$ Li 2013)
Let Γ be a group acting transitively on G, and let \mathcal{A} be a non-trivial, normal subgroup of Γ. Then

$$
\mu(\vec{G})<\mu(G)
$$

if either:

1. $L \neq 2$,
2. $L=2$ and a further condition holds.

Strict inequalities II

G : infinite, connected, transitive, simple
\vec{G} : (directed) quotient graph G / \mathcal{A}
$L=$ length of shortest SAW in G with distinct endpoints in same orbit of \mathcal{A}

Theorem ($G+$ Li 2013)
Let Γ be a group acting transitively on G, and let \mathcal{A} be a non-trivial, normal subgroup of Γ. Then

$$
\mu(\vec{G})<\mu(G)
$$

if either:

1. $L \neq 2$,
2. $L=2$ and a further condition holds.

Question: can normality be relaxed at all?

Example

G : binary tree with end ω
Γ : automorphisms that preserve ω
\mathcal{A} : normal subgroup of Γ generated by α

$$
\text { but } \mu(\vec{G})=\mu(G)=2
$$

Applications to Cayley graphs

$\mathcal{G}=\langle S \mid R\rangle$: infinite group
S : finite set of generators (satisfying $S=S^{-1}$)
R : set of relators
Cayley graph G : vertex-set \mathcal{G}, edges $\langle g, g s\rangle$ for $g \in \mathcal{G}, s \in S$

Applications to Cayley graphs

$\mathcal{G}=\langle S \mid R\rangle$: infinite group
S : finite set of generators (satisfying $S=S^{-1}$)
R : set of relators
Cayley graph G : vertex-set \mathcal{G}, edges $\langle g, g s\rangle$ for $g \in \mathcal{G}, s \in S$
Theorem ($G+$ Li 2013)

- Adding a new generator increases strictly the connective constant.
- Adding a new relator decreases strictly the connective constant.

Example

Square-octagon lattice SO as a Cayley graph:

$$
S=\left\{s_{1}, s_{2}, s_{3}\right\}, \quad R=\left\{s_{1}^{2}, s_{2}^{2}, s_{3}^{2}, s_{1} s_{2} s_{1} s_{2}, s_{1} s_{3} s_{2} s_{3} s_{1} s_{3} s_{2} s_{3}\right\}
$$

Example

Square-octagon lattice SO as a Cayley graph:

$$
S=\left\{s_{1}, s_{2}, s_{3}\right\}, \quad R=\left\{s_{1}^{2}, s_{2}^{2}, s_{3}^{2}, s_{1} s_{2} s_{1} s_{2}, s_{1} s_{3} s_{2} s_{3} s_{1} s_{3} s_{2} s_{3}\right\}
$$

Ladder graph: obtained by adding the relator $s_{2} s_{3} s_{2} s_{3}$

Example

Square-octagon lattice SO as a Cayley graph:

$$
S=\left\{s_{1}, s_{2}, s_{3}\right\}, \quad R=\left\{s_{1}^{2}, s_{2}^{2}, s_{3}^{2}, s_{1} s_{2} s_{1} s_{2}, s_{1} s_{3} s_{2} s_{3} s_{1} s_{3} s_{2} s_{3}\right\}
$$

Ladder graph: obtained by adding the relator $s_{2} s_{3} s_{2} s_{3}$
Therefore, $\mu(\mathrm{SO})>\frac{1}{2}(1+\sqrt{5})$

Each vertical edge is blue if it extends to an infinite SAW from v_{0}

Each vertical edge is blue if it extends to an infinite SAW from v_{0}

$$
\begin{aligned}
\#\{\text { blue edges }\}-\#\{\text { red edges }\} & \geq 0 \\
\#\{\text { blue edges }\}+\#\{\text { red edges }\} & =n
\end{aligned}
$$

Therefore, $\#\{$ blue edges $\} \geq \frac{1}{2} n$

SAW tree

The blue extendable' tree is a binary tree of height $\frac{1}{2} n$. Therefore,

$$
\sigma_{n} \geq \#\{n \text {-step extendable walks }\} \geq 2^{n / 2}=(\sqrt{2})^{n}
$$

Extendable SAWs

a SAW is forward extendable if extendable forwards to ∞ similarly, backward extendable and doubly extendable hence $\sigma_{n}^{\mathrm{F}}, \sigma_{n}^{\mathrm{B}}, \sigma_{n}^{\mathrm{FB}}$, etc

Extendable SAWs

a SAW is forward extendable if extendable forwards to ∞ similarly, backward extendable and doubly extendable hence $\sigma_{n}^{\mathrm{F}}, \sigma_{n}^{\mathrm{B}}, \sigma_{n}^{\mathrm{FB}}$, etc

Theorem (G, Holroyd, Peres 2013)

Let G be an infinite, strongly connected, quasi-transitive digraph. The connective constants $\mu^{F}, \mu^{B}, \mu^{F B}$ exist and satisfy

$$
\mu=\mu^{F}=\mu^{B}=\mu^{F B} .
$$

Idea I of proof

Tree T, rooted at ρ.
$W_{n}=\{$ vertices at depth $n\}$
$\operatorname{growth}(T)=\lim _{n \rightarrow \infty}\left|W_{n}\right|^{1 / n}$
branching rate $(T)=\sup \left\{\lambda: \inf _{\Pi} \sum_{e \in \Pi} \lambda^{-|e|}>0\right\}$, where infimum is
over cutsets Π separating ρ from ∞

Theorem (Furstenberg 1967)
If T is subperiodic, $\operatorname{growth}(T)=$ branching $\operatorname{rate}(T)$.
Apply this to the various SAW trees, so that growth rates are connective constants. Hence $\mu=\mu^{\mathrm{F}}$ and $\mu^{\mathrm{B}}=\mu^{\mathrm{FB}}$.

Idea II of proof

Two cases:

- G unimodular: use mass-transport principle to obtain $\mu^{\mathrm{B}}=\mu$.
- G non-unimodular: use the fact that the modular function is unbounded to construct a certain type of 'geodesic'. Then use combinatorics of paths to obtain $\mu^{\mathrm{B}}=\mu$.

Question: is there a unified proof?

A problem

Question: For what graphs is it the case that $0<c \leq \frac{\sigma_{n}^{\mathrm{F}}}{\sigma_{n}} \leq 1$, etc?
YES: for \mathbb{Z}^{d} and $d \geq 5$
PERHAPS: for \mathbb{Z}^{2}

Hara/Slade, lace expansion approximation by $\mathrm{SLE}_{8 / 3}$

Locality of connective constants

Question: If G and H are alike on a ball around the origin, are $\mu(G)$ and $\mu(H)$ close?

Locality of connective constants

Question: If G and H are alike on a ball around the origin, are $\mu(G)$ and $\mu(H)$ close?

1. critical percolation probabilities (Benjamini, Nachmias, Peres for tree-like graphs, Martineau, Tassion for Cayley graphs of abelian groups)
2. Ising critical temperature?
3. random-cluster critical point?

Locality of connective constants

Question: If G and H are alike on a ball around the origin, are $\mu(G)$ and $\mu(H)$ close?

1. critical percolation probabilities (Benjamini, Nachmias, Peres for tree-like graphs, Martineau, Tassion for Cayley graphs of abelian groups)
2. Ising critical temperature?
3. random-cluster critical point?

Warning: at least as hard as proving

$$
\text { "slab critical points } \rightarrow \text { full-space critical point" }
$$

Grimmett-Marstrand, Aizenman, Bodineau

Graphs as a metric space

Rooted graphs G, H

$$
B_{k}(G)=\text { ball within distance } k \text { from root }
$$

Distance $d(G, H)$:

$$
\begin{aligned}
K & =\max \left\{k: B_{k}(G) \simeq B_{k}(H)\right\} \\
d(G, H) & =2^{-K}
\end{aligned}
$$

Babai 1991

Graphs as a metric space

Rooted graphs G, H

$$
B_{k}(G)=\text { ball within distance } k \text { from root }
$$

Distance $d(G, H)$:

$$
\begin{aligned}
K & =\max \left\{k: B_{k}(G) \simeq B_{k}(H)\right\} \\
d(G, H) & =2^{-K}
\end{aligned}
$$

Babai 1991
Question: For what types of graph is it the case that

$$
|\mu(G)-\mu(H)| \text { is small when } d(G, H) \text { is small? }
$$

Partial answer

Theorem (G and Li 2014)
OK for the class of vertex-transitive graphs having a 'height function'.
OK for many Cayley graphs of finitely presented groups, e.g., of infinite abelian groups, free nilpotent, free solvable, + others satisfying a certain condition on the presentation.

Partial answer

Theorem (G and Li 2014)
OK for the class of vertex-transitive graphs having a 'height function'.
OK for many Cayley graphs of finitely presented groups, e.g., of infinite abelian groups, free nilpotent, free solvable, + others satisfying a certain condition on the presentation.

Ideas of proof ...

A percolation problem

For any connected graph G with bounded degrees,

$$
\bar{\mu}_{p}(v):=\limsup _{n \rightarrow \infty}\left\{\sigma_{n}(v)^{1 / n}\right\}
$$

exists and is independent of v.

A percolation problem

For any connected graph G with bounded degrees,

$$
\bar{\mu}_{p}(v):=\limsup _{n \rightarrow \infty}\left\{\sigma_{n}(v)^{1 / n}\right\}
$$

exists and is independent of v.
Let $G:=$ the infinite cluster of supercritical bond percolation on \mathbb{Z}^{d} Question: does $\sigma_{n}(v)^{1 / n}$ converge a.s.?

A percolation problem

For any connected graph G with bounded degrees,

$$
\bar{\mu}_{p}(v):=\limsup _{n \rightarrow \infty}\left\{\sigma_{n}(v)^{1 / n}\right\}
$$

exists and is independent of v.
Let $G:=$ the infinite cluster of supercritical bond percolation on \mathbb{Z}^{d} Question: does $\sigma_{n}(v)^{1 / n}$ converge a.s.?

Theorem (Lacoin 2012: annealed $<$ quenched)
We have $\bar{\mu}_{p}<p \mu_{1}$ for $p_{\mathrm{c}}<p<\overline{p_{\mathrm{c}}}(d)$, where $\overline{p_{\mathrm{c}}}(2)=1$ and $\overline{p_{\mathrm{c}}}(d)>p_{\mathrm{c}}$ for large d.

Finally

SAW in plane $-1,000,000$ steps

Problem: Prove that random $\mathrm{SAW} \Rightarrow \mathrm{SLE}_{8 / 3}$

