Counting Self-Avoiding Walks

Geoffrey Grimmett

Cambridge University

Seoul, 12 August 2014

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

Self-avoiding walks

Square lattice: \mathbb{Z}^2

Self-avoiding walk (SAW): a non-self-intersecting walk

a 36-step SAW from origin

Why? Polymerization

Paul Flory (1910-1985)

- statistical mechanics of polymers
- how many are there?

$\sigma_n :=$ number of *n*-step SAWs from origin of \mathbb{Z}^2

What can be said about the sequence σ_n ?

- σ_n grows approximately exponentially: $\sigma_n = \mu^{n(1+o(1))}$
- what is the value of the connective constant $\mu = \mu(\mathbb{Z}^2)$?
- finer order asymptotics?
- known that μ exists and 2.6256 $<\mu \leq$ 2.6792
- believed that $\sigma_n \sim A n^{11/32} \mu^n$
- known that $\sigma_{n+2}/\sigma_n \rightarrow \mu^2$
- believed that $\sigma_{n+1}/\sigma_n \rightarrow \mu$

Hammersley, Kesten, Hara, Slade -

(日) (部) (E) (E) (E)

 $\sigma_n :=$ number of *n*-step SAWs from origin of \mathbb{Z}^2

What can be said about the sequence σ_n ?

- σ_n grows approximately exponentially: $\sigma_n = \mu^{n(1+o(1))}$
- what is the value of the connective constant $\mu = \mu(\mathbb{Z}^2)$?
- finer order asymptotics?
- known that μ exists and 2.6256 $< \mu \leq$ 2.6792
- believed that $\sigma_n \sim A n^{11/32} \mu^n$
- known that $\sigma_{n+2}/\sigma_n \rightarrow \mu^2$
- believed that $\sigma_{n+1}/\sigma_n \rightarrow \mu$

Hammersley, Kesten, Hara, Slade +

 $\sigma_n :=$ number of *n*-step SAWs from origin of \mathbb{Z}^2

What can be said about the sequence σ_n ?

- σ_n grows approximately exponentially: $\sigma_n = \mu^{n(1+o(1))}$
- what is the value of the connective constant $\mu = \mu(\mathbb{Z}^2)$?

finer order asymptotics?

- known that μ exists and 2.6256 $<\mu \leq$ 2.6792
- believed that $\sigma_n \sim A n^{11/32} \mu^n$
- known that $\sigma_{n+2}/\sigma_n \rightarrow \mu^2$
- believed that $\sigma_{n+1}/\sigma_n \rightarrow \mu$

Hammersley, Kesten, Hara, Slade +

◆□>

 $\sigma_n :=$ number of *n*-step SAWs from origin of \mathbb{Z}^2

What can be said about the sequence σ_n ?

- σ_n grows approximately exponentially: $\sigma_n = \mu^{n(1+o(1))}$
- what is the value of the connective constant $\mu = \mu(\mathbb{Z}^2)$?
- finer order asymptotics?
- known that μ exists and 2.6256 $<\mu \leq$ 2.6792
- believed that $\sigma_n \sim A n^{11/32} \mu^n$
- known that $\sigma_{n+2}/\sigma_n \rightarrow \mu^2$
- believed that $\sigma_{n+1}/\sigma_n \rightarrow \mu$

Hammersley, Kesten, Hara, Slade H

◆□> ◆御> ◆注> ◆注> □ 注

 $\sigma_n :=$ number of *n*-step SAWs from origin of \mathbb{Z}^2

What can be said about the sequence σ_n ?

- σ_n grows approximately exponentially: $\sigma_n = \mu^{n(1+o(1))}$
- what is the value of the connective constant $\mu = \mu(\mathbb{Z}^2)$?
- finer order asymptotics?
- known that μ exists and 2.6256 $<\mu \leq$ 2.6792
- believed that $\sigma_n \sim A n^{11/32} \mu^n$
- known that $\sigma_{n+2}/\sigma_n \rightarrow \mu^2$
- believed that $\sigma_{n+1}/\sigma_n o \mu$

Hammersley, Kesten, Hara, Slade H

(日)

 $\sigma_n :=$ number of *n*-step SAWs from origin of \mathbb{Z}^2

What can be said about the sequence σ_n ?

- σ_n grows approximately exponentially: $\sigma_n = \mu^{n(1+o(1))}$
- what is the value of the connective constant μ = μ(Z²)?
- finer order asymptotics?
- known that μ exists and 2.6256 $<\mu\leq$ 2.6792
- believed that $\sigma_n \sim A n^{11/32} \mu^n$
- known that $\sigma_{n+2}/\sigma_n \rightarrow \mu^2$
- believed that $\sigma_{n+1}/\sigma_n \to \mu$

Hammersley, Kesten, Hara, Slade +

Hammersley and Kesten 1993

What does a typical *n*-step SAW look like?

SAW in plane - 1,000,000 steps

Tom Kennedy

6/28

Problem: Prove that random SAW \Rightarrow SLE_{8/3} Where is the starting point?

SAWs on a general graph ${\sf G}$

G: infinite, quasi-transitive, connected (possibly multi/di-) graph $\sigma_n(v)$: number of *n*-step SAWs from *v* $\sigma_n := \sup_v \sigma_n(v)$ subadditivity: $\sigma_{m+n} \le \sigma_m \sigma_n$

Theorem (Hammersley 1957)

For a quasi-transitive graph G, there exists a connective constant $\mu = \mu(G)$ such that

$$\sigma_n^{1/n} \to \mu$$

and

$$\sigma_n(v)^{1/n} \to \mu, \qquad v \in V.$$

SAWs on a general graph ${\sf G}$

G: infinite, quasi-transitive, connected (possibly multi/di-) graph $\sigma_n(v)$: number of *n*-step SAWs from *v* $\sigma_n := \sup_v \sigma_n(v)$ subadditivity: $\sigma_{m+n} \le \sigma_m \sigma_n$

Theorem (Hammersley 1957)

For a quasi-transitive graph G, there exists a connective constant $\mu = \mu(G)$ such that

$$\sigma_n^{1/n} \to \mu$$

and

$$\sigma_n(\mathbf{v})^{1/n} \to \mu, \qquad \mathbf{v} \in \mathbf{V}.$$

Properties of connective constants?

- calculate μ
- approximate μ
- is $\mu(G)$ strictly monotone in G?

Which graphs?: infinite, connected, (vertex-)transitive, *d*-regular (multi-)graphs

Bounds for μ

Theorem $(G + Li \ 2012)$

Let G be an infinite, connected, d-regular, vertex-transitive, simple graph. Then $\sqrt{d-1} \le \mu(G) \le d-1$.

・ロト ・ 日 ・ ・ 正 ・ ・

Upper bound: trivial, sharp iff tree Lower bound: less trivial, less sharp?

Question: What is the sharp lower bound for $\mu(G)$?

Bounds for μ

Theorem $(G + Li \ 2012)$

Let G be an infinite, connected, d-regular, vertex-transitive, simple graph. Then $\sqrt{d-1} \le \mu(G) \le d-1$.

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

Upper bound: trivial, sharp iff tree Lower bound: less trivial, less sharp?

Question: What is the sharp lower bound for $\mu(G)$?

Cubic graphs, d = 3

 $\mu(\mathsf{ladder}) = \frac{1}{2}(1 + \sqrt{5}), \quad \mu(\mathsf{hex}) = \sqrt{2 + \sqrt{2}}, \quad \mu(\mathsf{bridge}) = \sqrt{2}.$ Question: For simple G: $\mu(G) \ge \frac{1}{2}(1 + \sqrt{5})$? *d*-regular graphs?

A question

Question: How about the square-octagon lattice, $(4, 8^2)$?

Is it the case that $\mu \geq \frac{1}{2}(1+\sqrt{5})?$

Why not quasi-transitive graphs?

Strict inequalities I

- G: infinite, connected, transitive, simple
- \overline{G} : G plus extra non-trivial edge-set

Theorem $(G + Li \ 2013)$

Let Γ be a group acting transitively on G, and let $\mathcal{A} \subseteq Aut(\overline{G})$ be a normal subgroup of Γ acting quasi-transitively on G. Then

 $\mu(G) < \mu(\overline{G}).$

Question: can normality be relaxed at all?

Kesten pattern theorem

Strict inequalities II

- G: infinite, connected, transitive, simple
- \vec{G} : (directed) quotient graph G/A

L = length of shortest SAW in G with distinct endpoints in same orbit of \mathcal{A}

Theorem $(G + Li \ 2013)$

Let Γ be a group acting transitively on G, and let A be a non-trivial, normal subgroup of Γ . Then

 $\mu(\vec{G}) < \mu(G),$

if either:

1. $L \neq 2$, 2. L = 2 and a further condition holds.

Question: can normality be relaxed at all?

Strict inequalities II

- G: infinite, connected, transitive, simple
- \vec{G} : (directed) quotient graph G/A

L = length of shortest SAW in G with distinct endpoints in same orbit of \mathcal{A}

Theorem $(G + Li \ 2013)$

Let Γ be a group acting transitively on G, and let A be a non-trivial, normal subgroup of Γ . Then

 $\mu(\vec{G}) < \mu(G),$

if either:

1. $L \neq 2$, 2. L = 2 and a further condition holds.

Question: can normality be relaxed at all?

(日)

- **G**: binary tree with end ω
- $\ensuremath{\mathsf{\Gamma}}$: automorphisms that preserve ω
- $\boldsymbol{\mathcal{A}}:$ normal subgroup of $\boldsymbol{\Gamma}$ generated by $\boldsymbol{\alpha}$

but $\mu(\vec{G}) = \mu(G) = 2$

Applications to Cayley graphs

- $\mathcal{G} = \langle S \mid R \rangle$: infinite group
- S: finite set of generators (satisfying $S = S^{-1}$)
- R: set of relators

Cayley graph G: vertex-set \mathcal{G} , edges $\langle g, gs
angle$ for $g \in \mathcal{G}$, $s \in S$

Theorem $(G + Li \ 2013)$

- Adding a new generator increases strictly the connective constant.
- Adding a new relator decreases strictly the connective constant.

Applications to Cayley graphs

- $\mathcal{G} = \langle S \mid R \rangle$: infinite group
- S: finite set of generators (satisfying $S = S^{-1}$)
- R: set of relators

Cayley graph G: vertex-set \mathcal{G} , edges $\langle g, gs
angle$ for $g \in \mathcal{G}$, $s \in S$

Theorem $(G + Li \ 2013)$

- Adding a new generator increases *strictly* the connective constant.
- Adding a new relator decreases strictly the connective constant.

Example

Square-octagon lattice SO as a Cayley graph:

$$S = \{s_1, s_2, s_3\}, \quad R = \{s_1^2, s_2^2, s_3^2, s_1s_2s_1s_2, s_1s_3s_2s_3s_1s_3s_2s_3\}$$

Ladder graph: obtained by adding the relator $s_2s_3s_2s_3$ Therefore, $\mu({
m SO})>rac{1}{2}(1+\sqrt{5})$

Example

Square-octagon lattice SO as a Cayley graph:

$$S = \{s_1, s_2, s_3\}, \quad R = \{s_1^2, s_2^2, s_3^2, s_1s_2s_1s_2, s_1s_3s_2s_3s_1s_3s_2s_3\}$$

Ladder graph: obtained by adding the relator $s_2s_3s_2s_3$ Therefore, $\mu(SO) > \frac{1}{2}(1 + \sqrt{5})$

Example

Square-octagon lattice SO as a Cayley graph:

$$S = \{s_1, s_2, s_3\}, \quad R = \{s_1^2, s_2^2, s_3^2, s_1s_2s_1s_2, s_1s_3s_2s_3s_1s_3s_2s_3\}$$

Ladder graph: obtained by adding the relator $s_2s_3s_2s_3$ Therefore, $\mu(SO) > \frac{1}{2}(1 + \sqrt{5})$

Each vertical edge is blue if it extends to an infinite SAW from v_0

#{blue edges} - #{red edges} ≥ 0 #{blue edges} + #{red edges} = n

Therefore, #{blue edges} $\geq \frac{1}{2}n$

Each vertical edge is blue if it extends to an infinite SAW from v_0

$$#\{\text{blue edges}\} - #\{\text{red edges}\} \ge 0$$
$$#\{\text{blue edges}\} + #\{\text{red edges}\} = n$$

Therefore, #{blue edges} $\geq \frac{1}{2}n$

The blue extendable' tree is a binary tree of height $\frac{1}{2}n$. Therefore,

 $\sigma_n \ge \#\{n\text{-step extendable walks}\} \ge 2^{n/2} = (\sqrt{2})^n$

Extendable SAWs

a SAW is forward extendable if extendable forwards to ∞ similarly, backward extendable and doubly extendable hence $\sigma_n^{\rm F}$, $\sigma_n^{\rm B}$, $\sigma_n^{\rm FB}$, etc

Theorem (G, Holroyd, Peres 2013)

Let G be an infinite, strongly connected, quasi-transitive digraph. The connective constants μ^{F} , μ^{B} , μ^{FB} exist and satisfy

$$\mu = \mu^F = \mu^B = \mu^{FB}.$$

Extendable SAWs

a SAW is forward extendable if extendable forwards to ∞ similarly, backward extendable and doubly extendable hence $\sigma_n^{\rm F}$, $\sigma_n^{\rm B}$, $\sigma_n^{\rm FB}$, etc

Theorem (G, Holroyd, Peres 2013)

Let G be an infinite, strongly connected, quasi-transitive digraph. The connective constants μ^{F} , μ^{B} , μ^{FB} exist and satisfy

$$\mu = \mu^F = \mu^B = \mu^{FB}.$$

・ ロ ト ・ 一 マ ト ・ ・ ・

Idea I of proof

Tree
$$T$$
, rooted at ρ .
 $W_n = \{ \text{vertices at depth } n \}$
growth $(T) = \lim_{n \to \infty} |W_n|^{1/n}$
branching rate $(T) = \sup \left\{ \lambda : \inf_{\Pi} \sum_{e \in \Pi} \lambda^{-|e|} > 0 \right\}$, where infimum is
over cutsets Π separating ρ from ∞

Theorem (Furstenberg 1967)

If T is subperiodic, growth(T) = branching rate(T).

Apply this to the various SAW trees, so that growth rates are connective constants. Hence $\mu = \mu^{F}$ and $\mu^{B} = \mu^{FB}$.

Idea II of proof

Two cases:

- **G** unimodular: use mass-transport principle to obtain $\mu^{B} = \mu$.
- *G* non-unimodular: use the fact that the modular function is unbounded to construct a certain type of 'geodesic'. Then use combinatorics of paths to obtain $\mu^{B} = \mu$.

Question: is there a unified proof?

$A \ problem$

Question: For what graphs is it the case that $0 < c \le \frac{\sigma_n^{\mathsf{F}}}{\sigma_n} \le 1$, etc?

YES: for \mathbb{Z}^d and $d \ge 5$ PERHAPS: for \mathbb{Z}^2

Hara/Slade, lace expansion approximation by $SLE_{8/3}$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Locality of connective constants

Question: If G and H are alike on a ball around the origin, are $\mu(G)$ and $\mu(H)$ close?

- critical percolation probabilities (Benjamini, Nachmias, Peres for tree-like graphs, Martineau, Tassion for Cayley graphs of abelian groups)
- 2. Ising critical temperature?
- 3. random-cluster critical point?

Warning: at least as hard as proving

"slab critical points \rightarrow full-space critical point"

Grimmett-Marstrand, Aizenman, Bodineau

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶

Locality of connective constants

Question: If G and H are alike on a ball around the origin, are $\mu(G)$ and $\mu(H)$ close?

- 1. critical percolation probabilities (Benjamini, Nachmias, Peres for tree-like graphs, Martineau, Tassion for Cayley graphs of abelian groups)
- 2. Ising critical temperature?
- 3. random-cluster critical point?

Warning: at least as hard as proving

"slab critical points ightarrow full-space critical point"

Grimmett-Marstrand, Aizenman, Bodineau

(日) (個) (E) (E) (E)

Locality of connective constants

Question: If G and H are alike on a ball around the origin, are $\mu(G)$ and $\mu(H)$ close?

- 1. critical percolation probabilities (Benjamini, Nachmias, Peres for tree-like graphs, Martineau, Tassion for Cayley graphs of abelian groups)
- 2. Ising critical temperature?
- 3. random-cluster critical point?

Warning: at least as hard as proving

"slab critical points \rightarrow full-space critical point"

Grimmett-Marstrand, Aizenman, Bodineau

Graphs as a metric space

Rooted graphs G, H

```
B_k(G) = ball within distance k from root
```

Distance d(G, H):

$$K = \max\{k : B_k(G) \simeq B_k(H)\}$$

 $d(G, H) = 2^{-K}$

Babai 1991

Question: For what types of graph is it the case that

 $|\mu(G) - \mu(H)|$ is small when d(G, H) is small?

 Graphs as a metric space

Rooted graphs G, H

```
B_k(G) = ball within distance k from root
```

Distance d(G, H):

$$\mathcal{K} = \max\{k : B_k(G) \simeq B_k(H)\}$$

 $d(G, H) = 2^{-\mathcal{K}}$

Babai 1991

Question: For what types of graph is it the case that $|\mu(G) - \mu(H)|$ is small when d(G, H) is small?

Partial answer

Theorem (G and Li 2014)

OK for the class of vertex-transitive graphs having a 'height function'.

OK for many Cayley graphs of finitely presented groups, e.g., of infinite abelian groups, free nilpotent, free solvable, + others satisfying a certain condition on the presentation.

イロト 不得 トイヨト イヨト 二日

26/28

Ideas of proof ...

Partial answer

Theorem (G and Li 2014)

OK for the class of vertex-transitive graphs having a 'height function'.

OK for many Cayley graphs of finitely presented groups, e.g., of infinite abelian groups, free nilpotent, free solvable, + others satisfying a certain condition on the presentation.

イロト 不得 トイヨト イヨト 二日

26/28

Ideas of proof ...

A percolation problem

For any connected graph G with bounded degrees,

$$\overline{\mu}_p(\mathbf{v}) := \limsup_{n \to \infty} \{\sigma_n(\mathbf{v})^{1/n}\}$$

exists and is independent of v.

Let G := the infinite cluster of supercritical bond percolation on \mathbb{Z}^d Question: does $\sigma_n(v)^{1/n}$ converge a.s.?

Theorem (Lacoin 2012: annealed < quenched) We have $\overline{\mu}_p < p\mu_1$ for $p_c , where <math>\overline{p_c}(2) =$

 $\overline{p_{
m c}}(d) > p_{
m c}$ for large d.

A percolation problem

For any connected graph G with bounded degrees,

$$\overline{\mu}_p(\mathbf{v}) := \limsup_{n \to \infty} \{\sigma_n(\mathbf{v})^{1/n}\}$$

exists and is independent of v.

Let G := the infinite cluster of supercritical bond percolation on \mathbb{Z}^d Question: does $\sigma_n(v)^{1/n}$ converge a.s.?

Theorem (Lacoin 2012: annealed < quenched)

We have $\overline{\mu}_p < p\mu_1$ for $p_c , where <math>\overline{p_c}(2) = 1$ and $\overline{p_c}(d) > p_c$ for large d.

A percolation problem

For any connected graph G with bounded degrees,

$$\overline{\mu}_p(\mathbf{v}) := \limsup_{n \to \infty} \{\sigma_n(\mathbf{v})^{1/n}\}$$

exists and is independent of v.

Let G := the infinite cluster of supercritical bond percolation on \mathbb{Z}^d Question: does $\sigma_n(v)^{1/n}$ converge a.s.?

Theorem (Lacoin 2012: annealed < quenched)

We have $\overline{\mu}_p < p\mu_1$ for $p_c , where <math>\overline{p_c}(2) = 1$ and $\overline{p_c}(d) > p_c$ for large d.

Finally

SAW in plane - 1,000,000 steps

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

28/28

Problem: Prove that random SAW \Rightarrow SLE_{8/3}