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Plan of the Talk

• Introduction: From Fractal Percolation to Cosmology

• Brownian Loop Soup and Conformal Fields

• Some Easy Calculations

• Some Open Questions
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Scale-Invariant Boolean Model

Poisson point process with intensity measure λ r−3 dr dx dy, λ ∈
(0,∞):

Poissonization of the infinite measure λ
∫
D
∫∞
0 r−3 dr dx dy on space

of discs in D ⊆ R2 with radius r.
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Inflation

Inflation is part of the standard cosmological model.

Three main components: Big Bang, inflation, slower expansion.
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Cosmic Bubbles

Scale-invariant Boolean model as toy model of two-dimensional
eternally inflating universe.

Intuitive picture: “cosmic bubbles” of slowly expanding space
nucleate in inflating universe.

Similar to first order phase transition: inflating (metastable)
phase decays to slowly-expanding phase (more stable).
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Eternal Inflation and the Multiverse

If inflations is sufficiently fast and nucleation sufficiently slow,

cosmic bubbles don’t percolate and inflations continues forever.

All models of eternal inflation produce an infinite multiverse,

typically a fractal.

Our visible universe is inside a single bubble.

Different bubbles may host different laws of physics.
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A Conformal Field Theory for Eternal Inflation?

Ben Freivogel and Matthew Kleban tried with construct a con-

formal field theory associated to eternal inflation (JHEP 12,

2009):

Use the scale-invariant Boolean model to generate spherical cos-

mic bubbles in a two-dimensional universe; bubbles are randomly

assigned one of two types.

Consider N(z) = # type 1 bubbles −# type 2 bubbles covering

z ∈ C. N is afflicted by logarithmic divergences, so define the

“field”

eiβN(z), β ∈ R .
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Replacing Discs with Brownian Loops

Brownian loop soup: Poissonization of the Brownian loop mea-

sure µD on loops γ in D, i.e.,

λµD := λ
∫
D

∫ ∞
0

1

2πt2
µbrz,t 1{γ⊂D} dt dA(z)

where A denotes area and µbrz,t is the probability measure of a

Brownian bridge of time length t started at z.

A loop γ is a continuous function γ : [0, tγ]→ C with tγ ∈ (0,∞)

and γ(0) = γ(tγ).

Think of µD as a measure on equivalence classes of loops modulo

a time shift: θuγr : t 7→ γr(u+ t mod tγr).

7



From Brownian Loops to Conformal Fields

Take two independent Brownian loop soups with intensity λ/2 in

D (bounded). Let, formally,

N i(z) = # loops in i-th soup that disconnect z from ∞ (i = 1,2)

N(z) = N1(z)−N2(z)

Vβ(z) = eiβN(z) (“vertex operator”)
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Conformal Correlation Functions

〈. . .〉δ,D = expectation with respect to the Brownian loop soup in
D restricted to loops of diameter ≥ δ
Theorem. If n ∈ N, D ⊂ C is bounded and simply connected,
and β = (β1, . . . , βn), then

lim
δ→0

〈∏n
j=1 e

iβjN(zj)
〉
δ,D∏n

j=1 δ
λπ5(1−cosβj)

= φD(z1, . . . , zn;β)

exists and is finite and real. Moreover, if D̃ is another bounded,
s.c. subset of C and f : D → D̃ is a conformal map, then

φf(D)(f(z1), . . . , f(zn);β) =
n∏

j=1

∣∣∣f ′(zj)∣∣∣−λπ5(1−cosβj)
φD(z1, . . . , zn;β) .

CFT language: The vertex operators Vβ(z) = eiβN(z) behave like
conformal primaries with scaling exponents λπ5(1− cosβ).
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Brownian Winding

Let, formally, θ(z) = total winding around z of all loops from a
Brownian loop soup with intensity λ.

Theorem. If n ∈ N, D ⊂ C is bounded and simply connected,
β = (β1, . . . , βn), and ck = 1

2πk2 for k ∈ Z \ {0}, then

lim
δ→0

〈∏n
j=1 e

iβjθ(zj)
〉
δ,D∏n

j=1 δ
λ
∑
k 6=0 ck(1−cos(kβj))

= ψD(z1, . . . , zn;β)

exists and is finite and real. Moreover, if D̃ is another bounded,
s.c. subset of C and f : D → D̃ is a conformal map, then

ψf(D)(f(z1), . . . , f(zn);β)

=
n∏

j=1

∣∣∣f ′(zj)∣∣∣−λ∑k 6=0 ck(1−cos(kβj))
ψD(z1, . . . , zn;β) .

10



The One-Point Function in the First Loop Model

〈. . .〉δ,R = expectation with respect to the Brownian loop soup in

C restricted to loops γ with δ ≤ diam(γ) < R

Aδ,R(z) = set of loops with diameter between δ and R discon-

necting z from ∞〈
eiβN(z)

〉
δ,R

=
∞∑
n=0

(cosβ)n e−λµC(Aδ,R(z)) 1

n!
[λµC(Aδ,R(z))]n

= e−λµC(Aδ,R(z))
∞∑
n=0

[λµC(Aδ,R(z))]n

n!

= e−λµC(Aδ,R(z))(1−cosβ)
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Lemma. For any z ∈ C and δ < R,

µC(Aδ,R(z)) =
π

5
log

R

δ
.

Using the lemma, we obtain

〈
eiβN(z)

〉
δ,R

=
(
R

δ

)−λπ5(1−cosβ)
.

Remark: π
5 is the expected area of a planar Brownian loop of

time length one (Garban and Trujillo Ferreras, CMP 264, 2006).

12



Proof of the Lemma

The lemma follows easily from

Theorem. (Werner, 2008) For any simply connected sets D′ ⊂
D and any z ∈ D′,

µC({γ : γ ⊂ D, γ 6⊂ D′, γ disconnects z from ∞}) =
π

5
log Φ′(z)

where Φ denote the conformal map from D′ to D such that

Φ(z) = z and Φ′(z) is real and positive.
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... and the observation that, if

ARδ (z) = set of loops contained in disc of radius R centered at

z but not completely contained in disc of radius δ centered at z

and such that they disconnect z from ∞,

then

µC(Aδ,R(z)) = µC(ARδ (z)) =
π

5
log

R

δ
.
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The Two-Point Function in Bounded Domains

Aδ(z1, z2) = set of loops with diameter ≥ δ disconnecting z1 and
z2 from ∞〈
eiβ1N(z1)eiβ2N(z2)

〉
δ,D

=
〈
ei(β1+β2)N1,2

〉
δ,D

〈
eiβ1N1

〉
δ,D

〈
eiβ2N2

〉
δ,D

N1,2 = # loops that disconnect both z1 and z2 from ∞
N1 = # loops that disconnect z1 but not z2 from ∞
N2 = # loops that disconnect z2 but not z1 from ∞

〈
ei(β1+β2)N1,2

〉
δ,D

= e−λµD(A(z1,z2))(1−cos(β1+β2))

where A(z1, z2) is the set of loops that disconnect both z1 and
z2 from ∞.

Note that µf(D)(A(f(z1), f(z2))) = µD(A(z1, z2)).
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The One-Point Function in Bounded Domains

〈. . .〉δ,D denotes expectation with respect to the Brownian loop
soup in D with cutoff δ > 0 on the diameter of the loops.

Aδ(z) = set of loops with diameter ≥ δ disconnecting z from ∞

µD(Aδ(z)) =
π

5
log Φ′(z) + µBδ(z)(Aδ(z))

where Bδ(z) = {w ∈ C : |z − w| < δ} and Φ is the conformal
map from Bδ(z) to D such that Φ(z) = z and Φ′(z) is real and
positive.

〈
eiβN(z)

〉
δ,D

= e−λµD(Aδ(z))(1−cosβ)

=
(
Φ′(z)

)−π5λ(1−cosβ)
e
−λµBδ(z)(Aδ(z))(1−cosβ)
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〈
eiβN(z̃)

〉
δ,D̃〈

eiβN(z)
〉
δ,D

= exp
{
λ(1− cosβ)

[
µD(Aδ(z))− µD̃(Aδ(z̃))

]}

µD(Aδ(z))− µD̃(Aδ(z̃)) =
π

5
log Φ′(z) + µBδ(z)(Aδ(z))

−
(
π

5
log Φ̃′(z̃) + µBδ(z̃)(Aδ(z̃))

)
=

π

5
log

1

Ψ′(z)δ
−
π

5
log

1

Ψ̃′(z̃)δ
+O(δ)

=
π

5
log f ′(z) +O(δ)

〈
eiβN(z̃)

〉
δ,D̃

=
(
f ′(z)

)−π5λ(1−cosβ)+O(δ)
〈
eiβN(z)

〉
δ,D
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Open Questions

• Existence of limiting field ϕβ?

That is, φD(z1, . . . , zn;β) =
〈
ϕβ(z1) . . . ϕβ(zn)

〉
D

?

• Scaling limit of model based on random walk loop soup?

• Connections with models of statistical mechanics?

• Connections with cosmology and/or string theory?
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