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• Intuitively relates critical exponents in „quantum 

gravity form“ to those in „classical form“ (KPZ)

• Ideally: „quantum gravity form“ - random metric 

„classical form“ - Euclidean metric

• Now: „quantum form gravity“ - Liouville measure 

„classical form“ - Lebesgue measure

• Different versions: Q-box counting (DS), Hausdorff

(RV), we consider a Minkowski version

THE KPZ RELATION:



THE LIOUVILLE MEASURE:



• The exponential of  the GFF:

THE LIOUVILLE MEASURE:



• The exponential of  the GFF:

• Regularize the GFF by taking circle averages:

ℎδ(𝑧) = ℎ(𝜌𝛿
𝑧)

THE LIOUVILLE MEASURE:



• The exponential of  the GFF:

• Regularize the GFF by taking circle averages:

ℎδ(𝑧) = ℎ(𝜌𝛿
𝑧)

• For γ < 2, define the regularized measure:

𝑑𝜇𝛿 𝑧 = 𝛿
𝛾2

2 𝑒𝛾ℎ𝛿(𝑧)𝑑𝑧

THE LIOUVILLE MEASURE:



THE LIOUVILLE MEASURE:

• The exponential of  the GFF:

• Regularize the GFF by taking circle averages:

ℎδ(𝑧) = ℎ(𝜌𝛿
𝑧)

• For γ < 2, define the regularized measure:

𝑑𝜇𝛿 𝑧 = 𝛿
𝛾2

2 𝑒𝛾ℎ𝛿(𝑧)𝑑𝑧

• THEOREM (DS): almost surely along dyadics regularized

measures converge weakly to a random measure 𝜇𝛾



• The exponential of  the GFF:

• Regularize the GFF by taking circle averages:

ℎδ(𝑧) = ℎ(𝜌𝛿
𝑧)

• For γ < 2, define the regularized measure:

𝑑𝜇𝛿 𝑧 = 𝛿
𝛾2

2 𝑒𝛾ℎ𝛿(𝑧)𝑑𝑧

• THEOREM (DS): almost surely along dyadics regularized

measures converge weakly to a random measure 𝜇𝛾

THE LIOUVILLE MEASURE:



THE EXPECTED MINKOWSKI QUANTUM DIMENSION:



• For a dyadic covering of level 2−𝑛, define the Minkowski content:

𝑀𝑞 𝐴, 𝑛 = ∑1 𝑆𝑖 ∩ 𝐴 ≠ ∅ 𝑙 𝑆𝑖
𝑞

THE EXPECTED MINKOWSKI QUANTUM DIMENSION:



• For a dyadic covering of level 2−𝑛, define the Minkowski content:

𝑀𝑞 𝐴, 𝑛 = ∑1 𝑆𝑖 ∩ 𝐴 ≠ ∅ 𝑙 𝑆𝑖
𝑞

• The (upper) Minkowski dimension is then defined as:

𝑑𝑀 𝐴 = inf
𝑞
{lim sup

𝑛
𝑀𝑞 𝐴, 𝑛 < ∞}

THE EXPECTED MINKOWSKI QUANTUM DIMENSION:



• For a dyadic covering of level 2−𝑛, define the Minkowski content:

𝑀𝑞 𝐴, 𝑛 = ∑1 𝑆𝑖 ∩ 𝐴 ≠ ∅ 𝑙 𝑆𝑖
𝑞

• The (upper) Minkowski dimension is then defined as:

𝑑𝑀 𝐴 = inf
𝑞
{lim sup

𝑛
𝑀𝑞 𝐴, 𝑛 < ∞}

• Similarly define the quantum Minkowski content:

𝑀𝑞
𝑄
𝐴, 𝑛 = ∑1 𝑆𝑖 ∩ 𝐴 ≠ ∅ 𝜇𝛾 𝑆𝑖

𝑞

THE EXPECTED MINKOWSKI QUANTUM DIMENSION:



• For a dyadic covering of level 2−𝑛, define the Minkowski content:

𝑀𝑞 𝐴, 𝑛 = ∑1 𝑆𝑖 ∩ 𝐴 ≠ ∅ 𝑙 𝑆𝑖
𝑞

• The (upper) Minkowski dimension is then defined as:

𝑑𝑀 𝐴 = inf
𝑞
{lim sup

𝑛
𝑀𝑞 𝐴, 𝑛 < ∞}

• Similarly define the quantum Minkowski content:

𝑀𝑞
𝑄
𝐴, 𝑛 = ∑1 𝑆𝑖 ∩ 𝐴 ≠ ∅ 𝜇𝛾 𝑆𝑖

𝑞

• The expected quantum Minkowski dimension is then defined as:

q𝑀,𝐸 𝐴, 𝑛 = inf
𝑞
{lim sup

𝑛
𝐄𝑀𝑞

𝑄
𝐴, 𝑛 < ∞}

THE EXPECTED MINKOWSKI QUANTUM DIMENSION:



THE KPZ RELATION: MINKOWSKI VERSION



• PROPOSITION:

Consider some domain and let 𝐴 be a fixed compact subset in its interior with 

Minkowski dimension 𝑑𝑀. Then its expected quantum Minkowski dimension

𝑞𝑀,𝐸 satisfies the KPZ relation: 

𝑑𝑀 = 2 +
𝛾2

2
𝑞𝑀,𝐸 −

𝛾2𝑞𝑀,𝐸
2

2

THE KPZ RELATION: MINKOWSKI VERSION



• PROPOSITION:

Consider some domain and let 𝐴 be a fixed compact subset in its interior with 

Minkowski dimension 𝑑𝑀. Then its expected quantum Minkowski dimension

𝑞𝑀,𝐸 satisfies the KPZ relation:

𝑑𝑀 = 2 +
𝛾2

2
𝑞𝑀,𝐸 −

𝛾2𝑞𝑀,𝐸
2

2

• Proof:

• Scaling lemma for Liouville balls: 𝐄 𝜇𝛾 𝑆𝑟
𝑞 = O 1 r

2+
𝛾2

2
𝑞−

𝛾2𝑞2

2

• Number of balls needed to cover the set: 𝑟−𝑑𝑀

THE KPZ RELATION: MINKOWSKI VERSION



• PROPOSITION:

Consider some domain and let 𝐴 be a fixed compact subset in its interior with 

Minkowski dimension 𝑑𝑀. Then its expected quantum Minkowski dimension

𝑞𝑀,𝐸 satisfies the KPZ relation:

𝑑𝑀 = 2 +
𝛾2

2
𝑞𝑀,𝐸 −

𝛾2𝑞𝑀,𝐸
2

2

• Proof:

• Scaling lemma for Liouville balls: 𝐄 𝜇𝛾 𝑆𝑟
𝑞 = O 1 r

2+
𝛾2

2
𝑞−

𝛾2𝑞2

2

• Number of balls needed to cover the set: 𝑟−𝑑𝑀

• Also holds for field-independent sets
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• Motivation: 

• some models (e.g. Ising model) coupled with the quantum space on 

the discrete level

• somewhat natural (i.e. compare Kaufman’s dimension doubling)

• First try: look at field at very high points – thick points:

• Depending on the concrete KPZ relation, get counterexamples either

by looking at the set of say 𝛾-thick points or by intersecting this set

with an independent fractal

• What about more natural counterexamples?

THE KPZ RELATION FOR DEPENDENT SETS?
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• PROPOSITION:

Expected quantum Minkowski dimension of the contour lines satisfies

𝑞𝑀,𝐸 ≤
3

4+𝛾2

• COROLLARY:

The expected quantum dimension of contour lines is strictly smaller than the one predicted

by the usual KPZ relation for both expected Minkowski and almost sure Hausdorff version

• PROOF:

• Sample the SLE4 and look at scaling of dyadic squares intresecting the SLE4

• Use Jensen to bound: 𝐄 𝜇𝛾 𝑆
𝑞 ≤ 𝐄 𝜇𝛾 𝑆

𝑞

• Regularize the field, use Fubini, control field 𝛿-far from the curve; bound neighbourhood of the line

• Use our knowledge that the Hausdorff (and Minkowski) dimension of the SLE4 is
3

2
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• THEOREM (S,D):

There is a coupling of the GFF and chordal SLE𝜅 (𝜅 < 8), such that:

• An instance of the GFF can be constructed by sampling first the SLE𝜅, and 

then sampling GFF in the slit domain

• SLE𝜅 is measurable with respect to the GFF

• But boundary conditions more complicated, 

need to also incorporate winding of the curve,

given bywT z := arg𝑓𝑇′(𝑧)
• Not defined on the curve,

blows up nearing the curve
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• COROLLARY:

The usual KPZ relation does not hold in expected Minkowski nor in almost sure 

Hausdorff version:
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• Work off the curve: use Whitney type of decomposition

• Determine scaling of Liouville measure of a CR-Whitney 

square

• Sum over CR-Whitney squares using results on Euclidean 

fractal dimension of SLE

• Use this to determine quantum

fractal dimension of SLE



SCALING OF CR-WHITNEY SQUARE

• S some dyadic square, we write

𝐄 𝜇𝛾 𝑆
𝑞|𝑆 ∈ 𝑊 =

𝐄( lim
𝛿→0

 
𝑆

𝛿
𝛾2

2 𝑒𝛾ℎ𝛿 𝑧 𝑑𝑧

𝑞

𝑆 ∈ 𝑊 =

𝐄( lim
𝛿→0

 
𝑆

𝛿
𝛾2

2 𝑒𝛾ℎ𝛿,𝐻𝑡 𝑧 +𝛾𝑤(𝑧)𝑑𝑧

𝑞

𝑆 ∈ 𝑊 =



SCALING OF CR-WHITNEY SQUARE

• Incorporate winding:
• CR-Whitney: condition the centre of the square to satisfy 

CR 𝑧, 𝐻𝑆𝐿𝐸 ≍ 𝜖
• show that winding is up to an additive error constant in each CR-

Whitney square

• determine exponential moments of winding under this specific 

conditioning

• Use Kahane convexity inequalities for lower bound
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• SCHRAMM studied geometric winding number of  the radial SLE 

around zero. Having arrived 𝜖-close the winding number is

• more or less a Gaussian of variance−𝜅 log 𝜖

• We determined the winding (arg 𝑓𝜏′(𝑧)) of the chordal SLE𝜅
conditioned to pass 𝜖-close of a fixed point 𝑧.

• more or less a Gaussian of variance−
𝜅

4
log 𝜖

• The notions of windings are different, but (should) agree

asymptotically near the curve



WINDING OF CHORDAL SLE:

• THEOREM:

Fix 𝑧 ∈ 𝐇; 0 < 𝜅 < 8. Let 𝜏 be the first time that the SLE𝜅
cuts 𝑧 from infinity. 

For 𝜖 small enough, conditioned on CR 𝑧,𝐻𝑆𝐿𝐸 ≍ 𝜖 the

exponential moments of winding 𝑤 𝑧 ≔ lim
𝑡→𝜏
arg 𝑓𝑡′(𝑧) are given 

by

𝐄(𝑒𝜆𝑤(𝑧) CR 𝑧, 𝐻𝑆𝐿𝐸 ≍ 𝜖 ≍ 𝜖−
𝜆2𝜅
8
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• PROOF - reduction

• Work in the unit disc, fix z to 0, reparametrize using conformal radius.

• This reduces our problem to a diffusion problem (as in (B)):

Winding w z =  0
𝜏
cot

𝑋𝑠

2
𝑑𝑠 where 𝜏 is now the first exit time from 

[0,2𝜋] for the diffusion

𝑑𝑋𝑠 = 𝜅𝑑𝐵𝑠 +
𝜅 − 4

2
cot
𝑋𝑠
2
𝑑𝑠

• Conditioning on conformal radius becomes conditioning to leave the interval 

[0,2𝜋] during some time interval

• Same diffusion studied in papers of (L), (SSW)
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• PROOF – the ideal world:

• Conditioned on long-time survival the process looks for a while like the

process conditioned on the everlasting surival:

𝑑𝑋𝑠 = 𝜅𝑑𝐵𝑠 + 2 cot
𝑋𝑠
2
𝑑𝑠

• If this was the case for our conditioning, we could calculate:
𝐄𝑒𝜆𝑤(𝑧)| 𝜏 ∈ [𝑇, 𝑇 + 𝑐] =

𝐄𝑒𝜆  0
𝜏
cot
𝑋𝑠
2 𝑑𝑠| 𝜏 ∈ [𝑇, 𝑇 + 𝑐] =

𝐄𝑒−𝜆
𝜅
2 𝐵𝜏+𝜆𝑋𝜏| 𝜏 ∈ [𝑇, 𝑇 + 𝑐] = 𝑂 1 𝑒

𝜆2𝜅
8 𝑇
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• PROOF - work

• The error for the main contribution is given by:

𝑒 𝑥, 𝑠 =
𝜙0′ 𝑥

𝜙0(𝑥)
−
𝑷𝑥′ 𝜏 ∈ 𝑇 − 𝑠, 𝑇 − 𝑠 + 𝑐

𝑷𝑥(𝜏 ∈ 𝑇 − 𝑠, 𝑇 − 𝑠 + 𝑐 )

• To bound the error for the main contribution, we need some hands-on 

analysis to control the boundary behaviour of all eigenfunctions:

KEY LEMMA: 
𝜙𝑖 𝑥

𝜙0 𝑥

′
≤ O(𝜆𝑖

𝑚)

• To bound the rest term, we use more probabilistic arguments



THANK YOU!


