Random Geometry in the Spectral Measure of the Circular Beta Ensemble

Tom Alberts
University of Utah

Joint work with
Bálint Virág (Toronto), Raoul Normand (Academia Sinica)

Circular Beta Ensemble

- $\beta \geq 0$
- Point process of n points on the unit circle $\partial \mathbb{D}$
- Points $e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}$ distributed according to

$$
\frac{1}{Z_{n}(\beta)} \prod_{1 \leq j \neq k \leq n}\left|e^{i \theta_{j}}-e^{i \theta_{k}}\right|^{\beta} \frac{d \theta_{1}}{2 \pi} \cdots \frac{d \theta_{n}}{2 \pi}
$$

- Partition function $Z_{n}(\beta)$ is explicitly known [Wil62, Goo70]

Circular Beta Ensemble

- $\beta \geq 0$
- Point process of n points on the unit circle $\partial \mathbb{D}$
- Points $e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}$ distributed according to

$$
\frac{1}{Z_{n}(\beta)} \prod_{1 \leq j \neq k \leq n}\left|e^{i \theta_{j}}-e^{i \theta_{k}}\right|^{\beta} \frac{d \theta_{1}}{2 \pi} \cdots \frac{d \theta_{n}}{2 \pi}
$$

Circular Beta Ensemble

- $\beta \geq 0$
- Point process of n points on the unit circle $\partial \mathbb{D}$
- Points $e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}$ distributed according to

$$
\frac{1}{Z_{n}(\beta)} \prod_{1 \leq j \neq k \leq n}\left|e^{i \theta_{j}}-e^{i \theta_{k}}\right|^{\beta} \frac{d \theta_{1}}{2 \pi} \cdots \frac{d \theta_{n}}{2 \pi}
$$

- Natural question:

Are there random, unitary matrices whose eigenvalue distribution is Circular- β ?

Circular Beta Ensemble

- Natural question:

Are there random, unitary matrices whose eigenvalue distribution is Circular- β ?

Circular Beta Ensemble

- Natural question:

Are there random, unitary matrices whose eigenvalue distribution is Circular- β ?

- For $\beta=2$ this is well known:
- $\beta=2$: Haar distributed random matrices from $S U(n)$

Circular Beta Ensemble

- For general β the answer is also yes [KN04, KN07]
- Uses the CMV representation [CMV03]
-CMV is an analogue of the tri-diagonal representation for self-adjoint operators
- CMV is 5 -diagonal
- Is the sparsest possible representation of a unitary matrix

Recipe for CMV

- Input is a sequence $\left\{\alpha_{j}, j \geq 0\right\}$, taking values in $\overline{\mathbb{D}}$
- Called the Verblunsky coefficients
- Given α_{j}, define the 2×2 unitary matrix Θ_{j} by

$$
\Theta_{j}=\left(\begin{array}{cc}
\bar{\alpha}_{j} & \rho_{j} \\
\rho_{j} & -\alpha_{j}
\end{array}\right), \quad \rho_{j}=\sqrt{1-\left|\alpha_{j}\right|^{2}}
$$

- Let \mathcal{L} and \mathcal{M} be the infinite matrices

$$
\mathcal{L}=\left(\begin{array}{llll}
\Theta_{0} & & & \\
& & \Theta_{2} & \\
\\
& & \Theta_{4} & \\
& & & \ldots
\end{array}\right), \quad \mathcal{M}=\left(\begin{array}{cccc}
1 & & & \\
& \Theta_{1} & & \\
& & \Theta_{3} & \\
& & & \ldots
\end{array}\right),
$$

- Then $\mathcal{C}=\mathcal{C}\left(\alpha_{0}, \alpha_{1}, \ldots\right)=\mathcal{L M}$ is the CMV matrix determined by the Verblunskies $\left\{\alpha_{j}, j \geq 0\right\}$

Recipe for CMV

- Note that \mathcal{C} as defined is an infinite matrix
- Treated as an operator on

$$
\ell^{2}(\{0,1,2, \ldots\})=\left\{\left(a_{k}\right)_{k=0}^{\infty}: \sum_{k=0}^{\infty}\left|a_{k}\right|^{2}<\infty\right\}
$$

- To get an operator on \mathbb{C}^{n}, simply set $\left|\alpha_{n-1}\right|=1$ and take the upper $n \times n$ block of \mathcal{C}

$$
\mathcal{C}=\left(\begin{array}{cccccc}
\bar{\alpha}_{0} & \bar{\alpha}_{1} \rho_{0} & 0 & 0 & 0 & \ldots \\
\rho_{0} & -\bar{\alpha}_{1} \alpha_{0} & -\rho_{1} \alpha_{0} & 0 & 0 & \ldots \\
0 & \bar{\alpha}_{2} \rho_{1} & -\bar{\alpha}_{2} \alpha_{1} & \bar{\alpha}_{3} \rho_{2} & \rho_{3} \rho_{2} & \ldots \\
0 & \rho_{2} \rho_{1} & -\rho_{2} \alpha_{1} & -\bar{\alpha}_{3} \alpha_{2} & -\rho_{3} \alpha_{2} & \ldots \\
0 & 0 & 0 & \bar{\alpha}_{4} \rho_{3} & -\bar{\alpha}_{4} \alpha_{3} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \cdots
\end{array}\right)
$$

Circular Beta Ensemble

- For eigenvalues with the Circular- β distribution, choose the α_{j} independent with marginal distributions

$$
\alpha_{j} \sim e^{2 \pi i \operatorname{Uniform}(0,1)} \sqrt{\operatorname{Beta}\left(1, \frac{\beta(j+1)}{2}\right)}
$$

which has pdf

$$
\frac{\beta(j+1)}{2 \pi}\left(1-|z|^{2}\right)^{\frac{\beta(j+1)}{2}-1} d^{2} z
$$

with respect to Lebesgue measure on \mathbb{D}

Circular Beta Ensemble

- For eigenvalues with the Circular- β distribution, choose the α_{j} independent with marginal distributions

$$
\alpha_{j} \sim e^{2 \pi i \operatorname{Uniform}(0,1)} \sqrt{\operatorname{Beta}\left(1, \frac{\beta(j+1)}{2}\right)}
$$

Circular Beta Ensemble

- For eigenvalues with the Circular- β distribution, choose the α_{j} independent with marginal distributions

$$
\alpha_{j} \sim e^{2 \pi i \operatorname{Uniform}(0,1)} \sqrt{\operatorname{Beta}\left(1, \frac{\beta(j+1)}{2}\right)}
$$

- Note α_{j} are rotationally invariant,

$$
\mathbf{E}\left[\alpha_{j}\right]=0, \quad \mathbf{E}\left[\left|\alpha_{j}\right|^{2}\right]=\frac{2}{\beta(j+1)+2}
$$

Circular Beta Ensemble

- For eigenvalues with the Circular- β distribution, choose the α_{j} independent with marginal distributions

$$
\alpha_{j} \sim e^{2 \pi i \operatorname{Uniform}(0,1)} \sqrt{\operatorname{Beta}\left(1, \frac{\beta(j+1)}{2}\right)}
$$

Circular Beta Ensemble

- For eigenvalues with the Circular- β distribution, choose the α_{j} independent with marginal distributions

$$
\alpha_{j} \sim e^{2 \pi i \mathrm{Uniform}(0,1)} \sqrt{\operatorname{Beta}\left(1, \frac{\beta(j+1)}{2}\right)}
$$

- Theorem: [KN04, KR10] Let $U \sim$ Uniform(0, 1) be independent of the Verblunskies. Then for each fixed n the matrix

$$
\mathcal{C}=\mathcal{C}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}, e^{2 \pi i U}, 0,0,0, \ldots\right)
$$

has eigenvalues distributed according to Circular- β

Circular Beta Ensemble

- For eigenvalues with the Circular- β distribution, choose the α_{j} independent with marginal distributions

$$
\alpha_{j} \sim e^{2 \pi i \mathrm{Uniform}(0,1)} \sqrt{\operatorname{Beta}\left(1, \frac{\beta(j+1)}{2}\right)}
$$

- Theorem: [KN04, KR10] Let $U \sim$ Uniform $(0,1)$ be independent of the Verblunskies. Then for each fixed n the matrix

$$
\mathcal{C}=\mathcal{C}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}, e^{2 \pi i U}, 0,0,0, \ldots\right)
$$

has eigenvalues distributed according to Circular- β

- Note the "nesting" property of these matrices

Circular Beta Ensemble

- For eigenvalues with the Circular- β distribution, choose the α_{j} independent with marginal distributions

$$
\alpha_{j} \sim e^{2 \pi i \mathrm{Uniform}(0,1)} \sqrt{\operatorname{Beta}\left(1, \frac{\beta(j+1)}{2}\right)}
$$

- Theorem: [KN04, KR10] Let $U \sim$ Uniform(0, 1) be independent of the Verblunskies. Then for each fixed n the matrix

$$
\mathcal{C}=\mathcal{C}\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}, e^{2 \pi i U}, 0,0,0, \ldots\right)
$$

has eigenvalues distributed according to Circular- β

- Note the "nesting" property of these matrices
- Suggests that it is worthwhile to study the infinite matrix $\mathcal{C}\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots\right)$

Circular Beta Ensemble

$$
\mathcal{C}\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots\right)
$$

- Operator is well-defined. What happens to the eigenvalues?
- Need a notion of a limit of a point process
- Could study the limit of the empirical measure

$$
\frac{1}{n} \sum_{k=1}^{n} \delta_{e^{i \theta_{k}}}
$$

but it converges almost surely to uniform measure on $\partial \mathbb{D}$, for all β

- Instead study the spectral measure

Spectral Measure for CMV Matrices

- Assume all Verblunskies have $\left|\alpha_{n}\right|<1$ and let $\mathcal{C}=$ $\mathcal{C}\left(\alpha_{0}, \alpha_{1}, \ldots\right)$
- Let $\delta_{0}=(1,0,0, \ldots) \in \ell^{2}$. Can be shown that linear combinations of $\left\{\mathcal{C}^{m} \delta_{0}\right\}_{m \in \mathbb{Z}}$ are dense in ℓ^{2}

Spectral Theorem for CMV

- There exists a probability measure μ on $\partial \mathbb{D}$ such that the mapping $V: \ell^{2} \rightarrow L^{2}(\partial \mathbb{D}, d \mu)$ defined by

$$
\begin{aligned}
V: \ell^{2} & \longrightarrow L^{2}(\partial \mathbb{D}, d \mu) \\
\mathcal{C}^{m} \delta_{0} & \mapsto z^{m}
\end{aligned}
$$

is unitary, and $V(\mathcal{C} \mathbf{x})=z V(\mathbf{x})$

- In short: Make the space more complicated ($L^{2}(\partial \mathbb{D}, d \mu)$ instead of ℓ^{2}), but the action of the operator simpler (multiplication by the function z)

Examples of Spectral Measure

- $\alpha_{n} \equiv 0$

$$
\mu=\text { Lebesgue }
$$

- $\alpha_{0}=\zeta \in \mathbb{D}, \alpha_{n}=0$ for $n \geq 1$

$$
d \mu(\theta)=\frac{1-|\zeta|^{2}}{\left|1-\zeta e^{i \theta}\right|^{2}} \frac{d \theta}{2 \pi}
$$

- $\alpha_{n}=-1 /(n+2)$

$$
d \mu(\theta)=1-\cos \theta \frac{d \theta}{2 \pi}
$$

Orthogonal Polynomials on the Unit Circle

- Spectral theorem gives a way of going from CMV matrix to probability measures
- Orthogonal polynomials gives a way of going in reverse

$$
\Phi_{n}(z):=P_{n}\left[z^{n}\right], P_{n}:=\text { projection onto }\left\{1, z, \ldots, z^{n-1}\right\}^{\perp}, \Phi_{0} \equiv 1
$$

Projection is in the $L^{2}(\partial \mathbb{D}, d \mu)$ inner product

- Szego Recursion:

$$
\Phi_{n+1}(z)=z \Phi_{n}(z)-\bar{\alpha}_{n} \Phi_{n}^{*}(z)
$$

where $\alpha_{n} \in \mathbb{D}$, and

$$
\left(\sum_{k=0}^{n} a_{k} z^{k}\right)^{*}=\sum_{k=0}^{n} \bar{a}_{n-k} z^{k}
$$

Orthogonal Polynomials on the Unit Circle

- Spectral theorem gives a way of going from CMV matrix to probability measures
- Orthogonal polynomials gives a way of going in reverse

$$
\Phi_{n}(z):=P_{n}\left[z^{n}\right], P_{n}:=\text { projection onto }\left\{1, z, \ldots, z^{n-1}\right\}^{\perp}, \Phi_{0} \equiv 1
$$

Projection is in the $L^{2}(\partial \mathbb{D}, d \mu)$ inner product

- Szego Recursion:

$$
\Phi_{n+1}(z)=z \Phi_{n}(z)-\bar{\alpha}_{n} \Phi_{n}^{*}(z)
$$

where $\alpha_{n} \in \mathbb{D}$, and $\mathcal{C}\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots\right)$ has spectral measure μ

Triumvirate of Objects

Triumvirate of Objects

- There is a bijection between any two of them

Triumvirate of Objects

- For circular- β ensemble, the Verblunsky coefficients are the simplest objects

Triumvirate of Objects

- Can we translate properties of Verblunskies into properties of operators/spectral measures?

Triumvirate of Objects

- Subject of Barry Simon's two volumes Orthogonal Polynomials on the Unit Circle [Sim05a, Sim05b]

Spectral Measure for Circular- β

-For the infinite-dimensional circular- β operator, the spectral measure exhibits a rich random geometry

Spectral Measure for Circular- β

-For the infinite-dimensional circular- β operator, the spectral measure exhibits a rich random geometry

Proposition [Sim05b]:

- For $\beta \geq 2$, the spectral measure is purely singular continuous with respect to Lebesgue and has exact Hausdorff dimension $1-2 / \beta$
(in the sense that there is a set A of dimension $1-2 / \beta$ with $\mu(\partial \mathbb{D} \backslash A)=0$ and μ assigns zeros mass to any subset of $\partial \mathbb{D}$ with Hausdorff dimension strictly less than $1-2 / \beta$)
- For $\beta<2$ the spectral measure is pure point but supported on a dense subset of $\partial \mathbb{D}$
- The phase transition at $\beta=2$ is reminiscent of that for the Liouville quantum gravity measure on $\partial \mathbb{D}$

Spectral Measure for Circular- β

- For the infinite-dimensional circular- β operator, the spectral measure exhibits a rich random geometry

Proposition [Sim05b]:

- For $\beta \geq 2$, the spectral measure is purely singular continuous with respect to Lebesgue and has exact Hausdorff dimension $1-2 / \beta$
(in the sense that there is a set A of dimension $1-2 / \beta$ with $\mu(\partial \mathbb{D} \backslash A)=0$ and μ assigns zeros mass to any subset of $\partial \mathbb{D}$ with Hausdorff dimension strictly less than $1-2 / \beta$)
- For $\beta<2$ the spectral measure is pure point but supported on a dense subset of $\partial \mathbb{D}$
- The phase transition at $\beta=2$ is reminiscent of that for the Liouville quantum gravity measure on $\partial \mathbb{D}(\beta=8 / \kappa)$

Spectral Measure for Circular- β

-For the infinite-dimensional circular- β operator, the spectral measure exhibits a rich random geometry

- Theorem in Progress: [Alberts-Normand-Virag]: In the $\beta \geq 2$ phase we can compute the multifractal spectrum of the spectral measure for Circular $-\beta$.

Fix a realization of the spectral measure μ. The multifractal spectrum is the function

$$
\zeta \mapsto \operatorname{dim}_{H}\left\{\theta: \limsup _{r \rightarrow 0} \frac{\log \mu(B(\theta, r))}{\log r} \geq \zeta\right\}
$$

The spectrum is an almost sure quantity.

- Proof is an adaptation of that used for Eggleston measures or multiplicative cascades

Spectral Measure for Circular- β

- Four key tools used in Simon's proof:
- Szego recursion
- transfer matrices
- Bernstein-Szego approximation
- Jitomirskaya-Last inequalities

Bernstein-Szego approximation

- Recall $\Phi_{n}(z)$ is the monic orthogonal polynomial of degree n, in $L^{2}(\partial \mathbb{D}, d \mu)$
- Define φ_{n} to be the normalized orthogonal polynomial

$$
\varphi_{n}:=\frac{\Phi_{n}}{\left\|\Phi_{n}\right\|}, \quad\left\|\Phi_{n}\right\|^{2}=\int_{\partial \mathbb{D}}\left|\Phi_{n}\left(e^{i \theta}\right)\right|^{2} \frac{d \theta}{2 \pi}
$$

- Bernstein-Szego Approximation: The measures

$$
\left|\varphi_{n}\left(e^{i \theta}\right)\right|^{-2} \frac{d \theta}{2 \pi}
$$

are probability measures, and they converge to μ as $n \rightarrow \infty$

Bernstein-Szego approximation

- Recall $\Phi_{n}(z)$ is the monic orthogonal polynomial of degree n, in $L^{2}(\partial \mathbb{D}, d \mu)$
- Define φ_{n} to be the normalized orthogonal polynomial

$$
\varphi_{n}:=\frac{\Phi_{n}}{\left\|\Phi_{n}\right\|}, \quad\left\|\Phi_{n}\right\|^{2}=\int_{\partial \mathbb{D}}\left|\Phi_{n}\left(e^{i \theta}\right)\right|^{2} \frac{d \theta}{2 \pi}
$$

- Bernstein-Szego Approximation: The measures

$$
\left|\varphi_{n}\left(e^{i \theta}\right)\right|^{-2} \frac{d \theta}{2 \pi}
$$

are probability measures, and they converge to μ as $n \rightarrow \infty$
-Lemma: [ANR] For independent and rotationally invariant Verblunskies, $n \mapsto\left|\varphi_{n}\left(e^{i \theta}\right)\right|^{-2}$ is a martingale (gives a probabilistic proof of Bernstein-Szego!)

Bernstein-Szego approximation

- Recall $\Phi_{n}(z)$ is the monic orthogonal polynomial of degree n, in $L^{2}(\partial \mathbb{D}, d \mu)$
- Define φ_{n} to be the normalized orthogonal polynomial

$$
\varphi_{n}:=\frac{\Phi_{n}}{\left\|\Phi_{n}\right\|}, \quad\left\|\Phi_{n}\right\|^{2}=\int_{\partial \mathbb{D}}\left|\Phi_{n}\left(e^{i \theta}\right)\right|^{2} \frac{d \theta}{2 \pi}
$$

- Bernstein-Szego Approximation: The measures

$$
\left|\varphi_{n}\left(e^{i \theta}\right)\right|^{-2} \frac{d \theta}{2 \pi}
$$

are probability measures, and they converge to μ as $n \rightarrow \infty$

Bernstein-Szego approximation

- Recall $\Phi_{n}(z)$ is the monic orthogonal polynomial of degree n, in $L^{2}(\partial \mathbb{D}, d \mu)$
- Define φ_{n} to be the normalized orthogonal polynomial

$$
\varphi_{n}:=\frac{\Phi_{n}}{\left\|\Phi_{n}\right\|}, \quad\left\|\Phi_{n}\right\|^{2}=\int_{\partial \mathbb{D}}\left|\Phi_{n}\left(e^{i \theta}\right)\right|^{2} \frac{d \theta}{2 \pi}
$$

- Bernstein-Szego Approximation: The measures

$$
\left|\varphi_{n}\left(e^{i \theta}\right)\right|^{-2} \frac{d \theta}{2 \pi}
$$

are probability measures, and they converge to μ as $n \rightarrow \infty$

- Key computation in Simon's proof: with probability one

$$
\lim _{n \rightarrow \infty} \frac{\log \left|\varphi_{n}(1)\right|^{-2}}{\log n}=-\frac{2}{\beta}
$$

Bernstein-Szego approximation

- Key computation in Simon's proof: with probability one

$$
\lim _{n \rightarrow \infty} \frac{\log \left|\varphi_{n}(1)\right|^{-2}}{\log n}=-\frac{2}{\beta}
$$

Bernstein-Szego approximation

- Key computation in Simon's proof: with probability one

$$
\lim _{n \rightarrow \infty} \frac{\log \left|\varphi_{n}\left(e^{i \theta}\right)\right|^{-2}}{\log n}=-\frac{2}{\beta}
$$

with respect to the measure $d Q\left(\{\alpha\}_{n=0}^{\infty}\right) \delta_{0}(\theta)$

Bernstein-Szego approximation

- Key computation in Simon's proof: with probability one

$$
\lim _{n \rightarrow \infty} \frac{\log \left|\varphi_{n}\left(e^{i \theta}\right)\right|^{-2}}{\log n}=-\frac{2}{\beta}
$$

with respect to the measure $d Q\left(\{\alpha\}_{n=0}^{\infty}\right) \delta_{0}(\theta)$
($d Q$ the measure under which Verblunskies $\{\alpha\}_{n=0}^{\infty}$ have Circular- β distribution)

Bernstein-Szego approximation

- Key computation in Simon's proof: with probability one

$$
\lim _{n \rightarrow \infty} \frac{\log \left|\varphi_{n}\left(e^{i \theta}\right)\right|^{-2}}{\log n}=-\frac{2}{\beta}
$$

with respect to the measure $d Q\left(\{\alpha\}_{n=0}^{\infty}\right) \delta_{0}(\theta)$

Bernstein-Szego approximation

- Key computation in Simon's proof: with probability one

$$
\lim _{n \rightarrow \infty} \frac{\log \left|\varphi_{n}\left(e^{i \theta}\right)\right|^{-2}}{\log n}=-\frac{2}{\beta}
$$

with respect to the measure $d Q\left(\{\alpha\}_{n=0}^{\infty}\right) \delta_{0}(\theta)$

- Key computation in our analysis: compute the same limit under the measure $d Q\left(\left\{\alpha_{n}\right\}_{n=0}^{\infty}\right) d \mu_{\alpha}(\theta)$, where μ_{α} is the measure determined by the Verblunskies

Bernstein-Szego approximation

- Key computation in Simon's proof: with probability one

$$
\lim _{n \rightarrow \infty} \frac{\log \left|\varphi_{n}\left(e^{i \theta}\right)\right|^{-2}}{\log n}=-\frac{2}{\beta}
$$

with respect to the measure $d Q\left(\{\alpha\}_{n=0}^{\infty}\right) \delta_{0}(\theta)$

- Key computation in our analysis: compute the same limit under the measure $d Q\left(\left\{\alpha_{n}\right\}_{n=0}^{\infty}\right) d \mu_{\alpha}(\theta)$, where μ_{α} is the measure determined by the Verblunskies
- Rewrite using marginal of θ (Lebesgue) and conditional of $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ as

$$
d Q\left(\left\{\alpha_{n}\right\}\right) d \mu_{\alpha}(\theta)=d Q_{\theta}\left(\left\{\alpha_{n}\right\}\right) \frac{d \theta}{2 \pi}
$$

Bernstein-Szego approximation

$$
d Q\left(\left\{\alpha_{n}\right\}\right) d \mu_{\alpha}(\theta)=d Q_{\theta}\left(\left\{\alpha_{n}\right\}\right) \frac{d \theta}{2 \pi}
$$

- Theorem [Alberts-Normand-Virag]: We understand the measures Q_{θ} completely. Under Q_{0}, the Verblunskies form a Markov Chain with an explicit transition kernel

$$
Q_{0}\left(\alpha_{n+1} \in d z \mid \alpha_{n}, V_{n}\right)=\frac{1-|z|^{2}}{\left|V_{n+1}-z\right|^{2}} Q\left(\alpha_{n+1} \in d z\right)
$$

with $V_{n+1} \in \partial \mathbb{D}$ determined by $\alpha_{0}, \ldots, \alpha_{n}$ from

$$
V_{n+1}=\frac{V_{n}-\alpha_{n}}{1-\bar{\alpha}_{n} V_{n}}, V_{0}=1
$$

Moreover, there exists a deterministic algorithm using conformal maps that turns Verblunskies distributed according to Q into Verblunskies distributed according to Q_{θ}

Bernstein-Szego approximation

$$
d Q\left(\left\{\alpha_{n}\right\}\right) d \mu_{\alpha}(\theta)=d Q_{\theta}\left(\left\{\alpha_{n}\right\}\right) \frac{d \theta}{2 \pi}
$$

- With probability one

$$
\lim _{n \rightarrow \infty} \frac{\log \left|\varphi_{n}\left(e^{i \theta}\right)\right|^{-2}}{\log n}=+\frac{2}{\beta}
$$

with respect to the measure $d Q\left(\{\alpha\}_{n=0}^{\infty}\right) d \mu_{\alpha}(\theta)$

- Other Result: The V_{n} process picks up a speed

Future Work

- Establish a (strong) KPZ relation for the spectral measure of Circular- β
- The spectral measures for Circular- β induce random metrics on ∂D
- It should be possible to show that Hausdorff dimensions transform the same way as for multiplicative cascades (Benjamini-Schramm)

Future Work

- Understand connections with multiple SLE
- Consider the Loewner equation

$$
\partial_{t} g_{t}(z)=-g_{t}(z) \sum_{k=1}^{n} \frac{g_{t}(z)+e^{i \theta_{k}(t)}}{g_{t}(z)-e^{i \theta_{k}(t)}}
$$

where $t \mapsto\left(\theta_{1}(t), \ldots, \theta_{n}(t)\right)$ evolves by Dyson's Brownian motion

$$
d \theta_{j}(t)=\sum_{k \neq j} \cot \left(\left(\theta_{k}(t)-\theta_{j}(t)\right) / 2\right) d t+\sqrt{\kappa} d B_{j}(t)
$$

- Circular- β is stationary distribution, with $\beta=8 / \kappa$

Future Work

- Understand connections with multiple SLE
- Consider the Loewner equation

$$
\partial_{t} g_{t}(z)=-g_{t}(z) \sum_{k=1}^{n} \frac{g_{t}(z)+e^{i \theta_{k}(t)}}{g_{t}(z)-e^{i \theta_{k}(t)}}
$$

where $t \mapsto\left(\theta_{1}(t), \ldots, \theta_{n}(t)\right)$ evolves by Dyson's Brownian motion

$$
d \theta_{j}(t)=\sum_{k \neq j} \cot \left(\left(\theta_{k}(t)-\theta_{j}(t)\right) / 2\right) d t+\sqrt{\kappa} d B_{j}(t)
$$

- Circular- β is stationary distribution, with $\beta=8 / \kappa$
- Note all curves grow at the same rate

Future Work

- Understand connections with multiple SLE
- Consider the Loewner equation

$$
\partial_{t} g_{t}(z)=-g_{t}(z) \sum_{k=1}^{n} \frac{g_{t}(z)+e^{i \theta_{k}(t)}}{g_{t}(z)-e^{i \theta_{k}(t)}}
$$

where $t \mapsto\left(\theta_{1}(t), \ldots, \theta_{n}(t)\right)$ evolves by Dyson's Brownian motion

$$
d \theta_{j}(t)=\sum_{k \neq j} \cot \left(\left(\theta_{k}(t)-\theta_{j}(t)\right) / 2\right) d t+\sqrt{\kappa} d B_{j}(t)
$$

- Circular- β is stationary distribution, with $\beta=8 / \kappa$
- Note all curves grow at the same rate
- Cardy: It is unclear that this produces conformal invariance

Slides Produced With

Asymptote: The Vector Graphics Language

(freely available under the GNU public license)

References

[CMV03]M. J. Cantero, L. Moral, and L. Velázquez. Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl., 362:29-56, 2003.
[Goo70] I. J. Good. Short proof of a conjecture by Dyson. J. Mathematical Phys., 11:1884, 1970.
[KN04] Rowan Killip and Irina Nenciu. Matrix models for circular ensembles. Int. Math. Res. Not., (50):26652701, 2004.
[KN07] Rowan Killip and Irina Nenciu. CMV: the unitary analogue of Jacobi matrices. Comm. Pure Appl. Math., 60(8):1148-1188, 2007.
[KR10] Rowan Killip and Eric Ryckman. Autocorrelations of the characteristic polynomial of a random matrix
under microscopic scaling. 2010. Available online at arXiv:1004.1623.
[Sim05a] Barry Simon. Orthogonal polynomials on the unit circle. Part 1, volume 54 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2005. Classical theory.
[Sim05b] Barry Simon. Orthogonal polynomials on the unit circle. Part 2, volume 54 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2005. Spectral theory.
[Wil62] Kenneth G. Wilson. Proof of a conjecture by Dyson. J. Mathematical Phys., 3:1040-1043, 1962.

