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Circular Beta Ensemble

• β ≥ 0

•Point process of n points on the unit circle ∂D

•Points eiθ1, . . . , eiθn distributed according to

1

Zn(β)

∏

1≤j 6=k≤n

∣

∣eiθj − eiθk
∣

∣

β dθ1
2π

. . .
dθn
2π

•Partition function Zn(β) is explicitly known [Wil62,

Goo70]
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Circular Beta Ensemble

•Natural question:

Are there random, unitary matrices

whose eigenvalue distribution is Circular-β?

•For β = 2 this is well known:

• β = 2: Haar distributed random matrices from SU (n)



Circular Beta Ensemble

•For general β the answer is also yes [KN04, KN07]

•Uses the CMV representation [CMV03]

•CMV is an analogue of the tri-diagonal representation
for self-adjoint operators

•CMV is 5-diagonal

• Is the sparsest possible representation of a unitary matrix



Recipe for CMV

• Input is a sequence {αj, j ≥ 0}, taking values in D̄

•Called the Verblunsky coefficients

•Given αj, define the 2× 2 unitary matrix Θj by

Θj =

(

ᾱj ρj
ρj −αj

)

, ρj =
√

1− |αj|2

• Let L and M be the infinite matrices

L =









Θ0

Θ2

Θ4
. . .









, M =









1
Θ1

Θ3
. . .









,

•Then C = C(α0, α1, . . .) = LM is the CMV matrix
determined by the Verblunskies {αj, j ≥ 0}



Recipe for CMV

•Note that C as defined is an infinite matrix

•Treated as an operator on

ℓ2({0, 1, 2, . . .}) =
{

(ak)
∞
k=0 :

∞
∑

k=0

|ak|2 < ∞
}

•To get an operator on Cn, simply set |αn−1| = 1 and take

the upper n× n block of C

C =

















ᾱ0 ᾱ1ρ0 0 0 0 . . .
ρ0 −ᾱ1α0 −ρ1α0 0 0 . . .
0 ᾱ2ρ1 −ᾱ2α1 ᾱ3ρ2 ρ3ρ2 . . .
0 ρ2ρ1 −ρ2α1 −ᾱ3α2 −ρ3α2 . . .
0 0 0 ᾱ4ρ3 −ᾱ4α3 . . .
... ... ... ... ... . . .



















Circular Beta Ensemble

•For eigenvalues with the Circular-β distribution, choose

the αj independent with marginal distributions

αj ∼ e2πiUniform(0,1)

√

Beta

(

1,
β(j + 1)

2

)

which has pdf

β(j + 1)

2π
(1− |z|2)

β(j+1)
2 −1 d2z

with respect to Lebesgue measure on D
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•For eigenvalues with the Circular-β distribution, choose

the αj independent with marginal distributions

αj ∼ e2πiUniform(0,1)

√

Beta

(

1,
β(j + 1)

2

)

•Note αj are rotationally invariant,

E[αj] = 0, E[|αj|2] =
2

β(j + 1) + 2
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the αj independent with marginal distributions
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√
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(
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2

)

•Theorem: [KN04, KR10] Let U ∼ Uniform(0, 1) be

independent of the Verblunskies. Then for each fixed n
the matrix

C = C(α0, α1, . . . , αn−1, e
2πiU , 0, 0, 0, . . .)

has eigenvalues distributed according to Circular-β
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•For eigenvalues with the Circular-β distribution, choose

the αj independent with marginal distributions

αj ∼ e2πiUniform(0,1)

√

Beta

(

1,
β(j + 1)

2

)

αj ∼ e2πiUniform(0,1)

√

Beta

(

1,
β(j + 1)

2

)

•Theorem: [KN04, KR10] Let U ∼ Uniform(0, 1) be

independent of the Verblunskies. Then for each fixed n
the matrix

C = C(α0, α1, . . . , αn−1, e
2πiU , 0, 0, 0, . . .)

has eigenvalues distributed according to Circular-βhas eigenvalues distributed according to Circular-β

•Note the “nesting” property of these matrices

•Suggests that it is worthwhile to study the infinite matrix

C(α0, α1, α2, . . .)



Circular Beta Ensemble

C(α0, α1, α2, . . .)

•Operator is well-defined. What happens to the

eigenvalues?

•Need a notion of a limit of a point process

•Could study the limit of the empirical measure

1

n

n
∑

k=1

δeiθk

but it converges almost surely to uniform measure on ∂D,

for all β

• Instead study the spectral measure



Spectral Measure for CMV Matrices

•Assume all Verblunskies have |αn| < 1 and let C =
C(α0, α1, . . .)

• Let δ0 = (1, 0, 0, . . .) ∈ ℓ2. Can be shown that linear

combinations of {Cmδ0}m∈Z are dense in ℓ2

Spectral Theorem for CMV

•There exists a probability measure µ on ∂D such that the

mapping V : ℓ2 → L2(∂D, dµ) defined by

V : ℓ2 −→ L2(∂D, dµ)

Cmδ0 7→ zm

is unitary, and V (Cx) = zV (x)

• In short: Make the space more complicated (L2(∂D, dµ)
instead of ℓ2), but the action of the operator simpler

(multiplication by the function z)



Examples of Spectral Measure

•αn ≡ 0

µ = Lebesgue

•α0 = ζ ∈ D, αn = 0 for n ≥ 1

dµ(θ) =
1− |ζ|2

|1− ζeiθ|2
dθ

2π

•αn = −1/(n + 2)

dµ(θ) = 1− cos θ
dθ

2π



Orthogonal Polynomials on the Unit Circle

•Spectral theorem gives a way of going from CMV matrix

to probability measures

•Orthogonal polynomials gives a way of going in reverse

Φn(z) := Pn[z
n], Pn := projection onto {1, z, . . . , zn−1}⊥,Φ0 ≡ 1

Projection is in the L2(∂D, dµ) inner product

•Szego Recursion:

Φn+1(z) = zΦn(z)− ᾱnΦ
∗
n(z)

where αn ∈ D, and

(

n
∑

k=0

akz
k

)∗

=

n
∑

k=0

ān−kz
k



Orthogonal Polynomials on the Unit Circle

•Spectral theorem gives a way of going from CMV matrix

to probability measures

•Orthogonal polynomials gives a way of going in reverse

Φn(z) := Pn[z
n], Pn := projection onto {1, z, . . . , zn−1}⊥,Φ0 ≡ 1

Projection is in the L2(∂D, dµ) inner product

•Szego Recursion:

Φn+1(z) = zΦn(z)− ᾱnΦ
∗
n(z)

where αn ∈ D, and C(α0, α1, α2, . . .) has spectral measure µ



Triumvirate of Objects

CMV
matrices

Probability
measures
on ∂D

Verblunsky
coefficients

in D
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CMV
matrices

Probability
measures
on ∂D

Verblunsky
coefficients

in D

•There is a bijection between any two of them



Triumvirate of Objects

CMV
matrices

Probability
measures
on ∂D

Verblunsky
coefficients

in D

•For circular-β ensemble, the Verblunsky coefficients are

the simplest objects



Triumvirate of Objects

CMV
matrices

Probability
measures
on ∂D

Verblunsky
coefficients

in D

•Can we translate properties of Verblunskies into

properties of operators/spectral measures?



Triumvirate of Objects

CMV
matrices

Probability
measures
on ∂D

Verblunsky
coefficients

in D

•Subject of Barry Simon’s two volumes Orthogonal

Polynomials on the Unit Circle [Sim05a, Sim05b]



Spectral Measure for Circular-β

•For the infinite-dimensional circular-β operator, the

spectral measure exhibits a rich random geometry
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•For the infinite-dimensional circular-β operator, the

spectral measure exhibits a rich random geometry

Proposition [Sim05b]:

• For β ≥ 2, the spectral measure is purely singular

continuous with respect to Lebesgue and has exact

Hausdorff dimension 1− 2/β

(in the sense that there is a set A of dimension 1− 2/β with

µ(∂D\A) = 0 and µ assigns zeros mass to any subset of

∂D with Hausdorff dimension strictly less than 1− 2/β)

• For β < 2 the spectral measure is pure point but

supported on a dense subset of ∂D

•The phase transition at β = 2 is reminiscent of that for the

Liouville quantum gravity measure on ∂D



Spectral Measure for Circular-β

•For the infinite-dimensional circular-β operator, the

spectral measure exhibits a rich random geometry

Proposition [Sim05b]:

• For β ≥ 2, the spectral measure is purely singular

continuous with respect to Lebesgue and has exact

Hausdorff dimension 1− 2/β

(in the sense that there is a set A of dimension 1− 2/β with

µ(∂D\A) = 0 and µ assigns zeros mass to any subset of

∂D with Hausdorff dimension strictly less than 1− 2/β)

• For β < 2 the spectral measure is pure point but

supported on a dense subset of ∂D

•The phase transition at β = 2 is reminiscent of that for the

Liouville quantum gravity measure on ∂D (β = 8/κ)



Spectral Measure for Circular-β

•For the infinite-dimensional circular-β operator, the

spectral measure exhibits a rich random geometry

•Theorem in Progress: [Alberts-Normand-Virag]: In

the β ≥ 2 phase we can compute the multifractal

spectrum of the spectral measure for Circular-β.

Fix a realization of the spectral measure µ. The multifractal

spectrum is the function

ζ 7→ dimH

{

θ : lim sup
r→0

log µ(B(θ, r))

log r
≥ ζ

}

The spectrum is an almost sure quantity.

•Proof is an adaptation of that used for Eggleston

measures or multiplicative cascades



Spectral Measure for Circular-β

•Four key tools used in Simon’s proof:

• Szego recursion

• transfer matrices

• Bernstein-Szego approximation

• Jitomirskaya-Last inequalities



Bernstein-Szego approximation

•Recall Φn(z) is the monic orthogonal polynomial of degree

n, in L2(∂D, dµ)

•Define ϕn to be the normalized orthogonal polynomial

ϕn :=
Φn

||Φn||
, ||Φn||2 =

∫

∂D

|Φn(e
iθ)|2dθ

2π

•Bernstein-Szego Approximation: The measures

|ϕn(e
iθ)|−2 dθ

2π

are probability measures, and they converge to µ as n → ∞
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•Recall Φn(z) is the monic orthogonal polynomial of degree

n, in L2(∂D, dµ)

•Define ϕn to be the normalized orthogonal polynomial

ϕn :=
Φn

||Φn||
, ||Φn||2 =

∫

∂D

|Φn(e
iθ)|2dθ

2π

•Bernstein-Szego Approximation: The measures

|ϕn(e
iθ)|−2 dθ

2π

are probability measures, and they converge to µ as n → ∞
•Lemma: [ANR] For independent and rotationally

invariant Verblunskies, n 7→ |ϕn(e
iθ)|−2 is a martingale

(gives a probabilistic proof of Bernstein-Szego!)
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Bernstein-Szego approximation

•Key computation in Simon’s proof: with probability one

lim
n→∞

log |ϕn(e
iθ)|−2

log n
= −2

β

with respect to the measure dQ({α}∞n=0) δ0(θ)

(dQ the measure under which Verblunskies {α}∞n=0 have

Circular-β distribution)
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measure determined by the Verblunskies



Bernstein-Szego approximation

•Key computation in Simon’s proof: with probability one

lim
n→∞

log |ϕn(e
iθ)|−2

log n
= −2

β

with respect to the measure dQ({α}∞n=0) δ0(θ)with respect to the measure dQ({α}∞n=0) δ0(θ)

•Key computation in our analysis: compute the same limit

under the measure dQ({αn}∞n=0) dµα(θ), where µα is the

measure determined by the Verblunskies

•Rewrite using marginal of θ (Lebesgue) and conditional of

{αn}∞n=0 as

dQ({αn}) dµα(θ) = dQθ({αn})
dθ

2π



Bernstein-Szego approximation

dQ({αn}) dµα(θ) = dQθ({αn})
dθ

2π

•Theorem [Alberts-Normand-Virag]: We understand the

measures Qθ completely. Under Q0, the Verblunskies

form a Markov Chain with an explicit transition kernel

Q0(αn+1 ∈ dz|αn, Vn) =
1− |z|2

|Vn+1 − z|2Q(αn+1 ∈ dz)

with Vn+1 ∈ ∂D determined by α0, . . . , αn from

Vn+1 =
Vn − αn

1− ᾱnVn
, V0 = 1

Moreover, there exists a deterministic algorithm using

conformal maps that turns Verblunskies distributed

according to Q into Verblunskies distributed according to

Qθ



Bernstein-Szego approximation

dQ({αn}) dµα(θ) = dQθ({αn})
dθ

2π

•With probability one

lim
n→∞

log |ϕn(e
iθ)|−2

log n
= +

2

β

with respect to the measure dQ({α}∞n=0) dµα(θ)

•Other Result: The Vn process picks up a speed



Future Work

•Establish a (strong) KPZ relation for the spectral

measure of Circular-β

•The spectral measures for Circular-β induce random

metrics on ∂D

• It should be possible to show that Hausdorff dimensions

transform the same way as for multiplicative cascades

(Benjamini-Schramm)



Future Work

•Understand connections with multiple SLE

•Consider the Loewner equation

∂tgt(z) = −gt(z)
n
∑

k=1

gt(z) + eiθk(t)

gt(z)− eiθk(t)

where t 7→ (θ1(t), . . . , θn(t)) evolves by Dyson’s Brownian
motion

dθj(t) =
∑

k 6=j

cot((θk(t)− θj(t))/2) dt +
√
κdBj(t)

•Circular-β is stationary distribution, with β = 8/κ
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Future Work

•Understand connections with multiple SLE

•Consider the Loewner equation

∂tgt(z) = −gt(z)
n
∑

k=1

gt(z) + eiθk(t)

gt(z)− eiθk(t)

where t 7→ (θ1(t), . . . , θn(t)) evolves by Dyson’s Brownian
motion

dθj(t) =
∑

k 6=j

cot((θk(t)− θj(t))/2) dt +
√
κdBj(t)

•Circular-β is stationary distribution, with β = 8/κ•Circular-β is stationary distribution, with β = 8/κ

•Note all curves grow at the same rate

•Cardy: It is unclear that this produces conformal

invariance



Slides Produced With

Asymptote: The Vector Graphics Language

symptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptotesymptote

http://asymptote.sf.net

(freely available under the GNU public license)



References

[CMV03] M. J. Cantero, L. Moral, and L. Velázquez.

Five-diagonal matrices and zeros of orthogonal

polynomials on the unit circle. Linear Algebra Appl.,

362:29–56, 2003.

[Goo70] I. J. Good. Short proof of a conjecture by Dyson. J.

Mathematical Phys., 11:1884, 1970.

[KN04] Rowan Killip and Irina Nenciu. Matrix models for

circular ensembles. Int. Math. Res. Not., (50):2665–

2701, 2004.

[KN07] Rowan Killip and Irina Nenciu. CMV: the unitary

analogue of Jacobi matrices. Comm. Pure Appl.

Math., 60(8):1148–1188, 2007.

[KR10] Rowan Killip and Eric Ryckman. Autocorrelations

of the characteristic polynomial of a random matrix



under microscopic scaling. 2010. Available online at

arXiv:1004.1623.

[Sim05a] Barry Simon. Orthogonal polynomials on the

unit circle. Part 1, volume 54 of American

Mathematical Society Colloquium Publications.

American Mathematical Society, Providence, RI,

2005. Classical theory.

[Sim05b] Barry Simon. Orthogonal polynomials on the

unit circle. Part 2, volume 54 of American

Mathematical Society Colloquium Publications.

American Mathematical Society, Providence, RI,

2005. Spectral theory.

[Wil62] Kenneth G. Wilson. Proof of a conjecture by Dyson.

J. Mathematical Phys., 3:1040–1043, 1962.


