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Circular Beta Ensemble
*5>0

e Point process of n points on the unit circle 0D

e Points /1, .. ., ¢’ distributed according to

1 H ‘ewj B ewk‘ﬁ d(gl d@n

Zn(B) o 2t 2m

e Partition function Z,(3) is explicitly known [Wil62,
Goo70]
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Circular Beta Ensemble
e Natural question:

Are there random, unitary matrices
whose eigenvalue distribution is Circular-3?

e For 5 = 2 this is well known:

e J = 2: Haar distributed random matrices from SU (n)



Circular Beta Ensemble
e For general 5 the answer is also yes [KN04, KNO7]

e Uses the CMV representation [CMV03]

e CMV is an analogue of the tri-diagonal representation
for self-adjoint operators

e CMV is 5-diagonal

e |s the sparsest possible representation of a unitary matrix



Recipe for CMV
e Input is a sequence {a;,j > 0}, taking values in D
e Called the Verblunsky coefficients

e Given «;, define the 2 x 2 unitary matrix ©; by

[ P a2
o= (5 2 ) m=i-l
e Let £ and M be the infinite matrices

COER U

0, , M= O, )

\ oy \ Ny

eThen C = Cl(ag,a1,...) = LM is the CMV matrix
determined by the Verblunskies {«;, j > 0}




Recipe for CMV

e Note that C as defined is an infinite matrix
e Treated as an operator on

?({0,1,2,...}) = {(ak)zoo : Z lar]* < oo}
k=0

e To get an operator on C", simply set |a,_1| = 1 and take
the upper n x n block of C

( Q| 541,0() 0 0 0 ce \
po —aiag —prag 0 0
C_ 0 aepr —apar aspe p3p2
0 pap1 —paa1 —Q3a —pao ...
0 0 0 QupP3  —0Oyos ...




Circular Beta Ensemble

e For eigenvalues with the Circular-5 distribution, choose
the a; iIndependent with marginal distributions

R + 1
j ~ 6277@Umf01rm((),1) \/Beta (17 5(]; ))

which has pdf

+ 1 j+1
B(J T )(1 . ’Z‘2>¥_1 d2
27

Z

with respect to Lebesgue measure on D
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Circular Beta Ensemble

e For eigenvalues with the Circular-5 distribution, choose
the a; iIndependent with marginal distributions

Qj ~ 62772 Uniform(0,1) \/Beta (17 5(]; ))

o Note «; are rotationally invariant,

E[o;] =0, Ella;|] =

B(j+1)+2
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e For eigenvalues with the Circular-5 distribution, choose
the a; iIndependent with marginal distributions

Qj ~ 62772 Uniform(0,1) \/Beta (17 5(]; ))

e Theorem: [KNO4, KR10] Let U ~ Uniform(0,1) be
independent of the Verblunskies. Then for each fixed n
the matrix

C =Clag,ai,...,a,1,e™Y 0,0,0,...)

has eigenvalues distributed according to Circular-5
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e Note the “nesting” property of these matrices



Circular Beta Ensemble

e For eigenvalues with the Circular-5 distribution, choose
the a; iIndependent with marginal distributions

o + 1
j ~ 627T2Un1f01’m<0,1) \/Beta (1’ 6(];— ))

e Theorem: [KNO4, KR10] Let U ~ Uniform(0,1) be
independent of the Verblunskies. Then for each fixed n
the matrix

C =Clag,ai,...,a,1,e™Y 0,0,0,...)

has eigenvalues distributed according to Circular-5
e Note the “nesting” property of these matrices

e Suggests that it is worthwhile to study the infinite matrix
C(ag, a1, ao, .. .)



Circular Beta Ensemble

C(Ck(), a1, 09, .. )

e Operator is well-defined. What happens to the
eigenvalues?

e Need a notion of a limit of a point process

e Could study the limit of the empirical measure

but it converges almost surely to uniform measure on 0D,
for all 5

e Instead study the spectral measure



Spectral Measure for CMV Matrices

e Assume all Verblunskies have |a,| < 1 and let C =
C(Oéo,&l,...)

elet 6o = (1,0,0,...) € ¢*. Can be shown that linear
combinations of {C™dy},.c7 are dense in ¢>

Spectral Theorem for CMV

e There exists a probability measure 1 on 9D such that the
mapping V : ¢* — L*(0D, d;:) defined by

V0 — L*0D,dpy)
Cm50 — 2"

is unitary, and V(Cx) = 2V (x)

e In short: Make the space more complicated (L*(0D, dyu)
instead of ¢2), but the action of the operator simpler
(multiplication by the function z)



Examples of Spectral Measure

o, =0
1 = Lebesgue
eqp=CeD a,=0forn>1
L—[¢* df
du(0) = .
0) 11— Ce|? 2
ea, =—1/(n+2)
do

du(f) =1 — cosf —

2T



Orthogonal Polynomials on the Unit Circle

e Spectral theorem gives a way of going from CMV matrix
to probability measures

e Orthogonal polynomials gives a way of going in reverse
®,(2) == P,[2"], P, :== projection onto {1,z,...,2" '}+, &y =1

Projection is in the L*(0D, du) inner product

e Szego Recursion:
Pi1(2) = 2P,(2) — @, D) (2)
where «,, € D, and

n * n
g akzk :E dn_kzk

k=0 k=0



Orthogonal Polynomials on the Unit Circle

e Spectral theorem gives a way of going from CMV matrix
to probability measures

e Orthogonal polynomials gives a way of going in reverse
®,(2) == P,[2"], P, :== projection onto {1,z,...,2" '}+, &y =1

Projection is in the L*(0D, du) inner product

e Szego Recursion:
Opi1(2) = 2@ (2) — 0, ), (2)

where a,, € D, and C(ay, a1, as, . . .) has spectral measure p



Triumvirate of Objects
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CoefﬁcEntS - B measures
in D on 0D
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Triumvirate of Objects

CMV
madtrices
Verblunsky Probability
Coefﬁcfnts - B measures
in D on 0D

e Can we translate properties of Verblunskies into
properties of operators/spectral measures?



Triumvirate of Objects

CMV
madtrices
Verblunsky Probability
Coefﬁcfnts - B measures
in D on 0D

e Subject of Barry Simon’s two volumes Orthogonal
Polynomials on the Unit Circle [Sim05a, Sim05b]
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e For the infinite-dimensional circular-5 operator, the
spectral measure exhibits a rich random geometry



Spectral Measure for Circular-5

e For the infinite-dimensional circular-5 operator, the
spectral measure exhibits a rich random geometry

Proposition [SIm05b]:

e For 5 > 2, the spectral measure is purely singular
continuous with respect to Lebesgue and has exact
Hausdorff dimension 1 — 2/

(in the sense that there is a set A of dimension 1 — 2/ with
u(OD\A) = 0 and p assigns zeros mass to any subset of
oD with Hausdorff dimension strictly less than 1 — 2/5)

e For 5 < 2 the spectral measure is pure point but
supported on a dense subset of 0D

e The phase transition at g = 2 is reminiscent of that for the
Liouville guantum gravity measure on oD



Spectral Measure for Circular-5

e For the infinite-dimensional circular-5 operator, the
spectral measure exhibits a rich random geometry

Proposition [SIm05b]:

e For 5 > 2, the spectral measure is purely singular
continuous with respect to Lebesgue and has exact
Hausdorff dimension 1 — 2/

(in the sense that there is a set A of dimension 1 — 2/ with
u(OD\A) = 0 and p assigns zeros mass to any subset of
oD with Hausdorff dimension strictly less than 1 — 2/5)

e For 5 < 2 the spectral measure is pure point but
supported on a dense subset of 0D

e The phase transition at 5 = 2 is reminiscent of that for the
Liouville quantum gravity measure on 9D (5 = 8/k)



Spectral Measure for Circular-5

e For the infinite-dimensional circular-5 operator, the
spectral measure exhibits a rich random geometry

e Theorem in Progress: [Alberts-Normand-Virag]: In
the 5 > 2 phase we can compute the multifractal
spectrum of the spectral measure for Circular-£.

Fix a realization of the spectral measure ;.. The multifractal
spectrum is the function

¢ — dimgy {9 - lim sup log p(B(9, 7)) > Q}

r—0 log r

The spectrum is an almost sure quantity.

e Proof is an adaptation of that used for Eggleston
measures or multiplicative cascades



Spectral Measure for Circular-5

e Four key tools used in Simon’s proof:
e Szego recursion

e transfer matrices
e Bernstein-Szego approximation

e Jitomirskaya-Last inequalities



Bernstein-Szego approximation

e Recall 9,,(z) is the monic orthogonal polynomial of degree
n, in L*(0D, dp)

e Define ¢, to be the normalized orthogonal polynomial

d,, e odb
[Pall* = [ [ @ule”);
.

Pn = 3
[|Ps ]| oD

e Bernstein-Szego Approximation: The measures

- do
on(e) 25

are probability measures, and they converge to uas n — oc



Bernstein-Szego approximation

e Recall 9,,(z) is the monic orthogonal polynomial of degree
n, in L*(0D, dp)

e Define ¢, to be the normalized orthogonal polynomial

b, e 1odO
[Pall* = [ [ @ule”);
.

Pn = 3
[|Ps ]| oD

e Bernstein-Szego Approximation: The measures

- do
on(e) 25

are probability measures, and they converge to uas n — oc

eLemma: [ANR] For independent and rotationally
invariant Verblunskies, n — |p,(e”)|2 is a martingale

(gives a probabilistic proof of Bernstein-Szego!)
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e Recall 9,,(z) is the monic orthogonal polynomial of degree
n, in L*(0D, dp)

e Define ¢, to be the normalized orthogonal polynomial

P, e 1pd0
[Pall* = [ [ @ule”);
.

Pn = 3
[|Ps ]| oD

e Bernstein-Szego Approximation: The measures

- do
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are probability measures, and they converge to uas n — oc
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e Key computation in our analysis: compute the same limit
under the measure dQ({«a,}>2,) du.(0), where p, is the
measure determined by the Verblunskies



Bernstein-Szego approximation

e Key computation in Simon’s proof: with probability one

] . 10\ —2 9
o o8leale”) 7 2
n—00 logn 15

with respect to the measure dQ({a}52,) do(0)

e Key computation in our analysis: compute the same limit
under the measure dQ({«a,}>2,) du.(0), where p, is the
measure determined by the Verblunskies

e Rewrite using marginal of 6 (Lebesgue) and conditional of
{an}%ozo as

dQ({aw}) dpia(0) = dQp({ow}) %



Bernstein-Szego approximation
do
dQ({an}) dua(0) = dQs(1an}) 5
e Theorem [Alberts-Normand-Virag]: We understand the

measures )y completely. Under Q,, the Verblunskies
form a Markov Chain with an explicit transition kernel

QO(&H—I—I S dz‘&na Vn) — - Q(Ofn_|_1 = dZ)

with V.1 € 0D determined by ay, ..., «, from

Vn_&n
Vi1 = Vo=1
Ty
Moreover, there exists a deterministic algorithm using
conformal maps that turns Verblunskies distributed

according to @ into Verblunskies distributed according to

oy




Bernstein-Szego approximation
do
AQ({an}) dpal6) = dQol{an}) 5

e With probability one

| . 10\ | —2 9
i 08len(e®) " 2
n—00 logn 5]

with respect to the measure dQ({a}>2) dpa(0)

e Other Result: The V,, process picks up a speed



Future Work

e Establish a (strong) KPZ relation for the spectral
measure of Circular-3

e The spectral measures for Circular-5 induce random
metrics on 0D

e |t should be possible to show that Hausdorff dimensions
transform the same way as for multiplicative cascades
(Benjamini-Schramm)



Future Work
e Understand connections with multiple SLE

e Consider the Loewner equation

gi(2) + €Ol
O19¢(z) = —gi(2 Z t

i(z) — ef(t)

where t — (04(¢),...,0,(t)) evolves by Dyson’s Brownian
motion

do(t) = cot((0x(t) — 0,(t))/2) dt + /kdB;(t)

-y

e Circular-$ is stationary distribution, with 5 =8/«
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Future Work
e Understand connections with multiple SLE

e Consider the Loewner equation

gi(2) 4 )
Org¢(2) = —gi(2 Z t

i(z) — ef(t)

where t — (04(¢),...,0,(t)) evolves by Dyson’s Brownian
motion

do(t) = cot((0x(t) — 0,(t))/2) dt + /kdB;(t)

-y

e Circular-$ is stationary distribution, with 5 =8/«
e Note all curves grow at the same rate

eCardy: [t is unclear that this produces conformal
invariance
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