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Preliminary

Schramm’s SLE process is successful in describing random fractal curves,
which are the scaling limit of some critical two-dimensional lattice
models, which include critical percolation ([Smi01]), loop-erased random
walk and uniform spanning tree ([LSWO04]), critical Ising model and
critical FK-Ising model ([CDCH+-13]), and etc. The definition of SLE
combines the Loewner's differential equation with a random driving
function: Brownian motion.
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Schramm’s SLE process is successful in describing random fractal curves,
which are the scaling limit of some critical two-dimensional lattice
models, which include critical percolation ([Smi01]), loop-erased random
walk and uniform spanning tree ([LSWO04]), critical Ising model and
critical FK-Ising model ([CDCH+-13]), and etc. The definition of SLE
combines the Loewner's differential equation with a random driving
function: Brownian motion.

Backward SLE uses backward Loewner equation, which differs from the
forward equation by a minus sign. The goal of the joint work was to
study the backward SLE process as a whole instead of only the hulls at
fixed capacity times. Prior to our work, S. Sheffield proved the existence
of a coupling of a backward chordal SLE,; with a free boundary GFF such
that real intervals [x, 0] and [0, y] with the same quantum weight are
welded by the backward SLE process.
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Preliminary

It turns out that, with a few modifications, the standard tools used in
forward SLE can also be used to study backward SLE, as long as we find
the “correct” definition of the transformation of a backward Loewner

process under a conformal map.
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Preliminary

It turns out that, with a few modifications, the standard tools used in
forward SLE can also be used to study backward SLE, as long as we find
the “correct” definition of the transformation of a backward Loewner
process under a conformal map.

To explain the idea, let me briefly recall some notation.

» H:={z € C: 3z > 0} is the upper half plane.

» An H-hull is a bounded set K C H such that H\ K is a simply
connected domain.
» For an H-hull K, gk is the unique conformal map from H \ K onto

H such that gk(z) = z + @ + 0(1/22) as z — oco. Let fx = g .
hcap(K) := c(K) is called the H-capacity of K. We have
hcap(#) = 0 and hcap(K1) < hcap(Kz) if Ki & Ka.

v
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Preliminary

The double of K: K9 is the union of K and the reflection of K about
R. By Schwarz reflection principle, gk extends to a conformal map from
C\ K% onto C\ Sk for some compact Sk C R called the support of K.
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Preliminary

The double of K: K9 is the union of K and the reflection of K about
R. By Schwarz reflection principle, gk extends to a conformal map from
C\ K% onto C\ Sk for some compact Sk C R called the support of K.

If K1 C K, are two H-hulls, we define Ka/K1 = gk, (K2 \ K1), which is
also an H-hull. We call K,/K; a quotient hull of K>, and write

Ka/Ki < Ks. If K3 < Ky, then hcap(K3) < hcap(K2), Sk, C Sk,. and
there is a unique K1 C Ky s.t. K3 = Kp/Ky. We write K1 = K @ Ks.
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Preliminary

An H-Loewner chain is a strictly increasing family of H-hulls (K¢)o<¢<T,
which starts from Ky = (3, and satisfies that

(| Keae/Ke={\}, 0<t<T,

0<e<T—t

for some real continuous function A\¢, 0 <t < T.
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An H-Loewner chain is a strictly increasing family of H-hulls (K¢)o<¢<T,
which starts from Ky = (3, and satisfies that

(| Keae/Ke={\}, 0<t<T,

0<e<T-—t
for some real continuous function A\¢, 0 <t < T.

If uis a continuously (strictly) increasing function with u(0) = 0, then
Ku-1(r), 0 < t < u(T), is also an H-Loewner chain, and is called a
time-change of (K;). An H-Loewner chain is called normalized if
hcap(K:) = 2t for each t. Every H-Loewner chain can be normalized by
applying a time-change.
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An H-Loewner chain is a strictly increasing family of H-hulls (K¢)o<¢<T,
which starts from Ky = (3, and satisfies that

(| Keae/Ke={\}, 0<t<T,

0<e<T-—t
for some real continuous function A\¢, 0 <t < T.

If uis a continuously (strictly) increasing function with u(0) = 0, then
Ku-1(r), 0 < t < u(T), is also an H-Loewner chain, and is called a
time-change of (K;). An H-Loewner chain is called normalized if
hcap(K:) = 2t for each t. Every H-Loewner chain can be normalized by
applying a time-change.

Example. We say that v;, 0 < t < T, an H-simple curve, if 79 € R and
~v¢ € H for t > 0. An H-simple curve v generates an H-Loewner chain:
Ki=~(0,t], 0<t<T.
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Preliminary

Let A € C([0, T),R). The (forward) chordal Loewner equation driven by
Ais

Oege(2) = m, g(z) =z

For 0 <t < T, let K; denote the set of z € H such that the solution

s +— gs(z) blows up before or at time t. Then each K; is an H-hull with
hcap(K;) = 2t and gk, = g:- We call g; and K; the chordal Loewner
maps and hulls driven by A. Chordal SLE,; is defined by taking

At = /KBy, where k£ > 0 and B; is a standard Brownian motion.
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Preliminary

Let A € C([0, T),R). The (forward) chordal Loewner equation driven by
Alis

0 = — =z

tgt(z) gt(Z) — )\t, gO(Z) z

For 0 <t < T, let K; denote the set of z € H such that the solution
s +— gs(z) blows up before or at time t. Then each K; is an H-hull with
hcap(K;) = 2t and gk, = g:- We call g; and K; the chordal Loewner
maps and hulls driven by A. Chordal SLE,; is defined by taking
At = /KBy, where k£ > 0 and B; is a standard Brownian motion.

Proposition [LSWO01]

(K:) are chordal Loewner hulls driven by some continuous function iff it
is a normalized H-Loewner chain. Moreover, when the above holds, the
driving function X is given by (o, 7_; Kere/Ke = {A:e}, 0 <t < T.
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Preliminary

The backward chordal Loewner equation driven by A is

-2
Oife(2) = 7 fo(z) = z.
t

(Z) — Al”
For every t, f; is well defined on H, and maps H conformally onto H \ L,
for some H-hull L;. We have hcap(L;) = 2t and f; = f;,. But (L;) may
not be an increasing family. Instead, it satisfies that Ly, < L, if t1 < to.
To describe other properties of (L;), we need the notation of quotient
Loewner chain.
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Preliminary

A family of H-hulls (L;)o<t<T is called a quotient H-Loewner chain if it
satisfies that Lo = ), L, < L;, when t; < tp, and

ﬂ Ll c={\}, 0<t<T,

O<e<t

for some real continuous function Ay, 0 <t < T. Here L; : L;_. is
decreasing in £. We say (L;) is normalized if hcap(L;) = 2t for each t.
Every quotient H-Loewner chain can be normalized by applying a
time-change.
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Preliminary

A family of H-hulls (L;)o<t<T is called a quotient H-Loewner chain if it
satisfies that Lo = ), L, < L;, when t; < tp, and

ﬂ Ll c={\}, 0<t<T,

O<e<t

for some real continuous function Ay, 0 <t < T. Here L; : L;_. is
decreasing in £. We say (L;) is normalized if hcap(L;) = 2t for each t.
Every quotient H-Loewner chain can be normalized by applying a
time-change.

Proposition

(L) are backward chordal Loewner hulls driven by some continuous func-
tion X iff it is a normalized quotient H-Loewner chain. Moreover, when
the above holds, we have (o, Li: Li—c = {\:}, 0< < T,
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Conformal transformation
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Conformal transformation

Let’s first observe how a forward H-Loewner chain is transformed by a
conformal map. The technique was used to study the locality of SLEg
([LSWO01]) and restriction of SLEg,3 ([LSW02]).
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Conformal transformation

Let’s first observe how a forward H-Loewner chain is transformed by a
conformal map. The technique was used to study the locality of SLEg
([LSWO01]) and restriction of SLEg,3 ([LSW02]).

We call a domain R-symmetric if it is invariant under the conjugate map
z +— Z. We call a conformal map R-symmetric if its definition domain is

R-symmetric, it commutes with the conjugate map, and its derivatives on
R are positive. For example, gk and fx are R-symmetric after extensions.
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Conformal transformation

Let’s first observe how a forward H-Loewner chain is transformed by a
conformal map. The technique was used to study the locality of SLEg
([LSWO01]) and restriction of SLEg,3 ([LSW02]).

We call a domain R-symmetric if it is invariant under the conjugate map
z +— Z. We call a conformal map R-symmetric if its definition domain is

R-symmetric, it commutes with the conjugate map, and its derivatives on
R are positive. For example, gk and fx are R-symmetric after extensions.

Let (K;) be an H-Loewner chain, and W an R-symmetric conformal map
whose domain Q contains every K&°>. Then (W(K.;)) is an increasing
family of H-hulls. We will see in the next slide that (W(K})) is an
H-Loewner chain. This is obvious if (K:) is generated by an H-simple
curve.
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Conformal transformation

Let W; = 8W(K,) © W o fk,. Then W; is a conformal map defined on a
neighborhood of Sk, minus Sk,. By Schwarz reflection principle, W;
extends to a conformal map on the neighborhood of Sk,. From
8wk, o W = Wo gk, we get

W(Kero)/W(Ke) = We(Kese/Ke), €3> 0.
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Conformal transformation

Let W; = 8W(K,) © W o fk,. Then W; is a conformal map defined on a
neighborhood of Sk, minus Sk,. By Schwarz reflection principle, W;
extends to a conformal map on the neighborhood of Sk,. From
8wk, o W = Wo gk, we get

W(Kero)/W(Ke) = We(Kese/Ke), €3> 0.

Kipe
K

W(Kie)

9K, Iw (k)

[ Ko/ Ky W(Keyo)/W(K,)
Wi()
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Conformal transformation

From (..o Keve/Ke = {Ae} we get (.o W(Keie)/W(K:) = {Wi(Ae)}-
So (W(K3)) is also an H-Loewner chain.
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Conformal transformation

From (..o Keve/Ke = {Ae} we get (.o W(Keie)/W(K:) = {Wi(Ae)}-
So (W(K3)) is also an H-Loewner chain.

If (K:) are chordal Loewner hulls driven by A, then (K;) is normalized but
(W(K:)) may not be normalized. Let u(t) = hcap(W(K:))/2 be the
time-change function. Then (W(K,-1(;))) are chordal Loewner hulls
driven by Wu—l(t)()\u—l(t)).
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Conformal transformation

We tried to develop a similar theory for quotient H-Loewner chain. Let
(L;) be a quotient H-Loewner chain. Let W be an R-symmetric
conformal map. Then (W(L;)) may not be a quotient H-Loewner chain
because Ly, < Ly, does not imply that W(Ly) < W(Ls,). This means
that we can not define (W/(L;)) as the conformal transformation of (L)
under W. Instead, we want to find a continuous family of conformal
maps (W) such that W = W and (W't(L;)) is a quotient
H-Loewner chain. We need the following theorem.
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Conformal transformation

We tried to develop a similar theory for quotient H-Loewner chain. Let
(L;) be a quotient H-Loewner chain. Let W be an R-symmetric
conformal map. Then (W(L;)) may not be a quotient H-Loewner chain
because Ly, < Ly, does not imply that W(Ly) < W(Ls,). This means
that we can not define (W/(L;)) as the conformal transformation of (L)
under W. Instead, we want to find a continuous family of conformal
maps (W) such that W = W and (W't(L;)) is a quotient
H-Loewner chain. We need the following theorem.

Let K be an H-hull. Let W be an R-symmetric conformal map, whose
domain Q contains Si. Then there is a unique conforml map WK defined
on QF 1= f(Q\ Sk) U K% such that W = gyyk(x) o WK o fx.
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Conformal transformation

of we .
/T(\ — wiK)
k‘/ \:/
T fK 1 fWK(K)
Q W w(Q)
Sk W(Sk)

It is easy to get W from WX using Schwarz reflection principle, but
non-trivial to get WK from W.
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Applications

We now explain how Theorem 1 is applied. Suppose (L;) is a quotient
H-Loewner chain, and W is an R-symmetric conformal map, whose
domain contains Sy, for every t. Let (W) be given by the theorem. For
t1 < ty, from L, < L., we can conclude that Wta(L,) < Wle(L,,). In
fact, we have Wle(L,): Whta(L,) = Wla(L,, : Ly,). Thus, if

MNeso Lt : Li—e = {A¢}, then

MYWEL) : Wh= (L) = {WH ()}
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Applications

We now explain how Theorem 1 is applied. Suppose (L;) is a quotient
H-Loewner chain, and W is an R-symmetric conformal map, whose
domain contains Sy, for every t. Let (W) be given by the theorem. For
t1 < ty, from L, < L., we can conclude that Wta(L,) < Wle(L,,). In
fact, we have Wle(L,): Whta(L,) = Wla(L,, : Ly,). Thus, if

MNeso Lt : Li—e = {A¢}, then

MYWEL) : Wh= (L) = {WH ()}

So (W!t(L;)) is a quotient H-Loewner chain, and we define it to be the
transformation of (L;) under W. If (L;) are backward chordal Loewner
hulls driven by ), then we may normalize (W!¢(L,)) to get a backward
Loewner process using the function u(t) := hcap(Wtt(L;))/2.
Sometimes we refer the normalization of (W!t(L;)) as the conformal
transformation of (L;) via W.
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Applications

One nice property of the conformal transformation is that it preserves the
welding map. If in a quotient H-Loewner chain (L;), every L, is the
image of an H-simple curve (which is the case for backward SLE, with

k € (0,4]), then each f;, extends continuously to H, and maps S;, onto
the two sides of L. Such f;, induces a welding map ¢: : S, = Si,,
which is an orientation-reversed map, such that f;, o ¢ = fi,, i.e., x and
¢¢(x) have the same f;,-image on L. Moreover, if t; < t, then

¢, = Puls,, - Thus, the quotient H-Loewner chain (L;) induces a

welding map ¢ on [J Sy, such that ¢[s, = ¢; for each t.
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Applications

One nice property of the conformal transformation is that it preserves the
welding map. If in a quotient H-Loewner chain (L;), every L, is the
image of an H-simple curve (which is the case for backward SLE, with

k € (0,4]), then each f;, extends continuously to H, and maps S;, onto
the two sides of L. Such f;, induces a welding map ¢: : S, = Si,,
which is an orientation-reversed map, such that f;, o ¢ = fi,, i.e., x and
¢¢(x) have the same f;,-image on L. Moreover, if t; < t, then

¢, = Puls,, - Thus, the quotient H-Loewner chain (L;) induces a

welding map ¢ on [J Sy, such that ¢[s, = ¢; for each t.

Suppose (Wt (L;)) is a conformal transformation of (L;), which induces
another welding map ¢". Then we have ¢ = W o ¢ o W~L. This holds
because if f1,(x) = fr,(y), then fiyi.(1,)(W(x)) = fwee(r,) (W(y)), which
follows from fiy, ()0 W = Wheof,.
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Applications

A (forward) SLE(k; p) process is a variant of an SLE, process, in which
the driving function is affected by the movement of one or many marked
points in the flow, and p controls the degree of the affection.
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Applications

A (forward) SLE(k; p) process is a variant of an SLE, process, in which
the driving function is affected by the movement of one or many marked
points in the flow, and p controls the degree of the affection.

The backward SLE(x; p) processes can be defined similarly as forward
SLE(k; p) processes. Following the argument in [SWO05], we derived the
coordinate change rule for backward SLE(k; p) process: if

3" pj = —k — 6, the conformal transformation of a backward SLE(x; p)
process under a Mdbius transformation is still a backward SLE(x; p)
process. This suggests that a backward SLE, may be viewed as SLE with
a negative parameter: —k.
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Applications

Theorem 1 also makes it possible to define the commutation coupling of
two backward SLEs. Let me first recall the commutation coupling
between two forward SLE(k; p) processes. Roughly speaking, an
SLE(x!; p') process (K}) commutes with an SLE(x?; p?) process (K?) if
the two processes are defined on the same probability space, and
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Applications

Theorem 1 also makes it possible to define the commutation coupling of
two backward SLEs. Let me first recall the commutation coupling
between two forward SLE(k; p) processes. Roughly speaking, an
SLE(x!; p') process (K}) commutes with an SLE(x?; p?) process (K?) if
the two processes are defined on the same probability space, and

1. For any stopping time 7 for (K2), the image of (K}) up to T2,
which is the first time that 7} intersects 73 under the map gg: is
still an SLE(k?; p*) process.

2. The same holds with the indices 1 and 2 swapped.
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Applications

Theorem 1 also makes it possible to define the commutation coupling of
two backward SLEs. Let me first recall the commutation coupling
between two forward SLE(k; p) processes. Roughly speaking, an
SLE(x!; p') process (K}) commutes with an SLE(x?; p?) process (K?) if
the two processes are defined on the same probability space, and

1. For any stopping time 7 for (K2), the image of (K}) up to T2,
which is the first time that 7} intersects 73 under the map gg: is
still an SLE(k?; p*) process.

2. The same holds with the indices 1 and 2 swapped.

Here we only consider those K} before T}, because we want 7} to be

contained in the domain of gx2, and so that (gx2 (K}))o<e< T is an
H-Loewner chain.
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Applications

As for backward SLE, we say that a backward SLE(x'; p') process (L})
commutes with a backward SLE(x?; p?) process (L?) if the two processes

are defined on the same probability space, and
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Applications

As for backward SLE, we say that a backward SLE(x'; p') process (L})
commutes with a backward SLE(x?; p?) process (L2) if the two processes
are defined on the same probability space, and

1. For any stopping time 7 for (L2), the conformal transformation of
(L}) up to the first time T} that Sy intersects Sp2 via the map fj2

is still a backward SLE(k!; p*) process.
2. The same holds with the indices 1 and 2 swapped.
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Applications

As for backward SLE, we say that a backward SLE(x'; p') process (L})
commutes with a backward SLE(x?; p?) process (L2) if the two processes
are defined on the same probability space, and

1. For any stopping time 7 for (L2), the conformal transformation of
(L}) up to the first time T} that Sy intersects Sp2 via the map fj2
is still a backward SLE(k!; p*) process.

2. The same holds with the indices 1 and 2 swapped.

Here we only consider those L} before T?, because we want Sy to be
contained in the domain of fLi' which is C\ 5L3, and so that the
conformal transformation of the quotient Loewner chain (L%)OSKU via
fi2 is well defined.
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Applications

A stochastic coupling technique was developed earlier to construct
commutation couplings between forward SLE(k; p) processes, which was
then used to prove the reversibility of chordal SLE, for x < 4 and the
duality of SLE for k > 4.
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Applications

A stochastic coupling technique was developed earlier to construct
commutation couplings between forward SLE(k; p) processes, which was
then used to prove the reversibility of chordal SLE, for x < 4 and the
duality of SLE for k > 4.

In the joint work, we used the stochastic coupling technique to construct
commutation couplings between two backward SLE processes, and
proved that, for k < 4, the random welding map ¢ induced by a
backward chordal SLE, processes satisfies the time-reversal symmetry:
ho¢oh~ ¢, where h(z) =1/z. Later, this symmetry result was
combined with the conformal removability of SLE, for x € (0,4) ([JS00],
[RS05]), to prove the reversibility of a whole-plane SLE(x; x + 2) curve
stopped at a fixed capacity time.
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Sketch proof

Sketch proof
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Sketch proof

Let K be an H-hull. Let W be an R-symmetric conformal map, whose
domain Q contains Si. Then there is a unique conforml map W defined
on QF 1= f(Q\ Sk) U K% such that W = gyk(x) o WK o fx.

Q N Y
& K /W)

T i fW?K)

Sk WS\
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Sketch proof

We transform the above theorem to a similar problem. We say that H is
a C-hull if H is a connected compact subset of C such that diam(H) > 0
and C\ H is connected. For a C-hull H, there is a unique

Conf
g :C\F — D*:={z:|z| > 1} such that gf;(c0) = oo and
(g7) (0) > 0. Let f;; = (g;;) "' These maps are closely related with the

gk and fx for H-hull K: if K is a nonempty H-hull such that K9ub js
connected, then K%'® and Sk are C-hulls, and gk = g%, © ffsu-

Dapeng Zhan Complex Analysis in Backward SLE 26 /32



Sketch proof

Let V be a conformal map, whose domain Q contains a C-hull H. Then
V(H) is also a C-hull. The composition W := gy, o Vo fy is a
conformal map defined on Q}, := g};(2\ H), which is a subset of D* and
contains {1 < |z| < R} for some R > 1. By Schwarz reflection principle,
W extends conformally across T := {|z| = 1}, maps T onto T, and
preserves the orientation of T. Theorem 1 follows from Theorem 2 below,
which tells us that we can recover V from W.
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Sketch proof

Let V be a conformal map, whose domain Q contains a C-hull H. Then
V(H) is also a C-hull. The composition W := By o Vofyisa
conformal map defined on Q}, := g};(2\ H), which is a subset of D* and
contains {1 < |z| < R} for some R > 1. By Schwarz reflection principle,
W extends conformally across T := {|z| = 1}, maps T onto T, and
preserves the orientation of T. Theorem 1 follows from Theorem 2 below,
which tells us that we can recover V from W.

Let H be as above. Let W be a conformal map, whose domain Q contains
T, such that W maps T onto T, and preserves the orientation of T. Then
there is a conformal map V defined on Q" := (2 ND*) U H such that

W =gyuyo Vo
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Sketch proof

W

|

fi
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Sketch proof

Sketch proof of Theorem 2.

By Carathéodory kernel theorem, we may assume that OH is an analytic
Jordan curve 3. Let f,_’fA be a conformal map from D := {|z| < 1} onto
the interior of 8. Both fj and f,f extend continuously to T, and the
welding ¢ := () Lo f,f is an analytic automorphism of T, and so is
oW = W o ¢. From the quasiconformal theory of conformal welding, ¢"
is the conformal welding associated with some analytic Jordan curve ~.
This means that, there is a conformal map fL# from D onto the interior
of 7y such that "V = (f) 1o fL#, where L is the C-hull bounded by ~.
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Sketch proof

Sketch proof of Theorem 2.

By Carathéodory kernel theorem, we may assume that OH is an analytic
Jordan curve 3. Let f,_’fA be a conformal map from D := {|z| < 1} onto
the interior of 8. Both fj and f,f extend continuously to T, and the
welding ¢ := () Lo f,f is an analytic automorphism of T, and so is
oW = W o ¢. From the quasiconformal theory of conformal welding, ¢"
is the conformal welding associated with some analytic Jordan curve ~.
This means that, there is a conformal map fL# from D onto the interior

of 7y such that "V = (f) 1o fL#, where L is the C-hull bounded by ~.

Define V = fL# o (f,j&)_l. Then V maps the interior of 5 conformally
onto the interior of «. Since 8 and ~ are analytic curves, V extends
analytically across 3, and maps 3 onto 7. Since

(fL*)_l o fL# =Wogp=Wo (f,f;)_l o fj on T,

we get V = f* o Wo (f3)~! on 3, which should also hold outside 3.
Thus, W = g‘*/(H) o V o fy outside T, as desired. O
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Sketch proof

As a byproduct, we obtain the following corollary with a simple proof.

If ¢ is a conformal welding of T, and W is an analytic orientation-preserving
automorphism of T, then ¢ o W and W o ¢ are conformal weldings of T.
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Sketch proof

As a byproduct, we obtain the following corollary with a simple proof.

If ¢ is a conformal welding of T, and W is an analytic orientation-preserving
automorphism of T, then ¢ o W and W o ¢ are conformal weldings of T.

Proof.

We may assume that ¢ = (f5) "' o ff, where f; and f/;# map D* and D
conformally onto the exterior and the interior, respectively of a Jordan
curve 8. From Theorem 2, there is a conformal map V, whose domain
contains 3 and its interior, such that W = (ﬁ;‘)_1 oVo fg, where

v = V/(B) is a Jordan curve, and £ map D* conformally onto the exterior

of v. Then Vo fﬁ# maps D conformally onto the interior of +, and

(fv*)_lo(VOfﬁ#):WO(fg)_loff: W o ¢.

Thus, W o ¢ is a conformal welding. Since po W = (W10 ¢~1)71,
¢ o W is also a conformal welding. 0
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Sketch proof

Thank you!
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