Complex Analysis in Backward SLE

Dapeng Zhan

Michigan State University

Everything is complex Saas-Fee, March, 2016

Based on a joint work with Steffen Rohde.

4 E b

Preliminary

イロン イロン イヨン イヨン

Preliminary

Conformal transformation

・ロト ・個ト ・モト ・モト

Preliminary

Conformal transformation

Applications

< 문 ► < 문 ►

Preliminary

Conformal transformation

Applications

Sketch proof

< (¶ →

★ E ► < E ►</p>

э

Preliminary

Conformal transformation

Applications

Sketch proof

・ロト ・個ト ・モト ・モト

э

Schramm's SLE process is successful in describing random fractal curves, which are the scaling limit of some critical two-dimensional lattice models, which include critical percolation ([Smi01]), loop-erased random walk and uniform spanning tree ([LSW04]), critical Ising model and critical FK-Ising model ([CDCH+13]), and etc. The definition of SLE combines the Loewner's differential equation with a random driving function: Brownian motion.

Schramm's SLE process is successful in describing random fractal curves, which are the scaling limit of some critical two-dimensional lattice models, which include critical percolation ([Smi01]), loop-erased random walk and uniform spanning tree ([LSW04]), critical Ising model and critical FK-Ising model ([CDCH+13]), and etc. The definition of SLE combines the Loewner's differential equation with a random driving function: Brownian motion.

Backward SLE uses backward Loewner equation, which differs from the forward equation by a minus sign. The goal of the joint work was to study the backward SLE process as a whole instead of only the hulls at fixed capacity times. Prior to our work, S. Sheffield proved the existence of a coupling of a backward chordal SLE_{κ} with a free boundary GFF such that real intervals [x, 0] and [0, y] with the same quantum weight are welded by the backward SLE process.

B K 4 B K

It turns out that, with a few modifications, the standard tools used in forward SLE can also be used to study backward SLE, as long as we find the "correct" definition of the transformation of a backward Loewner process under a conformal map.

- A 🗐 🕨

It turns out that, with a few modifications, the standard tools used in forward SLE can also be used to study backward SLE, as long as we find the "correct" definition of the transformation of a backward Loewner process under a conformal map.

To explain the idea, let me briefly recall some notation.

- $\mathbb{H} := \{z \in \mathbb{C} : \Im z > 0\}$ is the upper half plane.
- An ℍ-hull is a bounded set K ⊂ ℍ such that ℍ \ K is a simply connected domain.
- ▶ For an \mathbb{H} -hull K, g_K is the unique conformal map from $\mathbb{H} \setminus K$ onto \mathbb{H} such that $g_K(z) = z + \frac{c(K)}{z} + O(1/z^2)$ as $z \to \infty$. Let $f_K = g_K^{-1}$.
- hcap(K) := c(K) is called the ℍ-capacity of K. We have hcap(Ø) = 0 and hcap(K₁) < hcap(K₂) if K₁ ⊊ K₂.

The double of K: K^{doub} is the union of \overline{K} and the reflection of K about \mathbb{R} . By Schwarz reflection principle, g_K extends to a conformal map from $\mathbb{C} \setminus K^{\text{doub}}$ onto $\mathbb{C} \setminus S_K$ for some compact $S_K \subset \mathbb{R}$ called the support of K.

4 E b

The double of K: K^{doub} is the union of \overline{K} and the reflection of K about \mathbb{R} . By Schwarz reflection principle, g_K extends to a conformal map from $\mathbb{C} \setminus K^{\text{doub}}$ onto $\mathbb{C} \setminus S_K$ for some compact $S_K \subset \mathbb{R}$ called the support of K.

If $K_1 \subset K_2$ are two \mathbb{H} -hulls, we define $K_2/K_1 = g_{K_1}(K_2 \setminus K_1)$, which is also an \mathbb{H} -hull. We call K_2/K_1 a quotient hull of K_2 , and write $K_2/K_1 \prec K_2$. If $K_3 \prec K_2$, then hcap $(K_3) \leq$ hcap (K_2) , $S_{K_3} \subset S_{K_2}$, and there is a unique $K_1 \subset K_2$ s.t. $K_3 = K_2/K_1$. We write $K_1 = K_2 : K_3$.

An \mathbb{H} -Loewner chain is a strictly increasing family of \mathbb{H} -hulls $(K_t)_{0 \le t < T}$, which starts from $K_0 = \emptyset$, and satisfies that

$$\bigcap_{0 < \varepsilon < T-t} \overline{K_{t+\varepsilon}/K_t} = \{\lambda_t\}, \quad 0 \le t < T,$$

for some real continuous function λ_t , $0 \le t < T$.

E > < E >

An \mathbb{H} -Loewner chain is a strictly increasing family of \mathbb{H} -hulls $(K_t)_{0 \le t < T}$, which starts from $K_0 = \emptyset$, and satisfies that

$$\bigcap_{0 < \varepsilon < T-t} \overline{K_{t+\varepsilon}/K_t} = \{\lambda_t\}, \quad 0 \le t < T,$$

for some real continuous function λ_t , $0 \le t < T$.

If *u* is a continuously (strictly) increasing function with u(0) = 0, then $K_{u^{-1}(t)}$, $0 \le t < u(T)$, is also an \mathbb{H} -Loewner chain, and is called a time-change of (K_t) . An \mathbb{H} -Loewner chain is called normalized if hcap $(K_t) = 2t$ for each *t*. Every \mathbb{H} -Loewner chain can be normalized by applying a time-change.

글 🕨 🖌 글 🕨

An \mathbb{H} -Loewner chain is a strictly increasing family of \mathbb{H} -hulls $(K_t)_{0 \le t < T}$, which starts from $K_0 = \emptyset$, and satisfies that

$$\bigcap_{0 < \varepsilon < T-t} \overline{K_{t+\varepsilon}/K_t} = \{\lambda_t\}, \quad 0 \le t < T,$$

for some real continuous function λ_t , $0 \le t < T$.

If *u* is a continuously (strictly) increasing function with u(0) = 0, then $K_{u^{-1}(t)}$, $0 \le t < u(T)$, is also an \mathbb{H} -Loewner chain, and is called a time-change of (K_t) . An \mathbb{H} -Loewner chain is called normalized if hcap $(K_t) = 2t$ for each *t*. Every \mathbb{H} -Loewner chain can be normalized by applying a time-change.

Example. We say that γ_t , $0 \le t < T$, an \mathbb{H} -simple curve, if $\gamma_0 \in \mathbb{R}$ and $\gamma_t \in \mathbb{H}$ for t > 0. An \mathbb{H} -simple curve γ generates an \mathbb{H} -Loewner chain: $K_t = \gamma(0, t]$, $0 \le t < T$.

(* (E)) * (E) * (E)

Let $\lambda \in C([0, T), \mathbb{R})$. The (forward) chordal Loewner equation driven by λ is

$$\partial_t g_t(z) = rac{2}{g_t(z) - \lambda_t}, \quad g_0(z) = z.$$

For $0 \le t < T$, let K_t denote the set of $z \in \mathbb{H}$ such that the solution $s \mapsto g_s(z)$ blows up before or at time t. Then each K_t is an \mathbb{H} -hull with hcap $(K_t) = 2t$ and $g_{K_t} = g_t$. We call g_t and K_t the chordal Loewner maps and hulls driven by λ . Chordal SLE_{κ} is defined by taking $\lambda_t = \sqrt{\kappa}B_t$, where $\kappa > 0$ and B_t is a standard Brownian motion.

Let $\lambda \in C([0, T), \mathbb{R})$. The (forward) chordal Loewner equation driven by λ is

$$\partial_t g_t(z) = rac{2}{g_t(z) - \lambda_t}, \quad g_0(z) = z.$$

For $0 \le t < T$, let K_t denote the set of $z \in \mathbb{H}$ such that the solution $s \mapsto g_s(z)$ blows up before or at time t. Then each K_t is an \mathbb{H} -hull with hcap $(K_t) = 2t$ and $g_{K_t} = g_t$. We call g_t and K_t the chordal Loewner maps and hulls driven by λ . Chordal SLE_{κ} is defined by taking $\lambda_t = \sqrt{\kappa}B_t$, where $\kappa > 0$ and B_t is a standard Brownian motion.

Proposition [LSW01]

 (K_t) are chordal Loewner hulls driven by some continuous function iff it is a normalized \mathbb{H} -Loewner chain. Moreover, when the above holds, the driving function λ is given by $\bigcap_{0 < \varepsilon < T-t} \overline{K_{t+\varepsilon}/K_t} = \{\lambda_t\}, 0 \le t < T$.

▲ 글 ▶ | ▲ 글 ▶

The backward chordal Loewner equation driven by λ is

$$\partial_t f_t(z) = rac{-2}{f_t(z) - \lambda_t}, \quad f_0(z) = z.$$

For every t, f_t is well defined on \mathbb{H} , and maps \mathbb{H} conformally onto $\mathbb{H} \setminus L_t$ for some \mathbb{H} -hull L_t . We have hcap $(L_t) = 2t$ and $f_t = f_{L_t}$. But (L_t) may not be an increasing family. Instead, it satisfies that $L_{t_1} \prec L_{t_2}$ if $t_1 \leq t_2$. To describe other properties of (L_t) , we need the notation of quotient Loewner chain.

A family of \mathbb{H} -hulls $(L_t)_{0 \le t < T}$ is called a quotient \mathbb{H} -Loewner chain if it satisfies that $L_0 = \emptyset$, $L_{t_1} \prec L_{t_2}$ when $t_1 < t_2$, and

$$\bigcap_{0 < \varepsilon < t} \overline{L_t : L_{t-\varepsilon}} = \{\lambda_t\}, \quad 0 < t < T,$$

for some real continuous function λ_t , $0 \le t < T$. Here $L_t : L_{t-\varepsilon}$ is decreasing in ε . We say (L_t) is normalized if hcap $(L_t) = 2t$ for each t. Every quotient \mathbb{H} -Loewner chain can be normalized by applying a time-change.

B K 4 B K

A family of \mathbb{H} -hulls $(L_t)_{0 \le t < T}$ is called a quotient \mathbb{H} -Loewner chain if it satisfies that $L_0 = \emptyset$, $L_{t_1} \prec L_{t_2}$ when $t_1 < t_2$, and

$$\bigcap_{0 < \varepsilon < t} \overline{L_t : L_{t-\varepsilon}} = \{\lambda_t\}, \quad 0 < t < T,$$

for some real continuous function λ_t , $0 \le t < T$. Here $L_t : L_{t-\varepsilon}$ is decreasing in ε . We say (L_t) is normalized if hcap $(L_t) = 2t$ for each t. Every quotient \mathbb{H} -Loewner chain can be normalized by applying a time-change.

Proposition

 (L_t) are backward chordal Loewner hulls driven by some continuous function λ iff it is a normalized quotient \mathbb{H} -Loewner chain. Moreover, when the above holds, we have $\bigcap_{0 < \varepsilon < t} \overline{L_t : L_{t-\varepsilon}} = \{\lambda_t\}, 0 \le t < T$.

글 🕨 🖌 글 🕨

Preliminary

Conformal transformation

Applications

Sketch proof

・ロト ・個ト ・モト ・モト

Let's first observe how a forward \mathbb{H} -Loewner chain is transformed by a conformal map. The technique was used to study the locality of SLE₆ ([LSW01]) and restriction of SLE_{8/3} ([LSW02]).

____ **►**

글 🕨 🖌 글 🕨

Let's first observe how a forward \mathbb{H} -Loewner chain is transformed by a conformal map. The technique was used to study the locality of SLE₆ ([LSW01]) and restriction of SLE_{8/3} ([LSW02]).

We call a domain \mathbb{R} -symmetric if it is invariant under the conjugate map $z \mapsto \overline{z}$. We call a conformal map \mathbb{R} -symmetric if its definition domain is \mathbb{R} -symmetric, it commutes with the conjugate map, and its derivatives on \mathbb{R} are positive. For example, g_K and f_K are \mathbb{R} -symmetric after extensions.

Let's first observe how a forward \mathbb{H} -Loewner chain is transformed by a conformal map. The technique was used to study the locality of SLE₆ ([LSW01]) and restriction of SLE_{8/3} ([LSW02]).

We call a domain \mathbb{R} -symmetric if it is invariant under the conjugate map $z \mapsto \overline{z}$. We call a conformal map \mathbb{R} -symmetric if its definition domain is \mathbb{R} -symmetric, it commutes with the conjugate map, and its derivatives on \mathbb{R} are positive. For example, g_K and f_K are \mathbb{R} -symmetric after extensions.

Let (K_t) be an \mathbb{H} -Loewner chain, and W an \mathbb{R} -symmetric conformal map whose domain Ω contains every K_t^{doub} . Then $(W(K_t))$ is an increasing family of \mathbb{H} -hulls. We will see in the next slide that $(W(K_t))$ is an \mathbb{H} -Loewner chain. This is obvious if (K_t) is generated by an \mathbb{H} -simple curve.

B K 4 B K

Let $W_t = g_{W(K_t)} \circ W \circ f_{K_t}$. Then W_t is a conformal map defined on a neighborhood of S_{K_t} minus S_{K_t} . By Schwarz reflection principle, W_t extends to a conformal map on the neighborhood of S_{K_t} . From $g_{W(K_t)} \circ W = W \circ g_{K_t}$, we get

$$W(K_{t+\varepsilon})/W(K_t) = W_t(K_{t+\varepsilon}/K_t), \quad \varepsilon > 0.$$

• = • • = •

Let $W_t = g_{W(K_t)} \circ W \circ f_{K_t}$. Then W_t is a conformal map defined on a neighborhood of S_{K_t} minus S_{K_t} . By Schwarz reflection principle, W_t extends to a conformal map on the neighborhood of S_{K_t} . From $g_{W(K_t)} \circ W = W \circ g_{K_t}$, we get

$$W(K_{t+\varepsilon})/W(K_t) = W_t(K_{t+\varepsilon}/K_t), \quad \varepsilon > 0.$$

From $\bigcap_{\varepsilon>0} \overline{K_{t+\varepsilon}/K_t} = \{\lambda_t\}$ we get $\bigcap_{\varepsilon>0} \overline{W(K_{t+\varepsilon})/W(K_t)} = \{W_t(\lambda_t)\}$. So $(W(K_t))$ is also an \mathbb{H} -Loewner chain.

E > < E >

From $\bigcap_{\varepsilon>0} \overline{K_{t+\varepsilon}/K_t} = \{\lambda_t\}$ we get $\bigcap_{\varepsilon>0} \overline{W(K_{t+\varepsilon})/W(K_t)} = \{W_t(\lambda_t)\}$. So $(W(K_t))$ is also an \mathbb{H} -Loewner chain.

If (K_t) are chordal Loewner hulls driven by λ , then (K_t) is normalized but $(W(K_t))$ may not be normalized. Let $u(t) = hcap(W(K_t))/2$ be the time-change function. Then $(W(K_{u^{-1}(t)}))$ are chordal Loewner hulls driven by $W_{u^{-1}(t)}(\lambda_{u^{-1}(t)})$.

4 B 6 4 B 6

We tried to develop a similar theory for quotient \mathbb{H} -Loewner chain. Let (L_t) be a quotient \mathbb{H} -Loewner chain. Let W be an \mathbb{R} -symmetric conformal map. Then $(W(L_t))$ may not be a quotient \mathbb{H} -Loewner chain because $L_{t_1} \prec L_{t_2}$ does not imply that $W(L_{t_1}) \prec W(L_{t_2})$. This means that we can not define $(W(L_t))$ as the conformal transformation of (L_t) under W. Instead, we want to find a continuous family of conformal maps (W^{L_t}) such that $W^{L_0} = W$ and $(W^{L_t}(L_t))$ is a quotient \mathbb{H} -Loewner chain. We need the following theorem.

We tried to develop a similar theory for quotient \mathbb{H} -Loewner chain. Let (L_t) be a quotient \mathbb{H} -Loewner chain. Let W be an \mathbb{R} -symmetric conformal map. Then $(W(L_t))$ may not be a quotient \mathbb{H} -Loewner chain because $L_{t_1} \prec L_{t_2}$ does not imply that $W(L_{t_1}) \prec W(L_{t_2})$. This means that we can not define $(W(L_t))$ as the conformal transformation of (L_t) under W. Instead, we want to find a continuous family of conformal maps (W^{L_t}) such that $W^{L_0} = W$ and $(W^{L_t}(L_t))$ is a quotient \mathbb{H} -Loewner chain. We need the following theorem.

Theorem 1.

Let K be an \mathbb{H} -hull. Let W be an \mathbb{R} -symmetric conformal map, whose domain Ω contains S_K . Then there is a unique conforml map W^K defined on $\Omega^K := f_K(\Omega \setminus S_K) \cup K^{\text{doub}}$ such that $W = g_{W^K(K)} \circ W^K \circ f_K$.

▲ 国 ▶ | ▲ 国 ▶ | |

It is easy to get W from W^K using Schwarz reflection principle, but non-trivial to get W^K from W.

< 🗇 🕨

16/32

э

< ∃⇒

Preliminary

Conformal transformation

Applications

Sketch proof

э

▲ 문 ► ▲ 문 ►

< 🗇 🕨

We now explain how Theorem 1 is applied. Suppose (L_t) is a quotient \mathbb{H} -Loewner chain, and W is an \mathbb{R} -symmetric conformal map, whose domain contains S_{L_t} for every t. Let (W^{L_t}) be given by the theorem. For $t_1 < t_2$, from $L_{t_1} \prec L_{t_2}$ we can conclude that $W^{L_{t_1}}(L_{t_1}) \prec W^{L_{t_2}}(L_{t_2})$. In fact, we have $W^{L_{t_2}}(L_{t_2}) : W^{L_{t_1}}(L_{t_1}) = W^{L_{t_2}}(L_{t_2} : L_{t_1})$. Thus, if $\bigcap_{\varepsilon > 0} \overline{L_t : L_{t-\varepsilon}} = \{\lambda_t\}$, then

$$\bigcap_{\varepsilon>0} \overline{W^{L_t}(L_t): W^{L_{t-\varepsilon}}(L_{t-\varepsilon})} = \{W^{L_t}(\lambda_t)\}.$$

We now explain how Theorem 1 is applied. Suppose (L_t) is a quotient \mathbb{H} -Loewner chain, and W is an \mathbb{R} -symmetric conformal map, whose domain contains S_{L_t} for every t. Let (W^{L_t}) be given by the theorem. For $t_1 < t_2$, from $L_{t_1} \prec L_{t_2}$ we can conclude that $W^{L_{t_1}}(L_{t_1}) \prec W^{L_{t_2}}(L_{t_2})$. In fact, we have $W^{L_{t_2}}(L_{t_2}) : W^{L_{t_1}}(L_{t_1}) = W^{L_{t_2}}(L_{t_2} : L_{t_1})$. Thus, if $\bigcap_{\varepsilon > 0} \overline{L_t : L_{t-\varepsilon}} = \{\lambda_t\}$, then

$$\bigcap_{\varepsilon>0} \overline{W^{L_t}(L_t):W^{L_{t-\varepsilon}}(L_{t-\varepsilon})} = \{W^{L_t}(\lambda_t)\}.$$

So $(W^{L_t}(L_t))$ is a quotient \mathbb{H} -Loewner chain, and we define it to be the transformation of (L_t) under W. If (L_t) are backward chordal Loewner hulls driven by λ , then we may normalize $(W^{L_t}(L_t))$ to get a backward Loewner process using the function $u(t) := \text{hcap}(W^{L_t}(L_t))/2$. Sometimes we refer the normalization of $(W^{L_t}(L_t))$ as the conformal transformation of (L_t) via W.

▲ 国 ▶ | ▲ 国 ▶ | |

One nice property of the conformal transformation is that it preserves the welding map. If in a quotient \mathbb{H} -Loewner chain (L_t) , every L_t is the image of an \mathbb{H} -simple curve (which is the case for backward SLE_{κ} with $\kappa \in (0,4]$), then each f_{L_t} extends continuously to $\overline{\mathbb{H}}$, and maps S_{L_t} onto the two sides of L_t . Such f_{L_t} induces a welding map $\phi_t : S_{L_t} \to S_{L_t}$, which is an orientation-reversed map, such that $f_{L_t} \circ \phi_t = f_{L_t}$, i.e., κ and $\phi_t(\kappa)$ have the same f_{L_t} -image on L_t . Moreover, if $t_1 < t_2$, then $\phi_{t_1} = \phi_{t_2}|_{S_{L_{t_1}}}$. Thus, the quotient \mathbb{H} -Loewner chain (L_t) induces a welding map ϕ on $\bigcup S_{L_t}$ such that $\phi|_{S_{L_t}} = \phi_t$ for each t.

One nice property of the conformal transformation is that it preserves the welding map. If in a quotient \mathbb{H} -Loewner chain (L_t) , every L_t is the image of an \mathbb{H} -simple curve (which is the case for backward SLE_{κ} with $\kappa \in (0, 4]$), then each f_{L_t} extends continuously to $\overline{\mathbb{H}}$, and maps S_{L_t} onto the two sides of L_t . Such f_{L_t} induces a welding map $\phi_t : S_{L_t} \to S_{L_t}$, which is an orientation-reversed map, such that $f_{L_t} \circ \phi_t = f_{L_t}$, i.e., κ and $\phi_t(\kappa)$ have the same f_{L_t} -image on L_t . Moreover, if $t_1 < t_2$, then $\phi_{t_1} = \phi_{t_2}|_{S_{L_{t_1}}}$. Thus, the quotient \mathbb{H} -Loewner chain (L_t) induces a welding map ϕ on $\bigcup S_{L_t}$ such that $\phi|_{S_{L_t}} = \phi_t$ for each t.

Suppose $(W^{L_t}(L_t))$ is a conformal transformation of (L_t) , which induces another welding map ϕ^W . Then we have $\phi^W = W \circ \phi \circ W^{-1}$. This holds because if $f_{L_t}(x) = f_{L_t}(y)$, then $f_{W^{L_t}(L_t)}(W(x)) = f_{W^{L_t}(L_t)}(W(y))$, which follows from $f_{W^{L_t}(L_t)} \circ W = W^{L_t} \circ f_{L_t}$.

A (forward) SLE($\kappa; \underline{\rho}$) process is a variant of an SLE_{κ} process, in which the driving function is affected by the movement of one or many marked points in the flow, and ρ controls the degree of the affection.

B 🕨 🖌 B 🕨

A (forward) SLE($\kappa; \underline{\rho}$) process is a variant of an SLE_{κ} process, in which the driving function is affected by the movement of one or many marked points in the flow, and ρ controls the degree of the affection.

The backward SLE($\kappa; \underline{\rho}$) processes can be defined similarly as forward SLE($\kappa; \underline{\rho}$) processes. Following the argument in [SW05], we derived the coordinate change rule for backward SLE($\kappa; \underline{\rho}$) process: if $\sum \rho_j = -\kappa - 6$, the conformal transformation of a backward SLE($\kappa; \underline{\rho}$) process under a Möbius transformation is still a backward SLE($\kappa; \underline{\rho}$) process. This suggests that a backward SLE_{κ} may be viewed as SLE with a negative parameter: $-\kappa$.

B b d B b

Theorem 1 also makes it possible to define the commutation coupling of two backward SLEs. Let me first recall the commutation coupling between two forward SLE($\kappa; \underline{\rho}$) processes. Roughly speaking, an SLE($\kappa^1; \underline{\rho}^1$) process (K_t^1) commutes with an SLE($\kappa^2; \underline{\rho}^2$) process (K_t^2) if the two processes are defined on the same probability space, and

Theorem 1 also makes it possible to define the commutation coupling of two backward SLEs. Let me first recall the commutation coupling between two forward SLE($\kappa; \underline{\rho}$) processes. Roughly speaking, an SLE($\kappa^1; \underline{\rho}^1$) process (K_t^1) commutes with an SLE($\kappa^2; \underline{\rho}^2$) process (K_t^2) if the two processes are defined on the same probability space, and

- 1. For any stopping time τ for (K_t^2) , the image of (K_t^1) up to T_{τ}^1 , which is the first time that $\overline{K_t^1}$ intersects $\overline{K_{\tau}^2}$, under the map $g_{K_{\tau}^2}$ is still an SLE $(\kappa^1; \rho^1)$ process.
- 2. The same holds with the indices 1 and 2 swapped.

Theorem 1 also makes it possible to define the commutation coupling of two backward SLEs. Let me first recall the commutation coupling between two forward SLE($\kappa; \underline{\rho}$) processes. Roughly speaking, an SLE($\kappa^1; \underline{\rho}^1$) process (K_t^1) commutes with an SLE($\kappa^2; \underline{\rho}^2$) process (K_t^2) if the two processes are defined on the same probability space, and

- 1. For any stopping time τ for (K_t^2) , the image of (K_t^1) up to T_{τ}^1 , which is the first time that $\overline{K_t^1}$ intersects $\overline{K_{\tau}^2}$, under the map $g_{K_{\tau}^2}$ is still an SLE $(\kappa^1; \rho^1)$ process.
- 2. The same holds with the indices 1 and 2 swapped.

Here we only consider those K_t^1 before T_{τ}^1 , because we want $\overline{K_t^1}$ to be contained in the domain of $g_{K_{\tau}^2}$, and so that $(g_{K_{\tau}^2}(K_t^1))_{0 \le t < T_{\tau}^1}$ is an \mathbb{H} -Loewner chain.

글 > < 글 >

As for backward SLE, we say that a backward SLE(κ^1 ; $\underline{\rho}^1$) process (L_t^1) commutes with a backward SLE(κ^2 ; $\underline{\rho}^2$) process (L_t^2) if the two processes are defined on the same probability space, and

- A 🗐 🕨

As for backward SLE, we say that a backward SLE(κ^1 ; $\underline{\rho}^1$) process (\mathcal{L}_t^1) commutes with a backward SLE(κ^2 ; $\underline{\rho}^2$) process (\mathcal{L}_t^2) if the two processes are defined on the same probability space, and

- 1. For any stopping time τ for (L_t^2) , the conformal transformation of (L_t^1) up to the first time T_{τ}^1 that $S_{L_t^1}$ intersects $S_{L_{\tau}^2}$ via the map $f_{L_{\tau}^2}$ is still a backward SLE $(\kappa^1; \rho^1)$ process.
- 2. The same holds with the indices 1 and 2 swapped.

As for backward SLE, we say that a backward SLE($\kappa^1; \underline{\rho}^1$) process (L_t^1) commutes with a backward SLE($\kappa^2; \underline{\rho}^2$) process (L_t^2) if the two processes are defined on the same probability space, and

- 1. For any stopping time τ for (L_t^2) , the conformal transformation of (L_t^1) up to the first time T_{τ}^1 that $S_{L_t^1}$ intersects $S_{L_{\tau}^2}$ via the map $f_{L_{\tau}^2}$ is still a backward SLE $(\kappa^1; \rho^1)$ process.
- 2. The same holds with the indices 1 and 2 swapped.

Here we only consider those L_t^1 before T_τ^1 , because we want $S_{L_t^1}$ to be contained in the domain of $f_{L_\tau^2}$, which is $\mathbb{C} \setminus S_{L_\tau^2}$, and so that the conformal transformation of the quotient Loewner chain $(L_t^1)_{0 \le t < T_\tau^1}$ via $f_{L_\tau^2}$ is well defined.

글 🖌 🖌 글 🕨

A stochastic coupling technique was developed earlier to construct commutation couplings between forward SLE($\kappa; \underline{\rho}$) processes, which was then used to prove the reversibility of chordal SLE_{κ} for $\kappa \leq 4$ and the duality of SLE for $\kappa > 4$.

- - E - b

A stochastic coupling technique was developed earlier to construct commutation couplings between forward SLE($\kappa; \rho$) processes, which was then used to prove the reversibility of chordal SLE_{κ} for $\kappa \leq 4$ and the duality of SLE for $\kappa > 4$.

In the joint work, we used the stochastic coupling technique to construct commutation couplings between two backward SLE processes, and proved that, for $\kappa \leq 4$, the random welding map ϕ induced by a backward chordal SLE_{κ} processes satisfies the time-reversal symmetry: $h \circ \phi \circ h \sim \phi$, where h(z) = 1/z. Later, this symmetry result was combined with the conformal removability of SLE_{κ} for $\kappa \in (0, 4)$ ([JS00], [RS05]), to prove the reversibility of a whole-plane SLE($\kappa; \kappa + 2$) curve stopped at a fixed capacity time.

4 B 6 4 B 6

Preliminary

Conformal transformation

Applications

Sketch proof

æ

★ Ξ ► < Ξ ►</p>

< 🗇 🕨

Theorem 1.

Let K be an \mathbb{H} -hull. Let W be an \mathbb{R} -symmetric conformal map, whose domain Ω contains S_K . Then there is a unique conforml map W^K defined on $\Omega^K := f_K(\Omega \setminus S_K) \cup K^{\text{doub}}$ such that $W = g_{W^K(K)} \circ W^K \circ f_K$.

We transform the above theorem to a similar problem. We say that H is a \mathbb{C} -hull if H is a connected compact subset of \mathbb{C} such that diam(H) > 0and $\mathbb{C} \setminus H$ is connected. For a \mathbb{C} -hull H, there is a unique $g_{H}^{*}: \mathbb{C} \setminus F \xrightarrow{\text{Conf}} \mathbb{D}^{*} := \{z: |z| > 1\}$ such that $g_{H}^{*}(\infty) = \infty$ and $(g_{H}^{*})'(\infty) > 0$. Let $f_{H}^{*} = (g_{H}^{*})^{-1}$. These maps are closely related with the g_{K} and f_{K} for \mathbb{H} -hull K: if K is a nonempty \mathbb{H} -hull such that K^{doub} is connected, then K^{doub} and S_{K} are \mathbb{C} -hulls, and $g_{K} = g_{S_{V}}^{*} \circ f_{K^{\text{doub}}}^{*}$.

Let V be a conformal map, whose domain Ω contains a \mathbb{C} -hull H. Then V(H) is also a \mathbb{C} -hull. The composition $W := g^*_{V(H)} \circ V \circ f_H$ is a conformal map defined on $\Omega^+_H := g^*_H(\Omega \setminus H)$, which is a subset of \mathbb{D}^* and contains $\{1 < |z| < R\}$ for some R > 1. By Schwarz reflection principle, W extends conformally across $\mathbb{T} := \{|z| = 1\}$, maps \mathbb{T} onto \mathbb{T} , and preserves the orientation of \mathbb{T} . Theorem 1 follows from Theorem 2 below, which tells us that we can recover V from W.

Let V be a conformal map, whose domain Ω contains a \mathbb{C} -hull H. Then V(H) is also a \mathbb{C} -hull. The composition $W := g_{V(H)}^* \circ V \circ f_H$ is a conformal map defined on $\Omega_H^+ := g_H^*(\Omega \setminus H)$, which is a subset of \mathbb{D}^* and contains $\{1 < |z| < R\}$ for some R > 1. By Schwarz reflection principle, W extends conformally across $\mathbb{T} := \{|z| = 1\}$, maps \mathbb{T} onto \mathbb{T} , and preserves the orientation of \mathbb{T} . Theorem 1 follows from Theorem 2 below, which tells us that we can recover V from W.

Theorem 2.

Let H be as above. Let W be a conformal map, whose domain Ω contains \mathbb{T} , such that W maps \mathbb{T} onto \mathbb{T} , and preserves the orientation of \mathbb{T} . Then there is a conformal map V defined on $\Omega^H := \psi_H(\Omega \cap \mathbb{D}^*) \cup H$ such that $W = g^*_{V(H)} \circ V \circ f^*_H$.

Sketch proof of Theorem 2.

By Carathéodory kernel theorem, we may assume that ∂H is an analytic Jordan curve β . Let $f_H^{\#}$ be a conformal map from $\mathbb{D} := \{|z| < 1\}$ onto the interior of β . Both f_H^* and $f_H^{\#}$ extend continuously to \mathbb{T} , and the welding $\phi := (f_H^*)^{-1} \circ f_H^{\#}$ is an analytic automorphism of \mathbb{T} , and so is $\phi^W := W \circ \phi$. From the quasiconformal theory of conformal welding, ϕ^W is the conformal welding associated with some analytic Jordan curve γ . This means that, there is a conformal map $f_L^{\#}$ from \mathbb{D} onto the interior of γ such that $\phi^W = (f_L^*)^{-1} \circ f_L^{\#}$, where L is the \mathbb{C} -hull bounded by γ .

Sketch proof of Theorem 2.

By Carathéodory kernel theorem, we may assume that ∂H is an analytic Jordan curve β . Let $f_H^{\#}$ be a conformal map from $\mathbb{D} := \{|z| < 1\}$ onto the interior of β . Both f_H^* and $f_H^{\#}$ extend continuously to \mathbb{T} , and the welding $\phi := (f_H^*)^{-1} \circ f_H^{\#}$ is an analytic automorphism of \mathbb{T} , and so is $\phi^W := W \circ \phi$. From the quasiconformal theory of conformal welding, ϕ^W is the conformal welding associated with some analytic Jordan curve γ . This means that, there is a conformal map $f_L^{\#}$ from \mathbb{D} onto the interior of γ such that $\phi^W = (f_L^*)^{-1} \circ f_L^{\#}$, where L is the \mathbb{C} -hull bounded by γ .

Define $V = f_L^{\#} \circ (f_H^{\#})^{-1}$. Then V maps the interior of β conformally onto the interior of γ . Since β and γ are analytic curves, V extends analytically across β , and maps β onto γ . Since

$$(f^*_L)^{-1}\circ f^\#_L=W\circ\phi=W\circ(f^*_H)^{-1}\circ f^\#_H\quad\text{on }\mathbb{T},$$

we get $V = f_L^* \circ W \circ (f_H^*)^{-1}$ on β , which should also hold outside β . Thus, $W = g_{V(H)}^* \circ V \circ f_H$ outside \mathbb{T} , as desired.

As a byproduct, we obtain the following corollary with a simple proof.

Corollary

If ϕ is a conformal welding of \mathbb{T} , and W is an analytic orientation-preserving automorphism of \mathbb{T} , then $\phi \circ W$ and $W \circ \phi$ are conformal weldings of \mathbb{T} .

As a byproduct, we obtain the following corollary with a simple proof.

Corollary

If ϕ is a conformal welding of \mathbb{T} , and W is an analytic orientation-preserving automorphism of \mathbb{T} , then $\phi \circ W$ and $W \circ \phi$ are conformal weldings of \mathbb{T} .

Proof.

We may assume that $\phi = (f_{\beta}^*)^{-1} \circ f_{\beta}^{\#}$, where f_{β}^* and $f_{\beta}^{\#}$ map \mathbb{D}^* and \mathbb{D} conformally onto the exterior and the interior, respectively of a Jordan curve β . From Theorem 2, there is a conformal map V, whose domain contains β and its interior, such that $W = (f_{\gamma}^*)^{-1} \circ V \circ f_{\beta}^*$, where $\gamma = V(\beta)$ is a Jordan curve, and f_{γ}^* map \mathbb{D}^* conformally onto the exterior of γ . Then $V \circ f_{\beta}^{\#}$ maps \mathbb{D} conformally onto the interior of γ , and

$$(f_{\gamma}^*)^{-1} \circ (V \circ f_{\beta}^\#) = W \circ (f_{\beta}^*)^{-1} \circ f_{\beta}^\# = W \circ \phi.$$

Thus, $W \circ \phi$ is a conformal welding. Since $\phi \circ W = (W^{-1} \circ \phi^{-1})^{-1}$, $\phi \circ W$ is also a conformal welding.

Thank you!

< E > < E >

Happy Birthday, Nick!

э

→ Ξ → → Ξ →

< 🗇 🕨