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Schramm’s SLE process is successful in describing random fractal curves,
which are the scaling limit of some critical two-dimensional lattice
models, which include critical percolation ([Smi01]), loop-erased random
walk and uniform spanning tree ([LSW04]), critical Ising model and
critical FK-Ising model ([CDCH+13]), and etc. The definition of SLE
combines the Loewner’s differential equation with a random driving
function: Brownian motion.

Backward SLE uses backward Loewner equation, which differs from the
forward equation by a minus sign. The goal of the joint work was to
study the backward SLE process as a whole instead of only the hulls at
fixed capacity times. Prior to our work, S. Sheffield proved the existence
of a coupling of a backward chordal SLEκ with a free boundary GFF such
that real intervals [x , 0] and [0, y ] with the same quantum weight are
welded by the backward SLE process.
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It turns out that, with a few modifications, the standard tools used in
forward SLE can also be used to study backward SLE, as long as we find
the “correct” definition of the transformation of a backward Loewner
process under a conformal map.

To explain the idea, let me briefly recall some notation.

I H := {z ∈ C : =z > 0} is the upper half plane.

I An H-hull is a bounded set K ⊂ H such that H \ K is a simply
connected domain.

I For an H-hull K , gK is the unique conformal map from H \ K onto

H such that gK (z) = z + c(K)
z + O(1/z2) as z →∞. Let fK = g−1K .

I hcap(K ) := c(K ) is called the H-capacity of K . We have
hcap(∅) = 0 and hcap(K1) < hcap(K2) if K1 $ K2.
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The double of K : K doub is the union of K and the reflection of K about
R. By Schwarz reflection principle, gK extends to a conformal map from
C \K doub onto C \ SK for some compact SK ⊂ R called the support of K .

If K1 ⊂ K2 are two H-hulls, we define K2/K1 = gK1(K2 \ K1), which is
also an H-hull. We call K2/K1 a quotient hull of K2, and write
K2/K1 ≺ K2. If K3 ≺ K2, then hcap(K3) ≤ hcap(K2), SK3 ⊂ SK2 , and
there is a unique K1 ⊂ K2 s.t. K3 = K2/K1. We write K1 = K2 : K3.
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An H-Loewner chain is a strictly increasing family of H-hulls (Kt)0≤t<T ,
which starts from K0 = ∅, and satisfies that⋂

0<ε<T−t

Kt+ε/Kt = {λt}, 0 ≤ t < T ,

for some real continuous function λt , 0 ≤ t < T .

If u is a continuously (strictly) increasing function with u(0) = 0, then
Ku−1(t), 0 ≤ t < u(T ), is also an H-Loewner chain, and is called a
time-change of (Kt). An H-Loewner chain is called normalized if
hcap(Kt) = 2t for each t. Every H-Loewner chain can be normalized by
applying a time-change.

Example. We say that γt , 0 ≤ t < T , an H-simple curve, if γ0 ∈ R and
γt ∈ H for t > 0. An H-simple curve γ generates an H-Loewner chain:
Kt = γ(0, t], 0 ≤ t < T .
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Let λ ∈ C ([0,T ),R). The (forward) chordal Loewner equation driven by
λ is

∂tgt(z) =
2

gt(z)− λt
, g0(z) = z .

For 0 ≤ t < T , let Kt denote the set of z ∈ H such that the solution
s 7→ gs(z) blows up before or at time t. Then each Kt is an H-hull with
hcap(Kt) = 2t and gKt = gt . We call gt and Kt the chordal Loewner
maps and hulls driven by λ. Chordal SLEκ is defined by taking
λt =

√
κBt , where κ > 0 and Bt is a standard Brownian motion.

Proposition [LSW01]

(Kt) are chordal Loewner hulls driven by some continuous function iff it
is a normalized H-Loewner chain. Moreover, when the above holds, the
driving function λ is given by

⋂
0<ε<T−t Kt+ε/Kt = {λt}, 0 ≤ t < T .
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The backward chordal Loewner equation driven by λ is

∂t ft(z) =
−2

ft(z)− λt
, f0(z) = z .

For every t, ft is well defined on H, and maps H conformally onto H \ Lt
for some H-hull Lt . We have hcap(Lt) = 2t and ft = fLt . But (Lt) may
not be an increasing family. Instead, it satisfies that Lt1 ≺ Lt2 if t1 ≤ t2.
To describe other properties of (Lt), we need the notation of quotient
Loewner chain.
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A family of H-hulls (Lt)0≤t<T is called a quotient H-Loewner chain if it
satisfies that L0 = ∅, Lt1 ≺ Lt2 when t1 < t2, and⋂

0<ε<t

Lt : Lt−ε = {λt}, 0 < t < T ,

for some real continuous function λt , 0 ≤ t < T . Here Lt : Lt−ε is
decreasing in ε. We say (Lt) is normalized if hcap(Lt) = 2t for each t.
Every quotient H-Loewner chain can be normalized by applying a
time-change.

Proposition

(Lt) are backward chordal Loewner hulls driven by some continuous func-
tion λ iff it is a normalized quotient H-Loewner chain. Moreover, when
the above holds, we have

⋂
0<ε<t Lt : Lt−ε = {λt}, 0 ≤ t < T .
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Let’s first observe how a forward H-Loewner chain is transformed by a
conformal map. The technique was used to study the locality of SLE6

([LSW01]) and restriction of SLE8/3 ([LSW02]).

We call a domain R-symmetric if it is invariant under the conjugate map
z 7→ z . We call a conformal map R-symmetric if its definition domain is
R-symmetric, it commutes with the conjugate map, and its derivatives on
R are positive. For example, gK and fK are R-symmetric after extensions.

Let (Kt) be an H-Loewner chain, and W an R-symmetric conformal map
whose domain Ω contains every K doub

t . Then (W (Kt)) is an increasing
family of H-hulls. We will see in the next slide that (W (Kt)) is an
H-Loewner chain. This is obvious if (Kt) is generated by an H-simple
curve.
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Let Wt = gW (Kt) ◦W ◦ fKt . Then Wt is a conformal map defined on a
neighborhood of SKt minus SKt . By Schwarz reflection principle, Wt

extends to a conformal map on the neighborhood of SKt . From
gW (Kt) ◦W = W ◦ gKt , we get

W (Kt+ε)/W (Kt) = Wt(Kt+ε/Kt), ε > 0.

λt Wt(λt)

W

Wt

Kt+ε

W (Kt+ε)
W (Kt)

Kt

Kt+ε/Kt W (Kt+ε)/W (Kt)

gKt
gW (Kt)
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From
⋂
ε>0 Kt+ε/Kt = {λt} we get

⋂
ε>0 W (Kt+ε)/W (Kt) = {Wt(λt)}.

So (W (Kt)) is also an H-Loewner chain.

If (Kt) are chordal Loewner hulls driven by λ, then (Kt) is normalized but
(W (Kt)) may not be normalized. Let u(t) = hcap(W (Kt))/2 be the
time-change function. Then (W (Ku−1(t))) are chordal Loewner hulls
driven by Wu−1(t)(λu−1(t)).
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We tried to develop a similar theory for quotient H-Loewner chain. Let
(Lt) be a quotient H-Loewner chain. Let W be an R-symmetric
conformal map. Then (W (Lt)) may not be a quotient H-Loewner chain
because Lt1 ≺ Lt2 does not imply that W (Lt1) ≺W (Lt2). This means
that we can not define (W (Lt)) as the conformal transformation of (Lt)
under W . Instead, we want to find a continuous family of conformal
maps (W Lt ) such that W L0 = W and (W Lt (Lt)) is a quotient
H-Loewner chain. We need the following theorem.

Theorem 1.

Let K be an H-hull. Let W be an R-symmetric conformal map, whose
domain Ω contains SK . Then there is a unique conforml map W K defined
on ΩK := fK (Ω \ SK ) ∪ K doub such that W = gW K (K) ◦W K ◦ fK .

Dapeng Zhan Complex Analysis in Backward SLE 15 / 32
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It is easy to get W from W K using Schwarz reflection principle, but
non-trivial to get W K from W .
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We now explain how Theorem 1 is applied. Suppose (Lt) is a quotient
H-Loewner chain, and W is an R-symmetric conformal map, whose
domain contains SLt for every t. Let (W Lt ) be given by the theorem. For
t1 < t2, from Lt1 ≺ Lt2 we can conclude that W Lt1 (Lt1) ≺W Lt2 (Lt2). In
fact, we have W Lt2 (Lt2) : W Lt1 (Lt1) = W Lt2 (Lt2 : Lt1). Thus, if⋂
ε>0 Lt : Lt−ε = {λt}, then⋂

ε>0

W Lt (Lt) : W Lt−ε(Lt−ε) = {W Lt (λt)}.

So (W Lt (Lt)) is a quotient H-Loewner chain, and we define it to be the
transformation of (Lt) under W . If (Lt) are backward chordal Loewner
hulls driven by λ, then we may normalize (W Lt (Lt)) to get a backward
Loewner process using the function u(t) := hcap(W Lt (Lt))/2.
Sometimes we refer the normalization of (W Lt (Lt)) as the conformal
transformation of (Lt) via W .
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One nice property of the conformal transformation is that it preserves the
welding map. If in a quotient H-Loewner chain (Lt), every Lt is the
image of an H-simple curve (which is the case for backward SLEκ with
κ ∈ (0, 4]), then each fLt extends continuously to H, and maps SLt onto
the two sides of Lt . Such fLt induces a welding map φt : SLt → SLt ,
which is an orientation-reversed map, such that fLt ◦ φt = fLt , i.e., x and
φt(x) have the same fLt -image on Lt . Moreover, if t1 < t2, then
φt1 = φt2 |SLt1

. Thus, the quotient H-Loewner chain (Lt) induces a

welding map φ on
⋃
SLt such that φ|SLt

= φt for each t.

Suppose (W Lt (Lt)) is a conformal transformation of (Lt), which induces
another welding map φW . Then we have φW = W ◦ φ ◦W−1. This holds
because if fLt (x) = fLt (y), then fW Lt (Lt)(W (x)) = fW Lt (Lt)(W (y)), which

follows from fW Lt (Lt) ◦W = W Lt ◦ fLt .

Dapeng Zhan Complex Analysis in Backward SLE 19 / 32
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A (forward) SLE(κ; ρ) process is a variant of an SLEκ process, in which
the driving function is affected by the movement of one or many marked
points in the flow, and ρ controls the degree of the affection.

The backward SLE(κ; ρ) processes can be defined similarly as forward
SLE(κ; ρ) processes. Following the argument in [SW05], we derived the
coordinate change rule for backward SLE(κ; ρ) process: if∑
ρj = −κ− 6, the conformal transformation of a backward SLE(κ; ρ)

process under a Möbius transformation is still a backward SLE(κ; ρ)
process. This suggests that a backward SLEκ may be viewed as SLE with
a negative parameter: −κ.
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Theorem 1 also makes it possible to define the commutation coupling of
two backward SLEs. Let me first recall the commutation coupling
between two forward SLE(κ; ρ) processes. Roughly speaking, an

SLE(κ1; ρ1) process (K 1
t ) commutes with an SLE(κ2; ρ2) process (K 2

t ) if
the two processes are defined on the same probability space, and

1. For any stopping time τ for (K 2
t ), the image of (K 1

t ) up to T 1
τ ,

which is the first time that K 1
t intersects K 2

τ , under the map gK 2
τ

is

still an SLE(κ1; ρ1) process.

2. The same holds with the indices 1 and 2 swapped.

Here we only consider those K 1
t before T 1

τ , because we want K 1
t to be

contained in the domain of gK 2
τ

, and so that (gK 2
τ

(K 1
t ))0≤t<T 1

τ
is an

H-Loewner chain.
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As for backward SLE, we say that a backward SLE(κ1; ρ1) process (L1t )

commutes with a backward SLE(κ2; ρ2) process (L2t ) if the two processes
are defined on the same probability space, and

1. For any stopping time τ for (L2t ), the conformal transformation of
(L1t ) up to the first time T 1

τ that SL1
t

intersects SL2
τ

via the map fL2
τ

is still a backward SLE(κ1; ρ1) process.

2. The same holds with the indices 1 and 2 swapped.

Here we only consider those L1t before T 1
τ , because we want SL1

t
to be

contained in the domain of fL2
τ

, which is C \ SL2
τ

, and so that the

conformal transformation of the quotient Loewner chain (L1t )0≤t<T 1
τ

via
fL2
τ

is well defined.
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A stochastic coupling technique was developed earlier to construct
commutation couplings between forward SLE(κ; ρ) processes, which was
then used to prove the reversibility of chordal SLEκ for κ ≤ 4 and the
duality of SLE for κ > 4.

In the joint work, we used the stochastic coupling technique to construct
commutation couplings between two backward SLE processes, and
proved that, for κ ≤ 4, the random welding map φ induced by a
backward chordal SLEκ processes satisfies the time-reversal symmetry:
h ◦ φ ◦ h ∼ φ, where h(z) = 1/z . Later, this symmetry result was
combined with the conformal removability of SLEκ for κ ∈ (0, 4) ([JS00],
[RS05]), to prove the reversibility of a whole-plane SLE(κ;κ+ 2) curve
stopped at a fixed capacity time.

Dapeng Zhan Complex Analysis in Backward SLE 23 / 32



Preliminary
Conformal transformation

Applications
Sketch proof

A stochastic coupling technique was developed earlier to construct
commutation couplings between forward SLE(κ; ρ) processes, which was
then used to prove the reversibility of chordal SLEκ for κ ≤ 4 and the
duality of SLE for κ > 4.

In the joint work, we used the stochastic coupling technique to construct
commutation couplings between two backward SLE processes, and
proved that, for κ ≤ 4, the random welding map φ induced by a
backward chordal SLEκ processes satisfies the time-reversal symmetry:
h ◦ φ ◦ h ∼ φ, where h(z) = 1/z . Later, this symmetry result was
combined with the conformal removability of SLEκ for κ ∈ (0, 4) ([JS00],
[RS05]), to prove the reversibility of a whole-plane SLE(κ;κ+ 2) curve
stopped at a fixed capacity time.

Dapeng Zhan Complex Analysis in Backward SLE 23 / 32



Preliminary
Conformal transformation

Applications
Sketch proof

Preliminary

Conformal transformation

Applications

Sketch proof

Dapeng Zhan Complex Analysis in Backward SLE 24 / 32



Preliminary
Conformal transformation

Applications
Sketch proof

Theorem 1.

Let K be an H-hull. Let W be an R-symmetric conformal map, whose
domain Ω contains SK . Then there is a unique conforml map W K defined
on ΩK := fK (Ω \ SK ) ∪ K doub such that W = gW K (K) ◦W K ◦ fK .
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We transform the above theorem to a similar problem. We say that H is
a C-hull if H is a connected compact subset of C such that diam(H) > 0
and C \ H is connected. For a C-hull H, there is a unique

g∗H : C \ F
Conf
� D∗ := {z : |z | > 1} such that g∗H(∞) =∞ and

(g∗H)′(∞) > 0. Let f ∗H = (g∗H)−1. These maps are closely related with the
gK and fK for H-hull K : if K is a nonempty H-hull such that K doub is
connected, then K doub and SK are C-hulls, and gK = g∗SK

◦ f ∗K doub .
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Let V be a conformal map, whose domain Ω contains a C-hull H. Then
V (H) is also a C-hull. The composition W := g∗V (H) ◦ V ◦ fH is a

conformal map defined on Ω+
H := g∗H(Ω \ H), which is a subset of D∗ and

contains {1 < |z | < R} for some R > 1. By Schwarz reflection principle,
W extends conformally across T := {|z | = 1}, maps T onto T, and
preserves the orientation of T. Theorem 1 follows from Theorem 2 below,
which tells us that we can recover V from W .

Theorem 2.

Let H be as above. Let W be a conformal map, whose domain Ω contains
T, such that W maps T onto T, and preserves the orientation of T. Then
there is a conformal map V defined on ΩH := ψH(Ω ∩ D∗) ∪ H such that
W = g∗V (H) ◦ V ◦ f

∗
H .
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Ω
W

ΩH

V

f ∗
H

f ∗
V (H)

H
V (H)

T
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Sketch proof of Theorem 2.

By Carathéodory kernel theorem, we may assume that ∂H is an analytic
Jordan curve β. Let f #H be a conformal map from D := {|z | < 1} onto

the interior of β. Both f ∗H and f #H extend continuously to T, and the

welding φ := (f ∗H )−1 ◦ f #H is an analytic automorphism of T, and so is
φW := W ◦ φ. From the quasiconformal theory of conformal welding, φW

is the conformal welding associated with some analytic Jordan curve γ.
This means that, there is a conformal map f #L from D onto the interior

of γ such that φW = (f ∗L )−1 ◦ f #L , where L is the C-hull bounded by γ.

Define V = f #L ◦ (f #H )−1. Then V maps the interior of β conformally
onto the interior of γ. Since β and γ are analytic curves, V extends
analytically across β, and maps β onto γ. Since

(f ∗L )−1 ◦ f #L = W ◦ φ = W ◦ (f ∗H )−1 ◦ f #H on T,

we get V = f ∗L ◦W ◦ (f ∗H )−1 on β, which should also hold outside β.
Thus, W = g∗V (H) ◦ V ◦ fH outside T, as desired.
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As a byproduct, we obtain the following corollary with a simple proof.

Corollary

If φ is a conformal welding of T, and W is an analytic orientation-preserving
automorphism of T, then φ ◦W and W ◦ φ are conformal weldings of T.

Proof.

We may assume that φ = (f ∗β )−1 ◦ f #β , where f ∗β and f #β map D∗ and D
conformally onto the exterior and the interior, respectively of a Jordan
curve β. From Theorem 2, there is a conformal map V , whose domain
contains β and its interior, such that W = (f ∗γ )−1 ◦ V ◦ f ∗β , where
γ = V (β) is a Jordan curve, and f ∗γ map D∗ conformally onto the exterior

of γ. Then V ◦ f #β maps D conformally onto the interior of γ, and

(f ∗γ )−1 ◦ (V ◦ f #β ) = W ◦ (f ∗β )−1 ◦ f #β = W ◦ φ.

Thus, W ◦ φ is a conformal welding. Since φ ◦W = (W−1 ◦ φ−1)−1,
φ ◦W is also a conformal welding.
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Thank you!
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Happy Birthday, Nick!
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