
Rectifiability of harmonic measure

A paper by Jonas Azzam, Steve Hofmann, José Maŕıa Martell,
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1. Main theorem

Theorem

Let n ≥ 1 and Ω ( Rn+1 be an open connected set and let
ω := ωp be the harmonic measure in Ω where p is a fixed point in
Ω. Suppose that there exists E ⊂ ∂Ω with Hausdorff measure
0 < Hn(E ) <∞ and that the harmonic measure ω|E is absolutely
continuous with respect to Hn|E . Then ω|E is n-rectifiable, in the
sense that ω-almost all of E can be covered by a countable union
of n-dimensional (possibly rotated) Lipschitz graphs.

Alexander Volberg Rectifiability of harmonic measuret



2. A brief history

The metric properties of harmonic measure attracted attention of
many mathematicians. Fundamental results of Makarov establish
that if n + 1 = 2 then the Hausdorff dimension dimH ω = 1 if the
set ∂Ω is connected (and ∂Ω is not a point of course). The
topology is somehow felt by harmonic measure, and for a general
domain Ω on the Riemann sphere whose complement has positive
logarithmic capacity there exists a subset of E ⊂ ∂Ω which
supports harmonic measure in Ω and has Hausdorff dimension at
most 1, by a very subtle result of Jones and Wolff. In particular,
the supercritical regime becomes clear on the plane: if s ∈ (1, 2),
0 < Hs(E ) <∞, then ω is always singular with respect to Hs |E ).
However, in the space (n + 1 > 2) the picture is murkier. Bourgain
proved that the dimension of harmonic measure always drops:
dimH ω < n + 1. But even for connected E = ∂Ω it can be strictly
bigger than n by the result of Wolff.
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3. A brief history

In 1916 F. and M. Riesz proved that for a simply connected
domain in the complex plane, with a rectifiable boundary, harmonic
measure is absolutely continuous with respect to arclength measure
on the boundary. More generally, if only a portion of the boundary
is rectifiable, Bishop and Jones have shown that harmonic measure
is absolutely continuous with respect to arclength on that portion.
They have also proved that the result of may fail in the absence of
some topological hypothesis (e.g., simple connectedness). The
higher dimensional analogues of BJ include absolute continuity of
harmonic measure with respect to the Hausdorff measure for
Lipschitz graph, and more generally non-tangentially accessible
(NTA) domains: Dahlberg, David–Jerison, Semmes. A∞ property:
Lavrent’ev. Also Badger, Lewis, Hofmann–Martell,
Azzam–Mourgoglou–Tolsa, Toro. On the other hand, some
counterexamples show that some topological restrictions, even
stronger than in the planar case, are needed for the absolute
continuity of ω with respect to Hn, Wu, Ziemer.
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4. Converse to BJ: necessity of rectifiability of ω

In the present paper we attack the converse direction. We
establish that rectifiability is necessary for absolute continuity of
the harmonic measure. This is a free boundary problem. However,
the departing assumption, absolute continuity of the harmonic
measure with respect to the Hausdorff measure of the set, is
essentially the weakest meaningfully possible from a PDE point of
view, putting it completely out of the realm of more traditional
work, e.g., that related to minimization of functionals. At the same
time, absence of any a priori topological restrictions on the domain
(porosity, flatness, suitable forms of connectivity) notoriously
prevents from using the conventional PDE toolbox.

The fact is that this necessity is true always: any dimension, no
topological restrictions.
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5. Notations, main players

Given a signed Radon measure ν in Rn+1 we consider the
n-dimensional Riesz transform

Rν(x) =

∫
x − y

|x − y |n+1
dν(y),

whenever the integral makes sense. For ε > 0, its ε-truncated
version is given by

Rεν(x) =

∫
|x−y |>ε

x − y

|x − y |n+1
dν(y).

For δ ≥ 0 we set R∗,δν(x) = supε>δ |Rεν(x)|. We also consider
the maximal operator

Mn
δν(x) = sup

r>δ

|ν|(B(x , r))

rn
,

In the case δ = 0 we write R∗ν(x) := R∗,0ν(x) and
Mnν(x) :=Mn

0ν(x).
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6. Notations, first main lemma

For a bounded open set, we may write the Green function exactly:
for x , y ∈ Ω, x 6= y , define

G (x , y) = E(x − y)−
∫
∂Ω
E(x − z) dωy (z). (1)

Here E denotes the fundamental solution for the Laplace equation
in Rn+1, so that E(x) = cn |x |1−n for n ≥ 2, and
E(x) = −c1 log |x | for n = 1, c1, cn > 0.

Lemma

Let n ≥ 2 and Ω ⊂ Rn+1 be a bounded open connected set. Let
B = B(x0, r) be a closed ball with x0 ∈ ∂Ω and
0 < r < diam(∂Ω). Then, for all a ≥ 4,

ωx(aB) & inf
z∈2B∩Ω

ωz(aB) rn−1 G (y , x) ∀x ∈ Ω \ 2B, y ∈ B ∩ Ω,

(2)
with the implicit constant independent of a.
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7. Hall’s lemma

Lemma

There is a0 > 1 depending only on n ≥ 1 so that the following
holds for a ≥ a0. Let Ω ( Rn+1 be a bounded domain,
n − 1 < s ≤ n + 1, ξ ∈ ∂Ω, r > 0, and B = B(ξ, r). Then

ωz(aB) &n,s
Hs
∞(∂Ω ∩ B)

r s
for all z ∈ B ∩ Ω.

Alexander Volberg Rectifiability of harmonic measuret



8. The strategy

We fix a point p ∈ Ω far from the boundary. To prove that ωp|E is
rectifiable we will show that any subset of positive harmonic
measure of E contains another subset G of positive harmonic
measure such that R∗ωp(x) <∞ in G . Applying a theorem due to
Nazarov, Treil and Volberg, one deduces that G contains yet
another subset G0 of positive harmonic measure such that Rωp |G0

is bounded in L2(ωp|G0). Then from the results of Nazarov, Tolsa
and Volberg, it follows that ωp|G0 is n-rectifiable. This suffices to
prove the full n-rectifiability of ωp|E .
One of the difficulties of Theorem 1 is due to the fact that the
non-Ahlfors regularity of ∂Ω makes it difficult to apply some usual
tools from potential of theory. In our proof we solve this issue by
applying some stopping time arguments involving the harmonic
measure and a suitable Frostman measure.
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9. Frostman measure

fix a point p ∈ Ω, and consider the harmonic measure ωp of Ω with
pole at p. The reader may think that p is point deep inside Ω.
Let g ∈ L1(ωp) be such that

ωp|E = g Hn|∂Ω.

Given M > 0, let EM = {x ∈ ∂Ω : M−1 ≤ g(x) ≤ M}. Take M big
enough so that ωp(EM) ≥ ωp(E )/2, say. Consider an arbitrary
compact set FM ⊂ EM with ωp(FM) > 0. We will show that there
exists G0 ⊂ FM with ωp(G0) > 0 which is n-rectifiable. Clearly,
this suffices to prove that ωp|EM

is n-rectifiable, and letting
M →∞ we get the full n-rectifiability of ωp|E .
Let µ be an n-dimensional Frostman measure for FM . That is, µ is
a non-zero Radon measure supported on FM such that

µ(B(x , r)) ≤ C rn for all x ∈ Rn+1.

Further, by renormalizing µ, we can assume that ‖µ‖ = 1. Of
course the constant C above will depend on Hn

∞(FM). Notice that
µ� Hn|FM

� ωp.
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10. µ(O) small ⇒ ωp(FM \ O) > 0

Lemma

Let µ(O) ≤ τ = τµ(FM) with sufficiently small positive τ . Then
ωp(FM \ O) ≥ 1

2CMω
p(FM).

Proof.

Just put τ = 1
2 . Then 1

2µ(FM) ≤ µ(FM \ O). Then

1

2
ωp(FM) ≤ 1

2
=

1

2
µ(FM) ≤ µ(FM \ O)

≤ CHn
∞(FM \ O) ≤ CHn(FM \ O) ≤ CMωp(FM \ O).

What is O? To build this exceptional set we need David–Mattila
cells and a special stopping time.
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11. David–Mattila cells

Now we will consider the dyadic lattice of “cubes” with small
boundaries of David-Mattila associated with ωp. This lattice has
been constructed by David-Mattila (with ωp replaced by a general
Radon measure). Its properties are summarized in the next lemma.
Lemma of David–Mattila. Consider two constants C0 > 1 and
A0 > 5000 C0 and denote W = suppωp. Then there exists a
sequence of partitions of W into Borel subsets Q, Q ∈ Dk , with
the following properties:

For each integer k ≥ 0, W is the disjoint union of the “cubes”
Q, Q ∈ Dk , and if k < l , Q ∈ Dl , and R ∈ Dk , then either
Q ∩ R = ∅ or else Q ⊂ R.
The general position of the cubes Q can be described as
follows. For each k ≥ 0 and each cube Q ∈ Dk , there is a ball
B(Q) = B(zQ , r(Q)) such that

zQ ∈W , A−k0 ≤ r(Q) ≤ C0 A−k0 ,

W ∩ B(Q) ⊂ Q ⊂W ∩ 28 B(Q) = W ∩ B(zQ , 28r(Q)),

and
the balls 5B(Q), Q ∈ Dk , are disjoint.
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12. David–Mattila cells

the balls 5B(Q), Q ∈ Dk , are disjoint.

The cubes Q ∈ Dk have small boundaries. That is, for each
Q ∈ Dk and each integer l ≥ 0, set

Next
l (Q) = {x ∈W \ Q : dist(x ,Q) < A−k−l0 },

N int
l (Q) = {x ∈ Q : dist(x ,W \ Q) < A−k−l0 },

and
Nl(Q) = Next

l (Q) ∪ N int
l (Q).

Then

ωp(Nl(Q)) ≤ (C−1C−3d−1
0 A0)−l ωp(90B(Q)). (3)
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13. David–Mattila cells

Denote by Ddb
k the family of cells Q ∈ Dk for which

ωp(100B(Q)) ≤ C0 ω
p(B(Q)). (4)

We have that r(Q) = A−k0 when Q ∈ Dk \ Ddb
k and

ωp(100B(Q)) ≤ C−l0 ωp(100l+1B(Q)) (5)

for all l ≥ 1 such that 100l ≤ C0 and Q ∈ Dk \ Ddb
k .
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14. David–Mattila lemmas on doubling cells

We use the notation D =
⋃

k≥0Dk . Given Q ∈ Dk , we denote

J(Q) = k. We denote Ddb =
⋃

k≥0Ddb
k . Note that, in particular,

it follows that

ωp(3BQ) ≤ ωp(100B(Q)) ≤ C0 ω
p(Q) if Q ∈ Ddb. (6)

Lemma

If C0,A0 are large, then for any given cell R ∈ D there exists a
family of doubling cells {Qi}i∈I ⊂ Ddb, with Qi ⊂ R for all i , such
that their union covers ωp-almost all R.

Lemma

Let R ∈ D and let Q ⊂ R be a cell such that all the intermediate
cells S, Q ( S ( R are non-doubling (i.e. belong to D \ Ddb).
Then

ωp(100B(Q)) ≤ A
−10n(J(Q)−J(R)−1)
0 ωp(100B(R)). (7)
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15. Density lemma for “non-doubling wells”

Given a ball B ⊂ Rn+1, we consider its n-dimensional density:

Θω(B) =
ωp(B)

r(B)n
.

From the preceding lemma we deduce:

Lemma

Let Q,R ∈ D be as in Lemma 6. Then

Θω(100B(Q)) ≤ C0 A
−9n(J(Q)−J(R)−1)
0 Θω(100B(R))

and ∑
S∈D:Q⊂S⊂R

Θω(100B(S)) .A0,C0 Θω(100B(R)).
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16. Bad cells

Now we need to define a family of bad cells. We say that Q ∈ D is
bad and we write Q ∈ Bad, if Q ∈ D is a maximal cell satisfying
one of the conditions below:

(a) µ(Q) ≤ τ ωp(Q), where τ > 0 is a small parameter to be
fixed below, or

(b) ωp(3BQ) ≥ A r(BQ)n, where A is some big constant to be
fixed below.

The existence maximal cubes is guaranteed by the fact that all the
cubes from D have side length uniformly bounded from above
(since Dk is defined only for k ≥ 0). If the condition (a) holds, we
write Q ∈ LM (little measure µ) and in the case (b), Q ∈ HD
(high density). On the other hand, if a cube Q ∈ D is not
contained in any cube from Bad, we say that Q is good and we
write Q ∈ Good.

Alexander Volberg Rectifiability of harmonic measuret



17. Choice of exceptional set O from slide 10

O := (∪Qis BadQ) ∪
(
∪Q∈D\Ddb

0
Q
)
.

Notice that∑
Q∈LM∩Bad

µ(Q) ≤ τ
∑

Q∈LM∩Bad

ωp(Q) ≤ τ ‖ω‖ = τ = τ µ(FM).

As Hn(E ) <∞ the same can be said about HD cells if A is large.
If the constant of doubling is sufficiently large then the same can
be said about ∑

Q not inside someR∈Ddb
0

ωp(Q) ≤ small‖ωp‖ = small .

By Lemma on slide 10

ωp(FM \ O) ≥ κωp(FM), κ > 0.
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18. Outside exceptional set O

Notice that for the points x ∈ FM \
⋃

Q∈Bad Q, from the condition
(b) in the definition of bad cubes, it follows that

ωp(B(x , r)) . A rn for all 0 < r ≤ 1.

Trivially, the same estimate holds for r ≥ 1, since ‖ωp‖ = 1. So we
have

Mnωp(x) . A for ωp-a.e. x ∈ FM \
⋃

Q∈Bad Q. (8)

Lemma (Key lemma)

Let Q ∈ Good be contained in some cube from the family D̃db
0 ,

and x ∈ Q. Then we have∣∣Rr(BQ)ω
p(x)

∣∣ ≤ C (A,M,Tdb, τ, dist(p, ∂Ω)). (9)
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19. Proof of Key lemma

Let ϕ : Rd → [0, 1] be a radial C∞ function which vanishes on
B(0, 1) and equals 1 on Rd \ B(0, 2), and for ε > 0 and z ∈ Rn+1

denote ϕε(z) = ϕ
(
z
ε

)
and ψε = 1− ϕε. We set

R̃εωp(z) =

∫
K (z − y)ϕε(z − y) dωp(y),

where K (·) is the kernel of the n-dimensional Riesz transform.
Consider a ball B̃Q centered at some point from Q ∩ ∂Ω with

r(B̃Q) = 1
a0

r(BQ) and so that µ(B̃Q) & µ(BQ), with the implicit
constant depending on a0, which is from Hall’s lemma on slide 7.
Note that, for every x , z ∈ BQ , by standard Calderón-Zygmund
estimates∣∣R̃

r(B̃Q)
ωp(x)−Rr(BQ)ω

p(z)
∣∣ ≤ C (δ)Mn

r(B̃Q)
ωp(z),

and Mn
r(B̃Q)

ωp(z) ≤ C (δ,A) for all z ∈ BQ , since Q being

good implies that Q and all its ancestors are not from HD.
Alexander Volberg Rectifiability of harmonic measuret



20. Proof of Key lemma

Thus, to prove the Key lemma it suffices to show that∣∣R̃
r(B̃Q)

ωp(x)
∣∣ ≤ C (δ,A,M,T , τ, d(p)) for the center x of B̃Q .

(10)
To shorten notation, in the rest of the proof we will write
r = r(B̃Q), so that B̃Q = B(x , r). For a fixed x ∈ Q ⊂ ∂Ω and
z ∈ Rn+1 \

[
supp(ϕr (x − ·)ωp) ∪ {p}

]
, consider the function

ur (z) = E(z − p)−
∫
E(z − y)ϕr (x − y) dωp(y),

so that,

G (z , p) = ur (z)−
∫
E(z−y)ψr (x−y) dωp(y) for m-a.e. z ∈ Rn+1.

(11)
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21. Proof of Key lemma

∇ur (z) = cn K (z − p)− cnR(ϕr (· − x)ωp)(z).

In the particular case z = x we get

∇ur (x) = cn K (x − p)− cn R̃rω
p(x),

and thus

|R̃rω
p(x)| . 1

d(p)n
+ |∇ur (x)|. (12)

Left to estimate ∇ur (x) . 1
r
−
∫
B(x ,r) |ur (y)| dm(y), as ur is

harmonic in B(x , r). Now see slide 20, (11): Only the estimate
1
r |G (y , p)| . ?, y ∈ B(x , r) is left to get.
By Lemmas on slides 6 and 7

ωp(a0B) & inf
z∈2B∩Ω

ωz(a0B) rn−1 G (y , p) ≥ µ(Q)

rn
rn−1 G (y , p).
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22. Proof of Key lemma

Thus,

y ∈ B(x , r)⇒ 1

r
|G (y , p)| ≤ ωp(BQ)

µ(Q)
≤ Tdb

ωp(Q)

µ(Q)
≤ Tdbτ

−1 ,

if Q ∈ Ddb. And we are done if Q ∈ Ddb.
If Q /∈ Ddb but lies inside Q ′ ∈ Ddb

0 , let R be the first doubling
ancestor. Then we have the well of non-doubling cells between Q
and R. By Lemma on slide 15 we have

∣∣R̃r(BQ)ω
p(x)− R̃r(BR)ω

p(x)
∣∣ . ωp(BR)

r(BR)n
.MωP(x) . A .

But R is doubling, so the display formula at the top of this slide∣∣R̃r(BR)ω
p(x)

∣∣ ≤ Tdbτ
−1.

We are done for n ≥ 2.
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23. NTV theorems

Let G := Fm \ O.

Theorem (Nazarov–Treil–Volberg)

Let σ be a Radon measure with compact support on Rn+1 and
consider a σ-measurable set G with σ(G ) > 0 such that

G ⊂ {x ∈ Rd :Mnσ(x) <∞ and R∗σ(x) <∞}.

Then there exists a Borel subset G0 ⊂ G with σ(G0) > 0 such that
supx∈G0

Mnσ|G0(x) <∞ and Rσ|G0
is bounded in L2(σ|G0).

Theorem (Nazarov–Tolsa–Volberg; this is a solution of
David–Semmes problem.)

Let µ be n-dimensional measure in Rn+1. And let Rµ is bounded
in L2(µ). Then µ is n-rectifiable.
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24. Corollary

Corollary

Suppose that Ω ⊂ Rn+1 is a connected domain, p ∈ Ω, and
E ⊂ ∂Ω is a set such that 0 < Hn(E ) <∞ and Hn � ω on E .
Then E is n-rectifiable in the sense that it may be covered up to a
set of Hn-measure zero by Lipschitz graphs.
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