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Rank one perturbations

For a unitary U = U1 let

Uγ := U + (γ − 1)bb∗1, ‖b‖ = 1, b1 := U∗b, γ ∈ C.

If |γ| = 1 then we have all rank one unitary perturbations (if the
range of the perturbation is fixed).

Indeed U +K = (I +KU∗)U , and it is easy to describe all unitary
perturbations of I:

KU∗ = (γ − 1)bb∗, ‖b‖ = 1, |γ| = 1.

WLOG: b is cyclic, so U = Mξ in L2(µ), µ(T) = 1; b ≡ 1, therefore
b1(ξ) = ξ.
If |γ| < 1, Uγ is a completely non-unitary (c.n.u.) contraction with
defect indices 1-1,

rank(I − U∗γUγ) = rank(I − UγU∗γ ) = 1.
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Models for Uγ

If |γ| = 1 then Uγ is unitary, so Uγ ∼= Mz,

Mz : L2(µγ)→ L2(µγ), Mzf(z) = zf(z).

If |γ| < 1 then Uγ is a c.n.u. contraction and admits the functional
model, Uγ ∼=Mθ,

Mθ : Kθ → Kθ, Mθ = PKθMz

∣∣ Kθ;
here θ ∈ H∞, ‖θ‖∞ ≤ 1 is the characteristic function of Uγ , and Kθ
is the model space

Goal: Want to describe unitary operators intertwining Uγ and its
model.
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Characteristic function

For detail see Sz.-Nagy–Foiaş [9].

For T , ‖T‖ ≤ 1 let

DT = (I − T ∗T )1/2 , DT ∗ := (I − TT ∗)1/2

D = DT := clos RanDT , D∗ = DT ∗ := clos RanDT ∗ .

Characteristic function θ ∈ H∞(D;B(D;D∗)) is defined as

θT (z) =
(
−T + zDT ∗(I − zT ∗)−1DT

) ∣∣∣
D
, z ∈ D.

Note that ‖θ‖∞ ≤ 1.

Usually θ is defined up to constant unitary factors (choice of bases
in D and D∗); spaces E ∼= D and E∗ ∼= D∗ are used.
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Functional model(s)

Following Nikolskii–Vasyunin [4] the functional model is constructed as
follows:

1 For a contraction T : K → K consider its minimal unitary dilations
U : H → H, K ⊂ H,

Tn = PKUn
∣∣ K, n ≥ 0.

2 Pick a spectral representation of U
3 Work out formulas in this spectral representation
4 Model subspace K = Kθ is usually a subspace of a weighted space
L2(E ⊕ E∗,W ), E ∼= D, E∗ ∼= D∗ with some operator-valued
weight.

Specific representations give us a transcription of the model.

Among common transcriptions are: the Sz.-Nagy–Foiaş transcription, the
de Branges–Rovnyak transcription, Pavlov transcription.
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Sz.-Nagy–Foiaş and de Branges–Rovnyak transcriptions

Sz.-Nagy–Foiaş: H = L2(E ⊕ E∗) (non-weighted, W ≡ I).

Kθ :=

(
H2
E∗

clos ∆L2
E

)
	
(

θ
∆

)
H2
E ,

where ∆(z) := (1− θ(z)∗θ(z))1/2, z ∈ T.

de Branges–Rovnyak: H = L2(E ⊕ E∗,W [−1]
θ ), where

Wθ(z) =

(
I θ(z)

θ(z)∗ I

)
and W

[−1]
θ is the Moore–Penrose inverse of Wθ. Kθ is given by{(

g+
g−

)
: g+ ∈ H2(E∗), g− ∈ H2

−(E), g− − θ∗g+ ∈ ∆L2(E)

}
.
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Characteristic function and defects for Uγ

Recall: Uγ = U1 + (γ − 1)bb∗1, b1 = U∗1 b, |γ| < 1.

DUγ and DU∗
γ

are spanned by the vectors b1 and b respectively.

Characteristic function θ
T

of a contraction T is defined as

θT (z) =
(
−T + zDT ∗(I − zT ∗)−1DT

) ∣∣∣
D
, z ∈ D.

To compute it use Rank one inversion formula (Sherman–Morrison
formula)

(I − bc∗)−1 = I +
1

d
bc∗, d = (b, c) = c∗b.

I − zU∗γ is a rank one perturbation of I − zU∗1 = I − zMξ;

The inverse of I − zMξ is multiplication by (1− zξ)−1, so Cauchy
integrals appear.
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Characteristic function and defects for Uγ

Define Cauchy integrals

R1τ(λ) :=

ˆ
T

ξλdτ(ξ)

1− ξλ
, R2τ(λ) :=

ˆ
T

1 + ξλ

1− ξλ
dτ(ξ).

Characteristic function θγ of Uγ in the bases b1, b:

θγ(λ) = −γ +
(1− |γ|2)R1µ(λ)

1 + (1− γ)R1µ(λ)
=

(1− γ)R2µ(λ)− (1 + γ)

(1− γ)R2µ(λ) + (1 + γ)
,

Note that θγ(0) = −γ, because R1µ(0) = 0

For γ = 0

θ0(λ) =
R1µ(λ)

1 +R1µ(λ)
=
R2µ(λ)− 1

R2µ(λ) + 1
, λ ∈ D.
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“Model” case of unitary perturbations

Recall: Uα = U1 + (α− 1)bb∗1, |α| = 1

U1 = Mξ in L2(µ), µ(T) = 1, b ≡ 1, b1 = U∗1 b ≡ ξ

Let µα be the spectral measure of Uα corresponding to the vector b.

Want to find a unitary operator Vα : L2(µ)→ L2(µα) such that
Vαb = 1 ∈ L2(µα) and such that

VαUα = MzVα.

Case of self-adjoint perturbations was treated earlier by Liaw–Treil in [2].
This case is treated similarly.



11

Main objects: rank one perturbations and models
A universal formula for the adjoint Clark operator

Representations in different transcriptions

Spectral representation of unitary perturbations
Adjoint Clark operator, freedom of choice
A universal representation formula

Pretending to be a physysist

Let Vα be an integral operator with kernel K(z, ξ).

Uα = Mξ + bb∗1, so we can rewrite the relation VαUα = MzVα as

VαMξ = MzVα − (1− α)Vαbb∗1.

We know that Vαb = 1, b1 = ξ, so Vαbb∗1 is an integral operator
with kernel ξ

K(z, ξ)ξ = zK(z, ξ)− (α− 1)ξ.

Solving for K we get

K(z, ξ) = (1− α)
ξ

ξ − z
= (1− α)

1

1− ξz
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First representation for Vα

Theorem (Repesentation of Vα)

The unitary operator Vα : L2(µ)→ L2(µα) such that Vαb = 1 ∈ L2(µα)
and such that

VαUα = MzVα.

is given by

Vαf(z) = f(z) + (1− α)

ˆ
T

f(ξ)− f(z)

1− ξ̄z
dµ(ξ)

for f ∈ C1(T)
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Idea of the proof

Recalling that Uα = U1 + (α− 1)bb∗1 rewrite VαUα = MzVα as

VαU1 = MzVα + (1− α)(Vαb)b∗1.

Right multiplying by U1 and applying the above “black” identity to
VαU1 in the right hand side, we get

VαU2
1 = M2

zVα + (1− α) [(MzVαb)b∗1 + (Vαb)b∗1U1]

By induction we get

VαUn1 = Mn
z Vα + (1− α)

n∑
k=1

Mk−1
z (Vαb)b∗1Un−k1 .

Applying to b ≡ 1 and summing geometric progression we get the
formula for f(ξ) = ξn, n ≥ 0.
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Idea of the proof, continued

To get the formula for ξ
n

we use VαU∗α = MzVα, which is obtained
by taking adjoint in VαUα = MzVα.

Extend the formula from trig. polynomials to f ∈ C1 by standard
approximation reasoning.

A general statement

Rank one commutation relations like

VMξ = MzV + cb∗1

usually give singular integral representations for V.
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Singular integral operators

Recall that Vαf(z) = f(z) + (1− α)

ˆ
T

f(ξ)− f(z)

1− ξ̄z
dµ(ξ)

Theorem (Regularization of the weighted Cauchy transform)

The integral operators Tr = Tαr : L2(µ)→ L2(µα) with kernels
1/(1− rξz), r ∈ R+ \ {1} are uniformly bounded.

Let Tf(z) :=
´
T
f(ξ)

1−ξzdµ(ξ); well defined for z /∈ supp f

Since Vα is bounded, we get for f, g ∈ C1, supp f ∩ supp g = ∅

(Tf, g)
L2(µα)

≤ C‖f‖
L2(µ)

‖g‖
L2(µα)

By a theorem of Liaw–Treil [3] this implies uniform boundedness of
the regularizations Tr if the measures µ and µα do not have
common atoms (U1 and Uα do not have common eigenvalues).
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Singular integral operators

Uniform boundedness of Tr together with µα-a.e. convergence of
Trf imply existence of w.o.t.-limits Tα± = w.o.t.- limr→1∓ Tr.

Using Tα± we can rewrite the representation

Vαf(z) = f(z) + (1− α)

ˆ
T

f(ξ)− f(z)

1− ξ̄z
dµ(ξ)

as
Vαf = [1− (1− α)T 1,α

± 1]f + (1− α)T 1,α
± f.

(µα)a-a.e. convergence follows from classical results about jumps of
Cauchy transform; (µα)s-a.e. convergence can be obtained from
Poltoratskii’s theorem about boundary values of the normalized
Cauchy transform, see [7].

For the weak convergence it is enough to have µα-a.e. convergence
of Trf for f ∈ C1, which can be proved using elementary methods.
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Adjoint Clark operator, freedom of choice

Let Uγ = U1 + (γ − 1)bb∗1, |γ| < 1;

Uγ ∼=Mθγ , Mθγ := PKθγMz

∣∣
Kθγ

Adjoint Clark operator: a unitary Φ∗γ : L2(µ)→ Kθγ such that

Φ∗γUγ =MθγΦ∗γ (∗)

Defect spaces DUγ and DU∗
γ

are spanned by the vectors b1 ≡ ξ and
b ≡ 1 respectively.

Let DMθγ
and DM∗

θγ
be spanned by cγ1 and cγ , ‖cγ1‖ = ‖cγ‖ = 1.

Relation (∗) implies that Φ∗γb = αcγ , Φ∗γb1 = βcγ1 , |α| = |β| = 1.

Except for the case γ = 0 and µ = |dz|/2π, β is uniquely defined by
α.
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Defect vectors of Mθγ in the Sz.-Nagy–Foiaş transcription

Defect subspaces DMθ
and DM∗

θ
are spanned by c1 and c,

‖c‖ = ‖c1‖ = 1,

c(z) :=
(
1− |θ(0)|2

)−1/2( 1− θ(0)θ(z)

−θ(0)∆(z)

)
,

c1(z) :=
(
1− |θ(0)|2

)−1/2( z−1 (θ(z)− θ(0))
z−1∆(z)

)
,

Vectors cγ and cγ1 agree, i.e. Φ∗γb = cγ implies Φ∗γb1 = cγ1
(not considering the exceptional case γ = 0, µ = |dz|/2π)
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Theorem (A “universal” representation formula)

Let θγ be a characteristic function of Uγ , |γ| < 1. Assume that the
vectors cγ ∈ DM∗

θγ
, cγ1 ∈ DMθγ

‖cγ‖ = ‖cγ1‖ = 1 agree. Let

Φ∗ = Φ∗γ : L2(µ)→ Kθγ be a unitary operator satisfying

Φ∗γUγ =MθγΦ∗γ ,

and such that Φ∗γb = cγ (so Φ∗γb1 = cγ1).
Then for all f ∈ C1(T)

Φ∗γf(z) = Aγ(z)f(z) +Bγ(z)

ˆ
f(ξ)− f(z)

1− ξz
dµ(ξ), z ∈ T,

where Aγ(z) = cγ(z), Bγ(z) = cγ(z)− zcγ1(z).

This theorem works in any transcription of the model.
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Idea of the proof

Write, denoting cγ2(z) := zcγ1(z),

Mθγ = Mz − cγ2(cγ1)∗ − θγ(0)cγ(cγ1)∗

= Mz + (γcγ − cγ2)(cγ1)∗.

Rank one perturbation of Mz! Should get at most rank 2
commutation relation.

Using this identity rewrite Φ∗γUγ =MθγΦ∗γ as

Φ∗γU1 + (γ − 1)cγb∗1 = MzΦ
∗
γ + (γcγ − cγ2)b∗1

or equivalently
Φ∗γU1 = MzΦ

∗
γ + (cγ − cγ2)b∗1.

We got rank one commutation relation!

Commutation relations imply integral representation.
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Idea of the proof, difficulties

Formally the right side of

Φ∗γU1 = MzΦ
∗
γ + (cγ − cγ2)b∗1. (∗)

acts from L2(µ) to outside of Kθ.

To get Φ∗γξ
n

we use the commutant relation

Φ∗γU
∗
1 = MzΦ

∗
γ + (cγ1 −Mzc

γ)b∗

= MzΦ
∗
γ −Mz(c

γ − cγ2)b∗,

which cannot be obtained by taking the adjoint of (∗).

It is a miracle that the formulas for Φ∗γξ
n and Φ∗γξ

n
agree.
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Cauchy type operators and regularizations

For f ∈ L2(µ) let

Rfµ(z) =

ˆ
T

f(ξ)

1− ξz
dµ(ξ)

and let T+f be the non-tangential boundary values of Rfµ(z),
|z| < 1.

Let Tr : L2(µ)→ L2(v), v = |B|2 be the integral operators with
kernel 1/(1− rξz), r ∈ R+ \ {1}.
Operators Tr : L2(µ)→ L2(v) (equivalently MBTr : L2(µ)→ L2)
are uniformly in r bounded.

T+ = w.o.t.- lim
r→1−

Tr (as operators L2(µ)→ L2(v)); equivalently,

MBT+ = w.o.t.- lim
r→1−

MBTr (as operators L2(µ)→ L2)
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Theorem

The vector g := (1− |γ|2)1/2Φ∗γf can be represented in the
Sz.-Nagy–Foiaş transcription as

g =

(
0

(γ − (γ − 1)T+1)∆γ

)
f +

(
1+γθγ
T+1

(γ − 1)∆γ

)
T+f

=

(
0

1−γθ0
|1−γθ0|T+1 ·∆0

)
f +

(
1−|γ|2
1−γθ0 ·

1
T+1

(γ − 1) (1−|γ|
2)1/2

|1−γθ0| ∆0

)
T+f

for f ∈ L2(µ).

Since 1
T+1 = 1− θ0, the top floor g1 is in the Hardy space H2.

For γ = 0 we get

Φ∗0f =

(
0

(T+1)∆0

)
f +

(
1/T+1
−∆0

)
T+f
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Idea of the proof

Take the representation

Φ∗γf(z) = Aγ(z)f(z) +Bγ(z)

ˆ
f(ξ)− f(z)

1−

r

ξz
dµ(ξ), z ∈ T,

for f ∈ C1.

Replace the kernel 1/(1− ξz) by 1/(1− rξz);

take w.o.t. limit of the right hand side as r → 1−.

Definitely we have uniform convergence to Φ∗
γf(z) as r → 1−.

On the other hand, splitting the integral into 2 we get

Aγf +BγT+f −BγfT+1

as the w.o.t.-limit in B(L2(µ), L2).

Substituting expressions for Aγ and Bγ we get the result.
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Recall: de Branges–Rovnyak transcription

Kθ in the de Branges–Rovnyak transcription is given by{(
g+
g−

)
: g+ ∈ H2, g− ∈ H2

−, g− − θg+ ∈ ∆L2

}
.

Recall that in the Sz.-Nagy–Foiaş transcription

(
g1
g2

)
∈ Kθ iff

g1 = g+ ∈ H2, g2 ∈ clos ∆L2, g− := θg1 + ∆g2 ∈ H2
−;

the last inclusion means that

(
g1
g2

)
⊥
(

θ
∆

)
H2.

g1 = g+ and g− are exactly the same as in the de Branges–Rovnyak
transcription.
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Representation in the de Branges–Rovnyak transcription

We had

g1 = g+ = (1− |γ|2)−1/2(1 + γθγ)
T+f

T+1
=

(1− |γ|2)1/2

1− γθ0
T+f

T+1

=
(1− |γ|2)1/2(1− θ0)

1− γθ0
T+f .

For g− = gγ− we get

gγ− = (1− |γ|2)−1/2
(
θγ + γ

) T−f
T−1

=
(1− |γ|2)1/2θ0

1− γθ0
· T−f
T−1

=
(1− |γ|2)1/2(1− θ0)

1− γθ0
T−f .



26

Main objects: rank one perturbations and models
A universal formula for the adjoint Clark operator

Representations in different transcriptions

Representation for the Sz.-Nagy–Foiaş transcription
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Clark operator Φγ

the non-tangential boundary values of the function

z 7→ 1− γ
(1− |γ|2)1/2

g1(z), z ∈ D

exist and coincide with fs µs-a.e. on T.

Proof uses Poltoratskii’s theorem.

For the “absolutely continuous” part fa of f

(1− |γ|2)1/2wfa =
1− γθ0
1− θ0

g1 +
1− γθ0
1− θ0

g−

a.e. on T; here, recall, g− := g1θγ + ∆γg2 ∈ H2
−.

Proof uses representation for g1 and g− and standard jump formulas
for Cauchy integrals.
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T+1
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z ∈ D exist and equal f µs-a.e.; also uses θ(z) = 1 µs-a.e.
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Bounds on the normalized Cauchy transform

A. Poltoratskii, [7]: the normalized Cauchy transform f 7→ T+f
T+1 acts

L2(µ)→ L2.

Equivalently: T+ : L2(µ)→ L2(v), v = 1/|T+1|2 = |1− θ0|2.
(because 1/T+1 = 1− θ0).

Follows from our result: T+ : L2(µ)→ L2(v0),

v0 = |B0|2 = |1− θ0|2 + ∆2
0 = 2 Re(1− θ0).

v0 can be much bigger than v: v � v20 when θ0(z)→ 1
non-tangentially.
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Representation in the de Branges–Rovnyak transcription
Bounds on the normalized Cauchy transforms

Exterior normalized Cauchy transform

“Exterior” normalized Cauchy transform: f 7→ T−f
T−1 .

Generally does not act L2(µ)→ L2.
Indeed, 1/T−1 = θ0/(θ0 − 1), so

T−f

T−1
=
θ0 − 1

θ0
T−f.

If θ0 is small near i, so 1/θ0 /∈ L2 there, and µ(E) > 0 in a small
neighborhood E 3 1, then |T−1E | ≥ δ > 0 near i, so T−f

T−1 /∈ L2.

The operator

f 7→ θ0
T−f

T−1

acts L2(µ)→ L2.
Is it correct “exterior” normalized Cauchy transform?
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Comparison with Clark model

D. Clark started with model operator Kθ,
(θ inner ⇐⇒ µ is purely singular) and considered it all unitary rank
one perturbations.

In our model it corresponds considering operator
Uγ = U1 + (γ − 1)bb∗1, γ = −θ(0), then all unitary rank one
perturbations are exactly the operators Uα, |α| = 1.

Clark measures µ̃α are the spectral measures of the operators Uα.

If θ(0) = 0 them µ̃α = µα and the Clark operators coincide with
ours.

If θ(0) 6= 0 µ̃α is a multiple µα, and the operators differ by a factor
c(γ).

In Clark model µ̃α is not a probability measure, |c(γ)| compensate
for that.
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Comparison with Sarason’s model

D. Sarson in [8] presented a unitary operator between
H2(µ) = span{zn : n ∈ Z+} and the de Branges space H(θ); like
Clark, he started with a model operator in Kθ
The space H(θ) ⊂ H2 is defined as a range (I − TθTθ∗)1/2H2

endowed with the range norm (the minimal norm of the preimage);
Tϕ : H2 → H2 is a Toeplitz opearator, Tϕf = PH2(ϕf).

If θ is an extreme point of the unit ball in H∞

(

ˆ
T

ln(1− θ|2)|dz| = −∞ ⇐⇒
ˆ
T

lnw|dz| = −∞, w density of µ)

then H(θ) is canonically isomorphic to the model space Kθ in the
de Branges–Rovnyak transcription, see [6].

His measure µ coinsides with the Clark measure µ̃α,

α =
1 + γ

1 + γ
;

the formulas are the same as Clark’s.
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