Rank one perturbations of unitary operators and Clark's model in general situation

Sergei Treil

Department of Mathematics Brown University

March 7, 2016

- Main objects: rank one perturbations and models
 - Rank one perturbations
 - Functional models for c.n.u. contractions
 - \bullet Characteristic function and defects for U_{γ}
- 2 A universal formula for the adjoint Clark operator
 - Spectral representation of unitary perturbations
 - Adjoint Clark operator, freedom of choice
 - A universal representation formula
- 3 Representations in different transcriptions
 - Representation for the Sz.-Nagy–Foiaş transcription
 - Representation in the de Branges–Rovnyak transcription
 - Bounds on the normalized Cauchy transforms

• For a unitary $U = U_1$ let

$$U_{\gamma} := U + (\gamma - 1)bb_1^*$$

$$U_{\gamma} := U + (\gamma - 1)bb_1^*, \qquad ||b|| = 1, \quad b_1 := U^*b, \quad \gamma \in \mathbb{C}.$$

• For a unitary $U = U_1$ let

$$U_{\gamma} := U + (\gamma - 1)bb_1^*, \qquad ||b|| = 1, \quad b_1 := U^*b, \quad \gamma \in \mathbb{C}.$$

• If $|\gamma|=1$ then we have all rank one unitary perturbations (if the range of the perturbation is fixed).

• For a unitary $U = U_1$ let

$$U_{\gamma} := U + (\gamma - 1)bb_1^*, \qquad ||b|| = 1, \quad b_1 := U^*b, \quad \gamma \in \mathbb{C}.$$

• If $|\gamma|=1$ then we have all rank one unitary perturbations (if the range of the perturbation is fixed). Indeed $U+K=(I+KU^*)U$, and it is easy to describe all unitary perturbations of I:

$$KU^* = (\gamma - 1)bb^*, \qquad ||b|| = 1, \ |\gamma| = 1.$$

• For a unitary $U = U_1$ let

$$U_{\gamma} := U + (\gamma - 1)bb_1^*, \qquad ||b|| = 1, \quad b_1 := U^*b, \quad \gamma \in \mathbb{C}.$$

• If $|\gamma|=1$ then we have all rank one unitary perturbations (if the range of the perturbation is fixed). Indeed $U+K=(I+KU^*)U$, and it is easy to describe all unitary perturbations of I:

$$KU^* = (\gamma - 1)bb^*, \qquad ||b|| = 1, \ |\gamma| = 1.$$

• WLOG: b is cyclic, so $U=M_{\xi}$ in $L^2(\mu)$, $\mu(\mathbb{T})=1$; $b\equiv \mathbf{1}$, therefore $b_1(\xi)=\overline{\xi}$.

• For a unitary $U = U_1$ let

$$U_{\gamma} := U + (\gamma - 1)bb_1^*, \qquad ||b|| = 1, \quad b_1 := U^*b, \quad \gamma \in \mathbb{C}.$$

• If $|\gamma|=1$ then we have all rank one unitary perturbations (if the range of the perturbation is fixed). Indeed $U+K=(I+KU^*)U$, and it is easy to describe all unitary perturbations of I:

$$KU^* = (\gamma - 1)bb^*, ||b|| = 1, |\gamma| = 1.$$

- WLOG: b is cyclic, so $U=M_{\xi}$ in $L^2(\mu)$, $\mu(\mathbb{T})=1$; $b\equiv \mathbf{1}$, therefore $b_1(\xi)=\overline{\xi}$.
- If $|\gamma| < 1$, U_{γ} is a completely non-unitary (c.n.u.) contraction with defect indices 1-1,

$$rank(I - U_{\gamma}^* U_{\gamma}) = rank(I - U_{\gamma} U_{\gamma}^*) = 1.$$

Models for U_{γ}

ullet If $|\gamma|=1$ then U_{γ} is unitary, so $U_{\gamma}\cong M_z$,

$$M_z: L^2(\mu_\gamma) \to L^2(\mu_\gamma), \qquad M_z f(z) = z f(z).$$

• If $|\gamma|<1$ then U_{γ} is a c.n.u. contraction and admits the functional model, $U_{\gamma}\cong\mathcal{M}_{\theta}$,

$$\mathcal{M}_{\theta}: \mathcal{K}_{\theta} \to \mathcal{K}_{\theta}, \qquad \mathcal{M}_{\theta} = P_{\mathcal{K}_{\theta}} M_z \mid \mathcal{K}_{\theta};$$

here $\theta \in H^{\infty}$, $\|\theta\|_{\infty} \leq 1$ is the *characteristic function* of U_{γ} , and \mathcal{K}_{θ} is the *model space*

Goal: Want to describe unitary operators intertwining U_{γ} and its model.

Characteristic function

For detail see Sz.-Nagy–Foiaș [9].

• For T, $||T|| \leq 1$ let

$$D_T = (I - T^*T)^{1/2},$$
 $D_{T^*} := (I - TT^*)^{1/2}$
 $\mathfrak{D} = \mathfrak{D}_T := \operatorname{clos} \operatorname{Ran} D_T,$ $\mathfrak{D}_* = \mathfrak{D}_{T^*} := \operatorname{clos} \operatorname{Ran} D_{T^*}.$

• Characteristic function $\theta \in H^{\infty}(\mathbb{D}; B(\mathfrak{D}; \mathfrak{D}_*))$ is defined as

$$\theta_T(z) = \left(-T + zD_{T^*}(I - zT^*)^{-1}D_T\right)\Big|_{\mathfrak{D}}, \qquad z \in \mathbb{D}.$$

Note that $\|\theta\|_{\infty} \leq 1$.

• Usually θ is defined up to constant unitary factors (choice of bases in \mathfrak{D} and \mathfrak{D}_*); spaces $E \cong \mathfrak{D}$ and $E_* \cong \mathfrak{D}_*$ are used.

Functional model(s)

Following Nikolskii–Vasyunin [4] the functional model is constructed as follows:

• For a contraction $T: \mathcal{K} \to \mathcal{K}$ consider its *minimal* unitary dilations $\mathcal{U}: \mathcal{H} \to \mathcal{H}, \ \mathcal{K} \subset \mathcal{H},$

$$T^n = P_{\mathcal{K}} \mathcal{U}^n \mid \mathcal{K}, \qquad n \ge 0.$$

- 2 Pick a spectral representation of $\mathcal U$
- Work out formulas in this spectral representation
- Model subspace $\mathcal{K}=\mathcal{K}_{\theta}$ is usually a subspace of a weighted space $L^2(E\oplus E_*,W)$, $E\cong \mathfrak{D}$, $E_*\cong \mathfrak{D}_*$ with some operator-valued weight.

Specific representations give us a transcription of the model.

Among common transcriptions are: the Sz.-Nagy–Foiaș transcription, the de Branges–Rovnyak transcription, Pavlov transcription.

Sz.-Nagy-Foiaș and de Branges-Rovnyak transcriptions

• Sz.-Nagy-Foiaș: $\mathcal{H}=L^2(E\oplus E_*)$ (non-weighted, $W\equiv I$).

$$\mathcal{K}_{\theta} := \left(\begin{array}{c} H_{E_*}^2 \\ \operatorname{clos} \Delta L_E^2 \end{array} \right) \ominus \left(\begin{array}{c} \theta \\ \Delta \end{array} \right) H_E^2,$$

where $\Delta(z) := (1 - \theta(z)^* \theta(z))^{1/2}$, $z \in \mathbb{T}$.

• de Branges-Rovnyak: $\mathcal{H} = L^2(E \oplus E_*, W_{\theta}^{[-1]})$, where

$$W_{\theta}(z) = \begin{pmatrix} I & \theta(z) \\ \theta(z)^* & I \end{pmatrix}$$

and $W_{ heta}^{[-1]}$ is the Moore–Penrose inverse of $W_{ heta}$. $\mathcal{K}_{ heta}$ is given by

$$\left\{ \left(\begin{array}{c} g_+ \\ g_- \end{array} \right) : g_+ \in H^2(E_*), g_- \in H^2_-(E), g_- - \theta^* g_+ \in \Delta L^2(E) \right\}.$$

Characteristic function and defects for U_{γ}

Recall:
$$U_{\gamma} = U_1 + (\gamma - 1)bb_1^*$$
, $b_1 = U_1^*b$, $|\gamma| < 1$.

- $\mathfrak{D}_{U_{\gamma}}$ and $\mathfrak{D}_{U_{\gamma}^*}$ are spanned by the vectors b_1 and b respectively.
- \bullet Characteristic function θ_T of a contraction T is defined as

$$\theta_T(z) = \left(-T + zD_{T^*}(I - zT^*)^{-1}D_T\right)\Big|_{\mathfrak{D}}, \qquad z \in \mathbb{D}.$$

To compute it use Rank one inversion formula (Sherman–Morrison formula)

$$(I - bc^*)^{-1} = I + \frac{1}{d}bc^*, \qquad d = (b, c) = c^*b.$$

- $I-zU_{\gamma}^{*}$ is a rank one perturbation of $I-zU_{1}^{*}=I-zM_{\overline{\mathcal{E}}};$
- The inverse of $I-zM_{\overline{\xi}}$ is multiplication by $(1-z\overline{\xi})^{-1}$, so Cauchy integrals appear.

Characteristic function and defects for U_{γ}

Define Cauchy integrals

$$R_1\tau(\lambda) := \int_{\mathbb{T}} \frac{\overline{\xi}\lambda d\tau(\xi)}{1 - \overline{\xi}\lambda}, \qquad R_2\tau(\lambda) := \int_{\mathbb{T}} \frac{1 + \overline{\xi}\lambda}{1 - \overline{\xi}\lambda} d\tau(\xi).$$

• Characteristic function θ_{γ} of U_{γ} in the bases b_1 , b:

$$\theta_{\gamma}(\lambda) = -\gamma + \frac{(1 - |\gamma|^2)R_1\mu(\lambda)}{1 + (1 - \overline{\gamma})R_1\mu(\lambda)} = \frac{(1 - \gamma)R_2\mu(\lambda) - (1 + \gamma)}{(1 - \overline{\gamma})R_2\mu(\lambda) + (1 + \overline{\gamma})},$$

- Note that $\theta_{\gamma}(0) = -\gamma$, because $R_1\mu(0) = 0$
- For $\gamma = 0$

$$\theta_0(\lambda) = \frac{R_1 \mu(\lambda)}{1 + R_1 \mu(\lambda)} = \frac{R_2 \mu(\lambda) - 1}{R_2 \mu(\lambda) + 1}, \quad \lambda \in \mathbb{D}.$$

"Model" case of unitary perturbations

Recall:
$$U_{\alpha}=U_1+(\alpha-1)bb_1^*, \ |\alpha|=1$$

$$U_1=M_{\xi} \text{ in } L^2(\mu), \quad \mu(\mathbb{T})=1, \qquad b\equiv 1, \quad b_1=U_1^*b\equiv \overline{\xi}$$

- Let μ_{α} be the spectral measure of U_{α} corresponding to the vector b.
- Want to find a unitary operator $\mathcal{V}_{\alpha}:L^2(\mu)\to L^2(\mu_{\alpha})$ such that $\mathcal{V}_{\alpha}b=\mathbf{1}\in L^2(\mu_{\alpha})$ and such that

$$\mathcal{V}_{\alpha}U_{\alpha}=M_{z}\mathcal{V}_{\alpha}.$$

Case of self-adjoint perturbations was treated earlier by Liaw–Treil in [2]. This case is treated similarly.

Pretending to be a physysist

Let \mathcal{V}_{α} be an integral operator with kernel $K(z,\xi)$.

• $U_{\alpha}=M_{\xi}+bb_{1}^{*}$, so we can rewrite the relation $\mathcal{V}_{\alpha}U_{\alpha}=M_{z}\mathcal{V}_{\alpha}$ as

$$\mathcal{V}_{\alpha} M_{\xi} = M_z \mathcal{V}_{\alpha} - (1 - \alpha) \mathcal{V}_{\alpha} b b_1^*.$$

• We know that $\mathcal{V}_{\alpha}b=1$, $b_1=\overline{\xi}$, so $\mathcal{V}_{\alpha}bb_1^*$ is an integral operator with kernel ξ

$$K(z,\xi)\xi = zK(z,\xi) - (\alpha - 1)\xi.$$

ullet Solving for K we get

$$K(z,\xi) = (1-\alpha)\frac{\xi}{\xi - z} = (1-\alpha)\frac{1}{1 - \overline{\xi}z}$$

First representation for \mathcal{V}_{α}

Theorem (Repesentation of \mathcal{V}_{α})

The unitary operator $\mathcal{V}_{\alpha}: L^2(\mu) \to L^2(\mu_{\alpha})$ such that $\mathcal{V}_{\alpha}b = \mathbf{1} \in L^2(\mu_{\alpha})$ and such that

$$\mathcal{V}_{\alpha}U_{\alpha}=M_{z}\mathcal{V}_{\alpha}.$$

is given by

$$\mathcal{V}_{\alpha}f(z) = f(z) + (1 - \alpha) \int_{\mathbb{T}} \frac{f(\xi) - f(z)}{1 - \bar{\xi}z} d\mu(\xi)$$

for $f \in C^1(\mathbb{T})$

• Recalling that $U_{\alpha}=U_1+(\alpha-1)bb_1^*$ rewrite $\mathcal{V}_{\alpha}U_{\alpha}=M_z\mathcal{V}_{\alpha}$ as $\mathcal{V}_{\alpha}U_1=M_z\mathcal{V}_{\alpha}+(1-\alpha)(\mathcal{V}_{\alpha}b)b_1^*.$

• Recalling that $U_{\alpha}=U_1+(\alpha-1)bb_1^*$ rewrite $\mathcal{V}_{\alpha}U_{\alpha}=M_z\mathcal{V}_{\alpha}$ as

 $\mathcal{V}_{\alpha}U_1U_1 = M_z\mathcal{V}_{\alpha}U_1 + (1-\alpha)(\mathcal{V}_{\alpha}b)b_1^*U_1.$

• Recalling that $U_{\alpha}=U_1+(\alpha-1)bb_1^*$ rewrite $\mathcal{V}_{\alpha}U_{\alpha}=M_z\mathcal{V}_{\alpha}$ as

$$\mathcal{V}_{\alpha}U_{1}U_{1} = M_{z}\mathcal{V}_{\alpha}U_{1} + (1-\alpha)(\mathcal{V}_{\alpha}b)b_{1}^{*}U_{1}.$$

• Right multiplying by U_1 and applying the above "black" identity to $\mathcal{V}_{\alpha}U_1$ in the right hand side, we get

$$V_{\alpha}U_{1}^{2} = M_{z}^{2}V_{\alpha} + (1 - \alpha)\left[(M_{z}V_{\alpha}b)b_{1}^{*} + (V_{\alpha}b)b_{1}^{*}U_{1}\right]$$

• Recalling that $U_{\alpha}=U_1+(\alpha-1)bb_1^*$ rewrite $\mathcal{V}_{\alpha}U_{\alpha}=M_z\mathcal{V}_{\alpha}$ as

$$\mathcal{V}_{\alpha}U_{1}U_{1} = M_{z}\mathcal{V}_{\alpha}U_{1} + (1-\alpha)(\mathcal{V}_{\alpha}b)b_{1}^{*}U_{1}.$$

• Right multiplying by U_1 and applying the above "black" identity to $\mathcal{V}_{\alpha} \underline{U_1}$ in the right hand side, we get

$$\mathcal{V}_{\alpha}U_{1}^{2} = M_{z}^{2}\mathcal{V}_{\alpha} + (1 - \alpha)\left[(M_{z}\mathcal{V}_{\alpha}b)b_{1}^{*} + (\mathcal{V}_{\alpha}b)b_{1}^{*}U_{1} \right]$$

By induction we get

$$\mathcal{V}_{\alpha}U_{1}^{n} = M_{z}^{n}\mathcal{V}_{\alpha} + (1-\alpha)\sum_{k=1}^{n} M_{z}^{k-1}(\mathcal{V}_{\alpha}b)b_{1}^{*}U_{1}^{n-k}.$$

• Recalling that $U_{\alpha}=U_1+(\alpha-1)bb_1^*$ rewrite $\mathcal{V}_{\alpha}U_{\alpha}=M_z\mathcal{V}_{\alpha}$ as

$$\mathcal{V}_{\alpha}U_{1}U_{1} = M_{z}\mathcal{V}_{\alpha}U_{1} + (1-\alpha)(\mathcal{V}_{\alpha}b)b_{1}^{*}U_{1}.$$

• Right multiplying by U_1 and applying the above "black" identity to $\mathcal{V}_{\alpha} \underline{U_1}$ in the right hand side, we get

$$\mathcal{V}_{\alpha}U_{1}^{2} = M_{z}^{2}\mathcal{V}_{\alpha} + (1 - \alpha)\left[(M_{z}\mathcal{V}_{\alpha}b)b_{1}^{*} + (\mathcal{V}_{\alpha}b)b_{1}^{*}U_{1} \right]$$

By induction we get

$$\mathcal{V}_{\alpha}U_1^n = M_z^n \mathcal{V}_{\alpha} + (1 - \alpha) \sum_{k=1}^n M_z^{k-1} (\mathcal{V}_{\alpha}b) b_1^* U_1^{n-k}.$$

• Applying to $b \equiv 1$ and summing geometric progression we get the formula for $f(\xi) = \xi^n$, n > 0.

Idea of the proof, continued

- To get the formula for $\overline{\xi}^n$ we use $\mathcal{V}_{\alpha}U_{\alpha}^*=M_{\overline{z}}\mathcal{V}_{\alpha}$, which is obtained by taking adjoint in $\mathcal{V}_{\alpha}U_{\alpha}=M_z\mathcal{V}_{\alpha}$.
- \bullet Extend the formula from trig. polynomials to $f\in C^1$ by standard approximation reasoning.

Idea of the proof, continued

- To get the formula for $\overline{\xi}^n$ we use $\mathcal{V}_{\alpha}U_{\alpha}^*=M_{\overline{z}}\mathcal{V}_{\alpha}$, which is obtained by taking adjoint in $\mathcal{V}_{\alpha}U_{\alpha}=M_z\mathcal{V}_{\alpha}$.
- \bullet Extend the formula from trig. polynomials to $f\in C^1$ by standard approximation reasoning.

A general statement

Rank one commutation relations like

$$\mathcal{V}M_{\xi} = M_z \mathcal{V} + cb_1^*$$

usually give singular integral representations for \mathcal{V} .

Recall that
$$\mathcal{V}_{\alpha}f(z)=f(z)+(1-\alpha)\int_{\mathbb{T}}\frac{f(\xi)-f(z)}{1-\bar{\xi}z}\,d\mu(\xi)$$

Theorem (Regularization of the weighted Cauchy transform)

The integral operators $T_r = T_r^{\alpha} : L^2(\mu) \to L^2(\mu_{\alpha})$ with kernels $1/(1 - r\xi z)$, $r \in \mathbb{R}_+ \setminus \{1\}$ are uniformly bounded.

Recall that
$$\mathcal{V}_{\alpha}f(z) = f(z) + (1-\alpha)\int_{\mathbb{T}} \frac{f(\xi) - f(z)}{1 - \bar{\xi}z} \, d\mu(\xi)$$

Theorem (Regularization of the weighted Cauchy transform)

The integral operators $T_r = T_r^{\alpha} : L^2(\mu) \to L^2(\mu_{\alpha})$ with kernels $1/(1 - r\overline{\xi}z)$, $r \in \mathbb{R}_+ \setminus \{1\}$ are uniformly bounded.

• Let $Tf(z):=\int_{\mathbb{T}} \frac{f(\xi)}{1-\bar{\xi}z} d\mu(\xi)$; well defined for $z\notin \operatorname{supp} f$

Recall that
$$\mathcal{V}_{\alpha}f(z)=f(z)+(1-\alpha)\int_{\mathbb{T}}\frac{f(\xi)-f(z)}{1-\bar{\xi}z}\,d\mu(\xi)$$

Theorem (Regularization of the weighted Cauchy transform)

The integral operators $T_r = T_r^{\alpha} : L^2(\mu) \to L^2(\mu_{\alpha})$ with kernels $1/(1 - r\xi z)$, $r \in \mathbb{R}_+ \setminus \{1\}$ are uniformly bounded.

- Let $Tf(z) := \int_{\mathbb{T}} \frac{f(\xi)}{1-\bar{\epsilon}z} d\mu(\xi)$; well defined for $z \notin \operatorname{supp} f$
- Since \mathcal{V}_{α} is bounded, we get for $f,g\in C^1$, $\operatorname{supp} f\cap\operatorname{supp} g=\varnothing$

$$\left(Tf,g\right)_{L^2(\mu_\alpha)} \leq C \|f\|_{L^2(\mu)} \|g\|_{L^2(\mu_\alpha)}$$

Recall that
$$\mathcal{V}_{\alpha}f(z)=f(z)+(1-\alpha)\int_{\mathbb{T}}\frac{f(\xi)-f(z)}{1-\bar{\xi}z}\,d\mu(\xi)$$

Theorem (Regularization of the weighted Cauchy transform)

The integral operators $T_r = T_r^{\alpha} : L^2(\mu) \to L^2(\mu_{\alpha})$ with kernels $1/(1 - r\xi z)$, $r \in \mathbb{R}_+ \setminus \{1\}$ are uniformly bounded.

- Let $Tf(z) := \int_{\mathbb{T}} \frac{f(\xi)}{1-\overline{\xi}z} d\mu(\xi)$; well defined for $z \notin \operatorname{supp} f$
- Since \mathcal{V}_{α} is bounded, we get for $f,g\in C^1$, $\operatorname{supp} f\cap\operatorname{supp} g=\varnothing$

$$\left(Tf,g\right)_{L^{2}(\mu_{\alpha})} \leq C\|f\|_{L^{2}(\mu)}\|g\|_{L^{2}(\mu_{\alpha})}$$

• By a theorem of Liaw-Treil [3] this implies uniform boundedness of the regularizations T_r if the measures μ and μ_{α} do not have common atoms (U_1 and U_{α} do not have common eigenvalues).

- Uniform boundedness of T_r together with μ_{α} -a.e. convergence of $T_r f$ imply existence of w.o.t.-limits $T^{\alpha}_{\pm} = \text{w.o.t.-} \lim_{r \to 1^{\mp}} T_r$.
- ullet Using T_\pm^lpha we can rewrite the representation

$$\mathcal{V}_{\alpha}f(z) = f(z) + (1 - \alpha) \int_{\mathbb{T}} \frac{f(\xi) - f(z)}{1 - \overline{\xi}z} d\mu(\xi)$$

as

$$\mathcal{V}_{\alpha}f = [\mathbf{1} - (1 - \alpha)T_{\pm}^{1,\alpha}\mathbf{1}]f + (1 - \alpha)T_{\pm}^{1,\alpha}f.$$

- $(\mu_{\alpha})_{\rm a}$ -a.e. convergence follows from classical results about jumps of Cauchy transform; $(\mu_{\alpha})_{\rm s}$ -a.e. convergence can be obtained from Poltoratskii's theorem about boundary values of the normalized Cauchy transform, see [7].
- For the weak convergence it is enough to have μ_{α} -a.e. convergence of $T_r f$ for $f \in C^1$, which can be proved using elementary methods.

Adjoint Clark operator, freedom of choice

- Let $U_{\gamma} = U_1 + (\gamma 1)bb_1^*$, $|\gamma| < 1$;
- $U_{\gamma} \cong \mathcal{M}_{\theta_{\gamma}}$, $\mathcal{M}_{\theta_{\gamma}} := P_{\mathcal{K}_{\theta_{\gamma}}} M_z \mid_{\mathcal{K}_{\theta_{\gamma}}}$

Adjoint Clark operator: a unitary $\Phi_{\gamma}^*:L^2(\mu)\to\mathcal{K}_{\theta_{\gamma}}$ such that

$$\Phi_{\gamma}^* U_{\gamma} = \mathcal{M}_{\theta_{\gamma}} \Phi_{\gamma}^* \tag{*}$$

- Defect spaces \mathfrak{D}_{U_γ} and $\mathfrak{D}_{U_\gamma^*}$ are spanned by the vectors $b_1\equiv\overline{\xi}$ and $b\equiv \mathbf{1}$ respectively.
- Let $\mathfrak{D}_{\mathcal{M}_{\theta_{\gamma}}}$ and $\mathfrak{D}_{\mathcal{M}_{\theta_{\gamma}}^*}$ be spanned by c_1^{γ} and c^{γ} , $\|c_1^{\gamma}\| = \|c^{\gamma}\| = 1$.
- Relation (*) implies that $\Phi_{\gamma}^*b=\alpha c^{\gamma}$, $\Phi_{\gamma}^*b_1=\beta c_1^{\gamma}$, $|\alpha|=|\beta|=1$.
- Except for the case $\gamma=0$ and $\mu=|dz|/2\pi$, β is uniquely defined by α .

Defect vectors of $\mathcal{M}_{\theta_{\gamma}}$ in the Sz.-Nagy–Foiaș transcription

• Defect subspaces $\mathfrak{D}_{\mathcal{M}_{\theta}}$ and $\mathfrak{D}_{\mathcal{M}_{\theta}^*}$ are spanned by c_1 and c, $\|c\| = \|c_1\| = 1$,

$$c(z) := \left(1 - |\theta(0)|^2\right)^{-1/2} \begin{pmatrix} 1 - \theta(0)\theta(z) \\ -\overline{\theta(0)}\Delta(z) \end{pmatrix},$$

$$c_1(z) := \left(1 - |\theta(0)|^2\right)^{-1/2} \begin{pmatrix} z^{-1} (\theta(z) - \theta(0)) \\ z^{-1}\Delta(z) \end{pmatrix},$$

• Vectors c^{γ} and c_1^{γ} agree, i.e. $\Phi_{\gamma}^*b=c^{\gamma}$ implies $\Phi_{\gamma}^*b_1=c_1^{\gamma}$ (not considering the exceptional case $\gamma=0$, $\mu=|dz|/2\pi$)

Theorem (A "universal" representation formula)

Let θ_{γ} be a characteristic function of U_{γ} , $|\gamma| < 1$. Assume that the vectors $c^{\gamma} \in \mathfrak{D}_{\mathcal{M}_{\theta_{\gamma}}^*}$, $c_1^{\gamma} \in \mathfrak{D}_{\mathcal{M}_{\theta_{\gamma}}} \| c^{\gamma} \| = \| c_1^{\gamma} \| = 1$ agree. Let $\Phi^* = \Phi_{\gamma}^* : L^2(\mu) \to \mathcal{K}_{\theta_{\gamma}}$ be a unitary operator satisfying

$$\Phi_{\gamma}^* U_{\gamma} = \mathcal{M}_{\theta_{\gamma}} \Phi_{\gamma}^*,$$

and such that $\Phi_{\gamma}^*b=c^{\gamma}$ (so $\Phi_{\gamma}^*b_1=c_1^{\gamma}$). Then for all $f\in C^1(\mathbb{T})$

$$\Phi_{\gamma}^* f(z) = A_{\gamma}(z) f(z) + B_{\gamma}(z) \int \frac{f(\xi) - f(z)}{1 - \overline{\xi}z} d\mu(\xi), \qquad z \in \mathbb{T},$$

where
$$A_{\gamma}(z)=c^{\gamma}(z)$$
, $B_{\gamma}(z)=c^{\gamma}(z)-zc_{1}^{\gamma}(z)$.

This theorem works in any transcription of the model.

 $\bullet \ \ {\rm Write, \ denoting} \ c_2^\gamma(z) := z c_1^\gamma(z), \\$

$$\mathcal{M}_{\theta_{\gamma}} = M_z - c_2^{\gamma} (c_1^{\gamma})^* - \theta_{\gamma}(0) c^{\gamma} (c_1^{\gamma})^* = M_z + (\gamma c^{\gamma} - c_2^{\gamma}) (c_1^{\gamma})^*.$$

Rank one perturbation of $M_z!$ Should get at most rank 2 commutation relation.

 $\bullet \ \ {\rm Write, \ denoting} \ c_2^\gamma(z) := z c_1^\gamma(z), \\$

$$\mathcal{M}_{\theta_{\gamma}} = M_z - c_2^{\gamma} (c_1^{\gamma})^* - \theta_{\gamma}(0) c^{\gamma} (c_1^{\gamma})^*$$
$$= M_z + (\gamma c^{\gamma} - c_2^{\gamma}) (c_1^{\gamma})^*.$$

Rank one perturbation of $M_z!$ Should get at most rank 2 commutation relation.

ullet Using this identity rewrite $\Phi_{\gamma}^*U_{\gamma}=\mathcal{M}_{ heta_{\gamma}}\Phi_{\gamma}^*$ as

$$\Phi_{\gamma}^* U_1 + (\gamma - 1)c^{\gamma} b_1^* = M_z \Phi_{\gamma}^* + (\gamma c^{\gamma} - c_2^{\gamma}) b_1^*$$

or equivalently

$$\Phi_{\gamma}^* U_1 = M_z \Phi_{\gamma}^* + (c^{\gamma} - c_2^{\gamma}) b_1^*.$$

We got rank one commutation relation!

Commutation relations imply integral representation.

Idea of the proof, difficulties

Formally the right side of

$$\Phi_{\gamma}^* U_1 = M_z \Phi_{\gamma}^* + (c^{\gamma} - c_2^{\gamma}) b_1^*. \tag{*}$$

acts from $L^2(\mu)$ to outside of \mathcal{K}_{θ} .

• To get $\Phi_{\gamma}^* \overline{\xi}^n$ we use the commutant relation

$$\begin{split} \Phi_{\gamma}^* U_1^* &= M_{\overline{z}} \Phi_{\gamma}^* + (c_1^{\gamma} - M_{\overline{z}} c^{\gamma}) b^* \\ &= M_{\overline{z}} \Phi_{\gamma}^* - M_{\overline{z}} (c^{\gamma} - c_2^{\gamma}) b^*, \end{split}$$

which cannot be obtained by taking the adjoint of (*).

• It is a miracle that the formulas for $\Phi_{\gamma}^*\xi^n$ and $\Phi_{\gamma}^*\overline{\xi}^n$ agree.

Cauchy type operators and regularizations

 $\bullet \ \, \text{For} \,\, f \in L^2(\mu) \,\, \text{let}$

$$Rf\mu(z) = \int_{\mathbb{T}} \frac{f(\xi)}{1 - \overline{\xi}z} d\mu(\xi)$$

and let T_+f be the non-tangential boundary values of $Rf\mu(z)$, |z|<1.

- Let $T_r: L^2(\mu) \to L^2(v)$, $v=|B|^2$ be the integral operators with kernel $1/(1-r\bar{\xi}z)$, $r \in \mathbb{R}_+ \setminus \{1\}$.
- Operators $T_r: L^2(\mu) \to L^2(v)$ (equivalently $M_BT_r: L^2(\mu) \to L^2$) are uniformly in r bounded.
- $T_+=$ w.o.t.- $\lim_{r\to 1^-}T_r$ (as operators $L^2(\mu)\to L^2(v)$); equivalently, $M_BT_+=$ w.o.t.- $\lim_{r\to 1^-}M_BT_r$ (as operators $L^2(\mu)\to L^2$)

Theorem

The vector $g:=(1-|\gamma|^2)^{1/2}\Phi_{\gamma}^*f$ can be represented in the Sz.-Nagy–Foiaş transcription as

$$g = \begin{pmatrix} 0 \\ (\overline{\gamma} - (\overline{\gamma} - 1)T_{+}\mathbf{1})\Delta_{\gamma} \end{pmatrix} f + \begin{pmatrix} \frac{1+\overline{\gamma}\theta_{\gamma}}{T_{+}\mathbf{1}} \\ (\overline{\gamma} - 1)\Delta_{\gamma} \end{pmatrix} T_{+}f$$

$$= \begin{pmatrix} 0 \\ \frac{1-\overline{\gamma}\theta_{0}}{|1-\overline{\gamma}\theta_{0}|}T_{+}\mathbf{1} \cdot \Delta_{0} \end{pmatrix} f + \begin{pmatrix} \frac{1-|\gamma|^{2}}{1-\overline{\gamma}\theta_{0}} \cdot \frac{1}{T_{+}\mathbf{1}} \\ (\overline{\gamma} - 1)\frac{(1-|\gamma|^{2})^{1/2}}{|1-\overline{\gamma}\theta_{0}|}\Delta_{0} \end{pmatrix} T_{+}f$$

for $f \in L^2(\mu)$.

- Since $\frac{1}{T+1} = 1 \theta_0$, the top floor g_1 is in the Hardy space H^2 .
- For $\gamma = 0$ we get

$$\Phi_0^* f = \begin{pmatrix} 0 \\ (T_+ \mathbf{1}) \Delta_0 \end{pmatrix} f + \begin{pmatrix} 1/T_+ \mathbf{1} \\ -\Delta_0 \end{pmatrix} T_+ f$$

Take the representation

$$\Phi_{\gamma}^*f(z)=A_{\gamma}(z)f(z)+B_{\gamma}(z)\int\frac{f(\xi)-f(z)}{1-\ \overline{\xi}z}\,d\mu(\xi),\qquad z\in\mathbb{T},$$
 for $f\in C^1.$

• Take the representation

$$\Phi_{\gamma}^* f(z) = A_{\gamma}(z) f(z) + B_{\gamma}(z) \int \frac{f(\xi) - f(z)}{1 - \frac{r}{\xi}z} d\mu(\xi), \qquad z \in \mathbb{T},$$

for $f \in C^1$.

• Replace the kernel $1/(1-\overline{\xi}z)$ by $1/(1-r\overline{\xi}z)$;

• Take the representation

$$A_{\gamma}(z)f(z) + B_{\gamma}(z) \int \frac{f(\xi) - f(z)}{1 - r\overline{\xi}z} d\mu(\xi), \qquad z \in \mathbb{T},$$

for $f \in C^1$.

• Replace the kernel $1/(1-\overline{\xi}z)$ by $1/(1-r\overline{\xi}z)$;

Take the representation

$$A_{\gamma}(z)f(z) + B_{\gamma}(z) \int \frac{f(\xi) - f(z)}{1 - r\overline{\xi}z} d\mu(\xi), \qquad z \in \mathbb{T},$$

for $f \in C^1$.

- Replace the kernel $1/(1-\overline{\xi}z)$ by $1/(1-r\overline{\xi}z)$;
- take w.o.t. limit of the right hand side as $r \to 1^-$.
 - Definitely we have uniform convergence to $\Phi_{\gamma}^*f(z)$ as $r\to 1^-$.
 - On the other hand, splitting the integral into 2 we get

$$A_{\gamma}f + B_{\gamma}T_{+}f - B_{\gamma}fT_{+}\mathbf{1}$$

as the w.o.t.-limit in $B(L^2(\mu), L^2)$.

Take the representation

$$A_{\gamma}(z)f(z) + B_{\gamma}(z) \int \frac{f(\xi) - f(z)}{1 - r\overline{\xi}z} d\mu(\xi), \qquad z \in \mathbb{T},$$

for $f \in C^1$.

- Replace the kernel $1/(1-\overline{\xi}z)$ by $1/(1-r\overline{\xi}z)$;
- take w.o.t. limit of the right hand side as $r \to 1^-$.
 - Definitely we have uniform convergence to $\Phi_{\gamma}^*f(z)$ as $r\to 1^-$.
 - On the other hand, splitting the integral into 2 we get

$$A_{\gamma}f + B_{\gamma}T_{+}f - B_{\gamma}fT_{+}\mathbf{1}$$

as the w.o.t.-limit in $B(L^2(\mu), L^2)$.

• Substituting expressions for A_{γ} and B_{γ} we get the result.

Recall: de Branges-Rovnyak transcription

ullet $\mathcal{K}_{ heta}$ in the de Branges–Rovnyak transcription is given by

$$\left\{ \left(\begin{array}{c} g_+ \\ g_- \end{array} \right) \; : \; g_+ \in H^2, \; g_- \in H^2_-, \; g_- - \overline{\theta} g_+ \in \Delta L^2 \right\}.$$

ullet Recall that in the Sz.-Nagy–Foiaș transcription $\left(egin{array}{c}g_1\\g_2\end{array}
ight)\in\mathcal{K}_{ heta}$ iff

$$g_1 = g_+ \in H^2, \quad g_2 \in \operatorname{clos} \Delta L^2, \qquad g_- := \overline{\theta} g_1 + \Delta g_2 \in H^2_-;$$

the last inclusion means that $\left(\begin{array}{c}g_1\\g_2\end{array}\right)\perp\left(\begin{array}{c}\theta\\\Delta\end{array}\right)H^2.$

• $g_1=g_+$ and g_- are exactly the same as in the de Branges–Rovnyak transcription.

Representation in the de Branges-Rovnyak transcription

We had

$$g_{1} = g_{+} = (1 - |\gamma|^{2})^{-1/2} (1 + \overline{\gamma}\theta_{\gamma}) \frac{T_{+}f}{T_{+}\mathbf{1}} = \frac{(1 - |\gamma|^{2})^{1/2}}{1 - \overline{\gamma}\theta_{0}} \frac{T_{+}f}{T_{+}\mathbf{1}}$$
$$= \frac{(1 - |\gamma|^{2})^{1/2} (1 - \theta_{0})}{1 - \overline{\gamma}\theta_{0}} T_{+}f.$$

Representation in the de Branges-Rovnyak transcription

We had

$$g_{1} = g_{+} = (1 - |\gamma|^{2})^{-1/2} (1 + \overline{\gamma}\theta_{\gamma}) \frac{T_{+}f}{T_{+}\mathbf{1}} = \frac{(1 - |\gamma|^{2})^{1/2}}{1 - \overline{\gamma}\theta_{0}} \frac{T_{+}f}{T_{+}\mathbf{1}}$$
$$= \frac{(1 - |\gamma|^{2})^{1/2} (1 - \theta_{0})}{1 - \overline{\gamma}\theta_{0}} T_{+}f.$$

• For $g_-=g_-^\gamma$ we get

$$g_{-}^{\gamma} = (1 - |\gamma|^{2})^{-1/2} \left(\overline{\theta}_{\gamma} + \overline{\gamma}\right) \frac{T_{-}f}{T_{-}\mathbf{1}} = \frac{(1 - |\gamma|^{2})^{1/2}\overline{\theta}_{0}}{1 - \gamma\overline{\theta}_{0}} \cdot \frac{T_{-}f}{T_{-}\mathbf{1}}$$
$$= \frac{(1 - |\gamma|^{2})^{1/2}(1 - \overline{\theta}_{0})}{1 - \gamma\overline{\theta}_{0}} T_{-}f.$$

Representation in the de Branges-Rovnyak transcription

We had

$$g_{1} = g_{+} = (1 - |\gamma|^{2})^{-1/2} (1 + \overline{\gamma}\theta_{\gamma}) \frac{T_{+}f}{T_{+}\mathbf{1}} = \frac{(1 - |\gamma|^{2})^{1/2}}{1 - \overline{\gamma}\theta_{0}} \frac{T_{+}f}{T_{+}\mathbf{1}}$$
$$= \frac{(1 - |\gamma|^{2})^{1/2} (1 - \theta_{0})}{1 - \overline{\gamma}\theta_{0}} T_{+}f.$$

• For $g_- = g_-^{\gamma}$ we get

$$g_{-}^{\gamma} = (1 - |\gamma|^{2})^{-1/2} \left(\overline{\theta}_{\gamma} + \overline{\gamma}\right) \frac{T_{-}f}{T_{-}\mathbf{1}} = \frac{(1 - |\gamma|^{2})^{1/2}\overline{\theta}_{0}}{1 - \gamma\overline{\theta}_{0}} \cdot \frac{T_{-}f}{T_{-}\mathbf{1}}$$
$$= \frac{(1 - |\gamma|^{2})^{1/2}(1 - \overline{\theta}_{0})}{1 - \gamma\overline{\theta}_{0}} T_{-}f.$$

• the non-tangential boundary values of the function

$$z \mapsto \frac{1 - \overline{\gamma}}{(1 - |\gamma|^2)^{1/2}} g_1(z), \qquad z \in \mathbb{D}$$

exist and coincide with $f_{\rm s}$ $\mu_{\rm s}$ -a.e. on \mathbb{T} .

• the non-tangential boundary values of the function

$$z \mapsto \frac{1 - \overline{\gamma}}{(1 - |\gamma|^2)^{1/2}} g_1(z), \qquad z \in \mathbb{D}$$

exist and coincide with $f_{\rm s}$ $\mu_{\rm s}$ -a.e. on \mathbb{T} .

Follows from representation

$$g_1 = \frac{(1 - |\gamma|^2)^{1/2}}{1 - \overline{\gamma}\theta_0} \frac{T_+ f}{T_+ \mathbf{1}}$$

and Poltoratskii's theorem that boundary values of $Rf\mu(z)/R\mu(z)$, $z\in\mathbb{D}$ exist and equal f μ_{s} -a.e.; also uses $\theta(z)=1$ μ_{s} -a.e.

• the non-tangential boundary values of the function

$$z \mapsto \frac{1 - \overline{\gamma}}{(1 - |\gamma|^2)^{1/2}} g_1(z), \qquad z \in \mathbb{D}$$

exist and coincide with $f_{\rm s}$ $\mu_{\rm s}$ -a.e. on \mathbb{T} .

Proof uses Poltoratskii's theorem.

• the non-tangential boundary values of the function

$$z \mapsto \frac{1 - \overline{\gamma}}{(1 - |\gamma|^2)^{1/2}} g_1(z), \qquad z \in \mathbb{D}$$

exist and coincide with $f_{\rm s}$ $\mu_{\rm s}$ -a.e. on \mathbb{T} .

Proof uses Poltoratskii's theorem.

ullet For the "absolutely continuous" part $f_{
m a}$ of f

$$(1 - |\gamma|^2)^{1/2} w f_{\mathbf{a}} = \frac{1 - \overline{\gamma} \theta_0}{1 - \theta_0} g_1 + \frac{1 - \gamma \overline{\theta}_0}{1 - \overline{\theta}_0} g_{-}$$

a.e. on \mathbb{T} ; here, recall, $g_-:=g_1\overline{\theta}_\gamma+\Delta_\gamma g_2\in H^2_-$.

• the non-tangential boundary values of the function

$$z \mapsto \frac{1 - \overline{\gamma}}{(1 - |\gamma|^2)^{1/2}} g_1(z), \qquad z \in \mathbb{D}$$

exist and coincide with $f_{\rm s}$ $\mu_{\rm s}$ -a.e. on \mathbb{T} .

Proof uses Poltoratskii's theorem.

ullet For the "absolutely continuous" part $f_{
m a}$ of f

$$(1 - |\gamma|^2)^{1/2} w f_{\mathbf{a}} = \frac{1 - \overline{\gamma} \theta_0}{1 - \theta_0} g_1 + \frac{1 - \gamma \theta_0}{1 - \overline{\theta}_0} g_{-}$$

a.e. on \mathbb{T} ; here, recall, $g_-:=g_1\overline{\theta}_\gamma+\Delta_\gamma g_2\in H^2_-$.

Proof uses representation for g_1 and g_- and standard jump formulas for Cauchy integrals.

Bounds on the normalized Cauchy transform

- A. Poltoratskii, [7]: the normalized Cauchy transform $f\mapsto \frac{T_+f}{T_+\mathbf{1}}$ acts $L^2(\mu)\to L^2$.
- Equivalently: $T_+: L^2(\mu) \to L^2(v), \ v = 1/|T_+\mathbf{1}|^2 = |1-\theta_0|^2.$ (because $1/T_+\mathbf{1} = 1-\theta_0$).
- Follows from our result: $T_+:L^2(\mu)\to L^2(v_0)$,

$$v_0 = |B_0|^2 = |1 - \theta_0|^2 + \Delta_0^2 = 2\operatorname{Re}(1 - \theta_0).$$

 v_0 can be much bigger than $v\colon v\asymp v_0^2$ when $\theta_0(z)\to 1$ non-tangentially.

• "Exterior" normalized Cauchy transform: $f \mapsto \frac{T-f}{T-1}$.

- "Exterior" normalized Cauchy transform: $f \mapsto \frac{T-f}{T-1}$.
- Generally does not act $L^2(\mu) \to L^2$.

- "Exterior" normalized Cauchy transform: $f \mapsto \frac{T_- f}{T_- 1}$.
- Generally does not act $L^2(\mu) \to L^2$. Indeed, $1/T_- \mathbf{1} = \overline{\theta}_0/(\overline{\theta}_0 - 1)$, so

$$\frac{T_{-}f}{T_{-}\mathbf{1}} = \frac{\overline{\theta}_{0} - 1}{\overline{\theta}_{0}} T_{-}f.$$

If θ_0 is small near i, so $1/\theta_0 \notin L^2$ there, and $\mu(E) > 0$ in a small neighborhood $E \ni 1$, then $|T_-\mathbf{1}_E| \ge \delta > 0$ near i, so $\frac{T_-f}{T_-\mathbf{1}} \notin L^2$.

- "Exterior" normalized Cauchy transform: $f \mapsto \frac{T_- f}{T_- 1}$.
- Generally does not act $L^2(\mu) \to L^2$. Indeed, $1/T_- \mathbf{1} = \overline{\theta}_0/(\overline{\theta}_0 - 1)$, so

$$\frac{T_{-}f}{T_{-}\mathbf{1}} = \frac{\overline{\theta}_{0} - 1}{\overline{\theta}_{0}} T_{-}f.$$

If θ_0 is small near i, so $1/\theta_0 \notin L^2$ there, and $\mu(E) > 0$ in a small neighborhood $E \ni 1$, then $|T_-\mathbf{1}_E| \ge \delta > 0$ near i, so $\frac{T_-f}{T_-\mathbf{1}} \notin L^2$.

The operator

$$f \mapsto \overline{\theta}_0 \frac{T_- f}{T_- \mathbf{1}}$$

acts $L^2(\mu) \to L^2$.

Is it correct "exterior" normalized Cauchy transform?

Comparison with Clark model

- D. Clark started with model operator K_{θ} , $(\theta \text{ inner} \iff \mu \text{ is purely singular})$ and considered it all unitary rank one perturbations.
- In our model it corresponds considering operator $U_{\gamma}=U_1+(\gamma-1)bb_1^*$, $\gamma=-\theta(0)$, then all unitary rank one perturbations are exactly the operators U_{α} , $|\alpha|=1$.
- ullet Clark measures $\widetilde{\mu}_{lpha}$ are the spectral measures of the operators $U_{lpha}.$
- If $\theta(0)=0$ them $\widetilde{\mu}_{\alpha}=\mu_{\alpha}$ and the Clark operators coincide with ours.
- If $\theta(0) \neq 0$ $\widetilde{\mu}_{\alpha}$ is a multiple μ_{α} , and the operators differ by a factor $c(\gamma)$.
- In Clark model $\widetilde{\mu}_{\alpha}$ is not a probability measure, $|c(\gamma)|$ compensate for that.

Comparison with Sarason's model

- D. Sarson in [8] presented a unitary operator between $H^2(\mu) = \overline{\operatorname{span}}\{z^n : n \in \mathbb{Z}_+\}$ and the de Branges space $\mathcal{H}(\theta)$; like Clark, he started with a model operator in \mathcal{K}_{θ}
- The space $\mathcal{H}(\theta) \subset H^2$ is defined as a range $(I T_{\theta}T_{\theta^*})^{1/2}H^2$ endowed with the *range norm* (the minimal norm of the preimage); $T_{\varphi}: H^2 \to H^2$ is a Toeplitz opearator, $T_{\varphi}f = P_{H^2}(\varphi f)$.
- If θ is an extreme point of the unit ball in H^{∞} $(\int_{\mathbb{T}} \ln(1-\theta|^2)|dz| = -\infty \iff \int_{\mathbb{T}} \ln w|dz| = -\infty, \ w \ \text{density of } \mu)$ then $\mathcal{H}(\theta)$ is canonically isomorphic to the model space \mathcal{K}_{θ} in the de Branges–Rovnyak transcription, see [6].
- His measure μ coinsides with the Clark measure $\widetilde{\mu}_{\alpha}$,

$$\alpha = \frac{1+\gamma}{1+\overline{\gamma}};$$

the formulas are the same as Clark's.

Bibliography I

- [1] D. N. Clark, *One dimensional perturbations of restricted shifts*, J. Anal. Math., **25** (1972), 169–191.
- [2] C. Liaw and S. Treil, *Rank one perturbations and singular integral operators*, J. Funct. Anal., **257** (2009), no. 6, 1947–1975.
- [3] C. Liaw and S. Treil, *Regularizations of general singular integral operators*, Rev. Mat. Iberoam., **29** (2013), no. 1, 53–74.
- [4] N. Nikolski and V. Vasyunin, *Elements of spectral theory in terms of the free function model. I. Basic constructions*, Holomorphic spaces (Berkeley, CA, 1995), Math. Sci. Res. Inst. Publ., vol. 33, Cambridge Univ. Press, Cambridge, 1998, pp. 211–302.

Bibliography II

- [5] N. Nikolskiĭ and V. Vasyunin, Notes on two function models, The Bieberbach conjecture (West Lafayette, Ind., 1985), Math. Surveys Monogr., vol. 21, Amer. Math. Soc., Providence, RI, 1986, pp. 113–141.
- [6] N. Nikolskiĭ and V. Vasyunin, A unified approach to function models, and the transcription problem, The Gohberg anniversary collection, Vol. II (Calgary, AB, 1988), Oper. Theory Adv. Appl., vol. 41, Birkhäuser, Basel, 1989, pp. 405–434.
- [7] A. G. Poltoratskii, Boundary behavior of pseudocontinuable functions, Algebra i Analiz 5 (1993), no. 2, 189–210, engl. translation in St. Petersburg Math. J., 5(2): 389–406, 1994.

Bibliography III

- [8] D. Sarason, Sub-Hardy Hilbert spaces in the unit disk, University of Arkansas Lecture Notes in the Mathematical Sciences, 10, John Wiley & Sons Inc., New York, 1994, A Wiley-Interscience Publication.
- [9] B. Sz.-Nagy, C. Foiaş, H. Bercovici, and L. Kérchy, Harmonic analysis of operators on Hilbert space, second ed., Universitext, Springer, New York, 2010. Original edition: B. Sz.-Nagy and C. Foiaş, Analyse harmonique des opérateurs de l'espace de Hilbert, Masson et Cie, Paris, 1967. Translated from the French and revised, North-Holland Publishing Co., Amsterdam, 1970.