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@ Main objects: rank one perturbations and models
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@ Functional models for c.n.u. contractions
@ Characteristic function and defects for U,

© A universal formula for the adjoint Clark operator
@ Spectral representation of unitary perturbations
@ Adjoint Clark operator, freedom of choice
@ A universal representation formula

© Representations in different transcriptions
@ Representation for the Sz.-Nagy—Foias transcription
@ Representation in the de Branges—Rovnyak transcription
@ Bounds on the normalized Cauchy transforms
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range of the perturbation is fixed).
Indeed U + K = (I + KU*)U, and it is easy to describe all unitary
perturbations of I:

KU* = (y—1b", b =1, [y =1.



Main objects: rank one perturbations and models Rank one perturbations
Functional models for c.n.u. contractions
Characteristic function and defects for U,

Rank one perturbations

e For a unitary U = Uy let
Uy :=U+ (y —1)bby, 6] =1, b :=U", ~eC.

@ If |y| =1 then we have all rank one unitary perturbations (if the
range of the perturbation is fixed).
Indeed U + K = (I + KU*)U, and it is easy to describe all unitary
perturbations of I:

KU* = (y—1b", b =1, [y =1.

e WLOG: b is cyclic, so U = M in L?*(u), u(T) = 1; b = 1, therefore
bi(§) =&



Main objects: rank one perturbations and models Rank one perturbations
Functional models for c.n.u. contractions
Characteristic function and defects for U,

Rank one perturbations

e For a unitary U = Uy let
Uy :=U+ (y —1)bby, 6] =1, b :=U", ~eC.

@ If |y| =1 then we have all rank one unitary perturbations (if the
range of the perturbation is fixed).
Indeed U + K = (I + KU*)U, and it is easy to describe all unitary
perturbations of I:

KU* = (y—1b", b =1, [y =1.

e WLOG: b is cyclic, so U = M in L?*(u), u(T) = 1; b = 1, therefore
bi(§) =&

o If |y| < 1, U, is a completely non-unitary (c.n.u.) contraction with
defect indices 1-1,

rank(I — UJU,) = rank(I — U,U7) = 1.
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Models for U,

o If |y| =1 then U, is unitary, so U, = M.,

M. D) = L), Mof(2) = 2f(2).

o If |y| < 1 then U, is a c.n.u. contraction and admits the functional
model, U, =2 My,

My : Ky — Ky, My = P}CQMZ ‘ Ko;

here 6 € H*, ||0||cc < 1 is the characteristic function of U.,, and Ky
is the model space

Goal: Want to describe unitary operators intertwining U, and its
model.
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For detail see Sz.-Nagy—Foias [9].
e For T, |IT| <1 let

Dy = (I —T*T)"?,
D =®7 :=closRan D,

Drpw = (I — TT*)'/?
D, = D« := closRan Dpx.

@ Characteristic function § € H*(ID; B(D;9.)) is defined as

Or(2) = (=T + 2Dy (I — 2T%)"'Dy) ‘ 2 eD.

Note that ||6]|o0 < 1.

@7

@ Usually € is defined up to constant unitary factors (choice of bases
in © and ©.,.); spaces E 2D and E, = D, are used.
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Functional model(s)

Following Nikolskii-Vasyunin [4] the functional model is constructed as
follows:
@ For a contraction T : K — K consider its minimal unitary dilations
U:H—-H,KCH,

T"=FPU" | K, n=>0.

@ Pick a spectral representation of U/
© Work out formulas in this spectral representation
© Model subspace K = Ky is usually a subspace of a weighted space
L*(E® E,, W), E~D, E, 29, with some operator-valued
weight.
Specific representations give us a transcription of the model.

Among common transcriptions are: the Sz.-Nagy—Foias transcription, the
de Branges—Rovnyak transcription, Pavlov transcription.
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Main objects: rank one perturbations and models

Sz.-Nagy—Foias and de Branges—Rovnyak transcriptions

o Sz.-Nagy—Foias: H = L?(E @ E.) (non-weighted, W = I).

._ H, 0 2
Ko := < clos AL%, ) © ( A )HE’
where A(z) := (1 — 0(2)*0(2))"/?, z€T.
o de Branges—Rovnyak: H = L?(E & E., We[fl]), where

W= oy 7 )

and We[fl] is the Moore—Penrose inverse of Wy. Ky is given by

{( gf ) : gy € H*(E.), g- € H*(E), g- — 0*g, eALZ(E)},



Main objects: rank one perturbations and models Rank one perturbations
Functional models for c.n.u. contractions
Characteristic function and defects for U

Characteristic function and defects for U,

Recall: Uy = Uy + (y — 1)bb}, by = Uyh, |y| < 1.
e Dy, and @U; are spanned by the vectors b; and b respectively.

e Characteristic function 0, of a contraction T is defined as
0r(2) = (=T + 2Dy (I — 2T%) "' Dy) ‘@ zeD.
@ To compute it use Rank one inversion formula (Sherman—Morrison
formula)

1
(I-bc*) =T+ gbc*, d = (b,c) = c*b.

o [ — zU; is a rank one perturbation of I — 2U{ =1 — ZME;

o The inverse of I — zMz is multiplication by (1 — 2£)~", so Cauchy
integrals appear.
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Characteristic function and defects for U,

Define Cauchy integrals

Rir(\) i= /T ?‘ifi), Ror(\) i= /T igim(g).

o Characteristic function 6, of U, in the bases b1, b:

B (1= ) Rip(N) (1 —~)Rop(N) — (1+7)
)= T Ry~ (=7 RanN) (L 7)

Note that 6.,(0) = —v, because Ryu(0) =0
For v =0

_ Ruip(A) Rop(A) -1
T 1+ Rip()) Rop(N\) 1

90()\) A e D.
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“Model” case of unitary perturbations

Recall: Uy = Uy + (o = 1)bb7, o =1

Uy = Mg in L*(p), w(T)=1, b=1, b =Ufb=¢

@ Let u, be the spectral measure of U, corresponding to the vector b.

e Want to find a unitary operator V, : L?(1) — L?(p4) such that
Vab =1 € L?(1) and such that

VaUy = MV,

Case of self-adjoint perturbations was treated earlier by Liaw—Treil in [2].
This case is treated similarly.
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Pretending to be a physysist

Let V, be an integral operator with kernel K (z,¢).
e U, = M, + bby, so we can rewrite the relation VU, = M.V, as

o We know that V,b =1, by = &, so V,bb} is an integral operator
with kernel &

K(z,6)§ = 2K(2,§) — (a = 1)¢.

@ Solving for K we get
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First representation for V,

Theorem (Repesentation of V,)

The unitary operator V, : L?(u) — L?(j1a) such that Vob =1 € L?(ua)
and such that

VoUy = MYV,
is given by

val(e) = 1)+ -a) [ TO=LE au

for f € CY(T)
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Idea of the proof

o Recalling that U, = U; + (o — 1)bb} rewrite YV, Uy = M.V, as

VaUl = MzVa + (1 - OZ)(Vab)bT
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Idea of the proof

o Recalling that U, = U; + (o — 1)bb} rewrite YV, Uy = M.V, as

Vv, U,uy = MV, Ui + (1 — Oé)(Vab)b’fUl.
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Idea of the proof

o Recalling that U, = U; + (o — 1)bb} rewrite YV, Uy = M.V, as
Vv, U,uy = MV, Ui + (1 — Oé)(Vab)b’fUl.

o Right multiplying by U; and applying the above “black” identity to
V., U1 in the right hand side, we get

VoU? = M2Vy + (1 — a) [(M.Vab)b} + (Vab)biU]
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Idea of the proof

o Recalling that U, = U; + (o — 1)bb} rewrite YV, Uy = M.V, as
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o Right multiplying by U; and applying the above “black” identity to
V., U1 in the right hand side, we get
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VU = MIMVo + (1—a) > MF (Vab)biUT "
k=1
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Idea of the proof

o Recalling that U, = U; + (o — 1)bb} rewrite YV, Uy = M.V, as
Vv, U,uy = MV, Ui + (1 — Oé)(Vab)b’fUl.

o Right multiplying by U; and applying the above “black” identity to
V., U1 in the right hand side, we get

VoU? = M2Vy + (1 — a) [(M.Vab)b} + (Vab)biU]
@ By induction we get
VU = MIMVo + (1—a) > MF (Vab)biUT "
k=1

@ Applying to b =1 and summing geometric progression we get the
formula for f(£) =¢&™, n > 0.
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A universal representation formula

Idea of the proof, continued

@ To get the formula for Z” we use VU = MzV,, which is obtained
by taking adjoint in VU, = M, V,,.

o Extend the formula from trig. polynomials to f € C' by standard
approximation reasoning.
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Idea of the proof, continued

@ To get the formula for Z” we use VU = MzV,, which is obtained
by taking adjoint in VU, = M, V,,.

o Extend the formula from trig. polynomials to f € C' by standard
approximation reasoning.

A general statement

Rank one commutation relations like
VM¢ = M,V + cb]

usually give singular integral representations for V.
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A universal representation formula

Singular integral operators

Recall that V, f(2) = f(2) + (1 — a)/ f(?_g(z)du(f)
T — GR

Theorem (Regularization of the weighted Cauchy transform)

The integral operators T, = T : L?(u) — L?(uq) with kernels
1/(1 —7r€z), r € Ry \ {1} are uniformly bounded.
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Singular integral operators

dpu(§)

Recall that Vo f(2) = f(2) + (1 — a)/ W
T — GR

Theorem (Regularization of the weighted Cauchy transform)

The integral operators T, = T : L?(u) — L?(uq) with kernels
1/(1 —7r€z), r € Ry \ {1} are uniformly bounded.

o Let Tf(2) := J; %du(f); well defined for z ¢ supp f
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Singular integral operators

dpu(§)

Recall that Vo f(2) = f(2) + (1 — a)/ W
T — GR

Theorem (Regularization of the weighted Cauchy transform)

The integral operators T, = T : L?(u) — L?(uq) with kernels
1/(1 —7r€z), r € Ry \ {1} are uniformly bounded.

o Let Tf(2) := J; %du(f); well defined for z ¢ supp f
@ Since V, is bounded, we get for f,g € C*, supp f Nsuppg = @

<
(Tfa g)LQ(HQ) — C”fHLQ(/,L) HgHLQ(,U«a)



Spectral representation of unitary perturbations
A universal formula for the adjoint Clark operator Adjoint Clark operator, freedom of choice
A universal representation formula

Singular integral operators

dpu(§)

Recall that Vo f(2) = f(2) + (1 — a)/ f(fl)—g(z)
T — GR

Theorem (Regularization of the weighted Cauchy transform)

The integral operators T, = T : L?(u) — L?(uq) with kernels
1/(1 —7r€z), r € Ry \ {1} are uniformly bounded.

o Let Tf(2) := J; %du(f); well defined for z ¢ supp f
@ Since V, is bounded, we get for f,g € C*, supp f Nsuppg = @

<
(Tfa g)LQ(ua) — C”fHLQ(/,L) HgHLQ(,u,a)

o By a theorem of Liaw—Treil [3] this implies uniform boundedness of
the regularizations T, if the measures 1 and . do not have
common atoms (U; and U, do not have common eigenvalues).
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Singular integral operators

@ Uniform boundedness of T;. together with u,-a.e. convergence of
T, f imply existence of w.o.t.-limits T¢ = w.o.t.-lim, ;5 7.

@ Using T'{ we can rewrite the representation

)

Vafe) = 1)+ (1= o) [ TE= D g

as
Vof =[1—(1—a)Ty°1)f + (1 — a)TL% f.

@ (10 )a-a.e. convergence follows from classical results about jumps of
Cauchy transform; (4 )s-a.e. convergence can be obtained from
Poltoratskii's theorem about boundary values of the normalized
Cauchy transform, see [7].

@ For the weak convergence it is enough to have u,-a.e. convergence
of T,.f for f € C', which can be proved using elementary methods.
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Adjoint Clark operator, freedom of choice

o Let Uy =Ui + (y — 1)bb}, 7| < 1;
o U, = M@W, ./\/197 = PICgsz ‘Kev

Adjoint Clark operator: a unitary @7 : L2(p) — K. such that

OIU, = My, &F (+)

Defect spaces Dy, and QU; are spanned by the vectors b; = £ and
b =1 respectively.

o Let Dy, and D be spanned by ¢f and 7, ||cf|| = [|¢7]| = 1.
Y
Relation () implies that ®*b = ac?, ®Xby = fc], |a| = 8] = 1.

Except for the case v = 0 and p = |dz|/2m, [ is uniquely defined by
a.
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Defect vectors of My_ in the Sz.-Nagy—Foias transcription

@ Defect subspaces D v, and D xq; are spanned by ¢; and ¢,
lell = flen] = 1,

() = (1-10(0)2) " ( : _(90<)(20(()) >

i) = (1= o) (IO,

@ Vectors ¢7 and | agree, i.e. b= ¢ implies b = ¢

(not considering the exceptional case v =0, pu = |dz|/2m)
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Theorem (A “universal” representation formula)

7| < 1. Assume that the
c]|| =1 agree. Let
1

Let 0, be a characteristic function of U,
g —
vectors ¢7 € ZDM;W, ¢ € DMy, Il =

o* =L : L?(p) — Ko, be a unitary operator satisfying
B0, = My, @3,

and such that ®*b = 7 (so by = ¢ ).
Then for all f € C(T)

8! f(2) = A, (2)f(2) + B (2)

where A (z) = ¢1(2), By(2) = ¢7(2) — z¢] (2).

This theorem works in any transcription of the model.
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Idea of the proof

e Write, denoting cj(2) := zc] (2),

’Y

Mg, = M. = &3(e})" — 6-(0) ()"
= M. + (¢ = &))"

Rank one perturbation of M,! Should get at most rank 2
commutation relation.
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Idea of the proof

e Write, denoting cj(2) := zc] (2),

’Y

My, =M, — 03(01) Hv(o)cw(cfly)*
= M, + (v¢" — ¢3)(c])"

Rank one perturbation of M,! Should get at most rank 2
commutation relation.
o Using this identity rewrite ®1U, = My P as

DUy 4 (v — 1)by = M ®F + (y¢” — ¢3)b]

or equivalently
DUy = M D + (7 — c3)by.
We got rank one commutation relation!
o Commutation relations imply integral representation.
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Idea of the proof, difficulties

@ Formally the right side of
PUy = M. P} + (7 — c3)bi. (*)
acts from L?(u) to outside of K.
o To get @;En we use the commutant relation
(P:Ul* = ng)i; + (C’ly — Mgc7)b*
= ng)j; — ME(C'Y — Cg)b*,

which cannot be obtained by taking the adjoint of (x).

o It is a miracle that the formulas for ®2¢" and <1>:';E" agree.
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Cauchy type operators and regularizations

o For f e L%(u) let

f€)
Tl1l—¢2

Rfp(z) = dp(§)
and let T f be the non-tangential boundary values of Rfu(z),
|z| < 1.

o Let T;. : L*(u) — L*(v), v = |B|* be the integral operators with
kernel 1/(1 —7€z), r € Ry \ {1}.

e Operators T} : L?(u) — L*(v) (equivalently MgT, : L?(u) — L?)
are uniformly in r bounded.

o T, =w.o.t- lim 7, (as operators L?(u) — L?(v)); equivalently,
r—1-
MpT, = w.o.t.- lim MgT, (as operators L?(u) — L?)

r—1-
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Theorem

The vector g := (1 — |y|?)'/2®% f can be represented in the
Sz.-Nagy—Foias transcription as

_ 0 S
I < (7 - (- DT+ 1A, )H < (7= 1)A, >T+f

(mbn )i R
=| 196 _ F+HU e ) T, f
|1—790|T+1 Ao (7 o 1)( ‘1@‘79)(” A0

for f € L?(u).

@ Since ﬁ =1 — 6y, the top floor g; is in the Hardy space H?.

@ For v =0 we get

er 0 1/T1
(I)Of B ( (T+]_)A0 >f+ ( _A+0 )T+f
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Idea of the proof

@ Take the representation

51() = 4 + B,() [ HET D ey, zem,

for f € CL.



Representation for the Sz.-Nagy—Foias transcription
Representation in the de Branges—Rovnyak transcription
Representations in different transcriptions Bounds on the normalized Cauchy transforms

Idea of the proof

@ Take the representation

51() = 4 + B,() [T D ey, zem,

for f € CL.
@ Replace the kernel 1/(1 —£2) by 1/(1 — r€2);
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Idea of the proof

@ Take the representation

45+ B [ L=y, zer

for f € CL.
@ Replace the kernel 1/(1 —£2) by 1/(1 — r€2);
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Idea of the proof

@ Take the representation

45+ B [ L=y, zer

for f € CL.
@ Replace the kernel 1/(1 —£2) by 1/(1 — r€2);
@ take w.o.t. limit of the right hand side as r — 1.

o Definitely we have uniform convergence to ®7 f(z) asr — 17.
e On the other hand, splitting the integral into 2 we get

Ayf +ByTof — By STy

as the w.o.t.-limit in B(L?(u), L?).
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Idea of the proof

@ Take the representation

45+ B [ L=y, zer

for f € CL.
@ Replace the kernel 1/(1 —£2) by 1/(1 — r€2);
@ take w.o.t. limit of the right hand side as r — 1.

o Definitely we have uniform convergence to ®7 f(z) asr — 17.
e On the other hand, splitting the integral into 2 we get

Ayf +ByTof — By STy

as the w.o.t.-limit in B(L?(u), L?).

@ Substituting expressions for A, and B., we get the result.
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Recall: de Branges—Rovnyak transcription

@ [Cy in the de Branges—Rovnyak transcription is given by

{<§+> g €H? g € H?, 9—99+€AL2}-

@ Recall that in the Sz.-Nagy—Foias transcription ( il > € Ky iff
2

g1 =g+ € H?, gy € closAL?, g— :=0g1 + Ags € H?;

the last inclusion means that ( g1 > 1 < 0 >H2.
92 A

@ g1 = g4+ and g_ are exactly the same as in the de Branges—Rovnyak
transcription.
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Representation in the de Branges—Rovnyak transcription

@ We had

Tof _ (=P Ty
T,1 1—70y T41

g=gr=010-ph""01 +70,)

1— |21 -6
_ Wll)e( 0)T+f'
— 7%
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Representation in the de Branges—Rovnyak transcription

@ We had

Tof _ (=P Ty
T,1 1—70y T41

g=gr=010-ph""01 +70,)

1— |21 -6
_ Wll)e( 0)T+f'
— 7%

e For g_ = g7 we get

T_f _ (=P T_f
T-1  1—~0, T_1

g =120, +7)

_A=hP'"a- 5o)T_f_
1 —’790
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Representation in the de Branges—Rovnyak transcription

@ We had

Tof _ (=P Ty
T,1 1—70y T41

g=gr=010-ph""01 +70,)

1— |21 -6
_ Wll)e( 0)T+f'
— 7%

e For g_ = g7 we get

T_f _(=h)"0 T-f
T-1  1—~0, T_1

g =120, +7)

_A=hP'"a- 5o)T_f_
1 —’790
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Clark operator @,

@ the non-tangential boundary values of the function

-7
Z = w|2)1/2gl(z), zeD

exist and coincide with f5 ug-a.e. on T.
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Clark operator @,

@ the non-tangential boundary values of the function

-7
Z = w|2)1/2gl(z), zeD

exist and coincide with f5 ug-a.e. on T.

Follows from representation
(1= Ty f
1—-76y T41
and Poltoratskii's theorem that boundary values of Rfu(z)/Ru(z),
z € D exist and equal f ug-a.e.; also uses 0(z) =1 pg-a.e.

91 =
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Clark operator @,

@ the non-tangential boundary values of the function
1-7
Z 7(1_w|2)1/291(z), zeD

exist and coincide with f5 ug-a.e. on T.

Proof uses Poltoratskii's theorem.
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Clark operator @,

@ the non-tangential boundary values of the function
1-7
Z 7(1_w|2)1/291(z), zeD

exist and coincide with f5 ug-a.e. on T.
Proof uses Poltoratskii's theorem.

@ For the “absolutely continuous” part f, of f

1 —76q 1—’)/90
1— [y 2w, = + 7o
( %) 1_9091 1_009

a.e. on T; here, recall, g_ := g10, + Aygo € H2.
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Clark operator @,

@ the non-tangential boundary values of the function
1-7
Z 7(1_w|2)1/291(z), zeD

exist and coincide with f5 ug-a.e. on T.
Proof uses Poltoratskii's theorem.

@ For the “absolutely continuous” part f, of f
1 —76q 1-— ’)/90
1— [y 2wf, = + —g_
(1= ) 2 = T+ 0

a.e. on T; here, recall, g_ := g10, + Aygo € H2.

Proof uses representation for g; and g_ and standard jump formulas
for Cauchy integrals.
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Bounds on the normalized Cauchy transform

e A. Poltoratskii, [7]: the normalized Cauchy transform f — % acts
L3(p) — L.

e Equivalently: Ty : L?(u) — L*(v), v = 1/|T+ 112 = |1 — 6p|*.
(because 1/T4:1 =1 — 6y).

e Follows from our result: T : L?(u) — L?(wy),

V9 = |BQ|2 = |1 - 90|2 + A(Q) = 2Re(1 - 90).

vp can be much bigger than v: v < v3 when 6y(2) — 1
non-tangentially.
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Exterior normalized Cauchy transform

o “Exterior” normalized Cauchy transform: f +— —%{
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Exterior normalized Cauchy transform

] HSRL] B . T_f
@ “Exterior” normalized Cauchy transform: f — 7.

o Generally does not act L?(u) — L2
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Exterior normalized Cauchy transform

o “Exterior” normalized Cauchy transform: f +— —%{

o Generally does not act L?(u) — L2
Indeed, 1/T-1 =60y/(6p — 1), so

T_f 6p—1
T 1 g

T_f.

If Oy is small near i, so 1/0y ¢ L? there, and u(FE) > 0 in a small
neighborhood E 3 1, then [T_1p| > & > 0 near i, so ~=f ¢ L.
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Exterior normalized Cauchy transform

o “Exterior” normalized Cauchy transform: f +— —%{

o Generally does not act L?(u) — L2
Indeed, 1/T-1 =60y/(6p — 1), so

T_f 6p—1
T 1 g

T_f.

If Oy is small near i, so 1/0y ¢ L? there, and u(FE) > 0 in a small
neighborhood E 3 1, then [T_1p| > & > 0 near i, so ~=f ¢ L.
@ The operator

T_f

6,
[ 077

acts L?(pu) — L2.
Is it correct “exterior” normalized Cauchy transform?
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Comparison with Clark model

D. Clark started with model operator Ky,
(0 inner <= is purely singular) and considered it all unitary rank
one perturbations.

In our model it corresponds considering operator
Uy, =U; + (v — 1)bb], v = —0(0), then all unitary rank one
perturbations are exactly the operators Uy, |a| = 1.

Clark measures fi,, are the spectral measures of the operators Ul,.
If 6(0) = 0 them i, = 1o and the Clark operators coincide with
ours.

If 6(0) # 0 1o is a multiple p,, and the operators differ by a factor
c(7)-

In Clark model i, is not a probability measure, |c(+y)| compensate
for that.
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Comparison with Sarason’'s model

e D. Sarson in [8] presented a unitary operator between
H?(p) =span{z" : n € Z,} and the de Branges space H(0); like
Clark, he started with a model operator in ICy
@ The space H(0) C H? is defined as a range (I — TpTy-)'/2H?
endowed with the range norm (the minimal norm of the preimage);
T, : H> — H? is a Toeplitz opearator, T,,f = Pp2(¢f).
o If 0 is an extreme point of the unit ball in H*®
(/ In(1—0})|dz| = —c0 <= /lnw|dz| = —o0, w density of )
thgn H(0) is canonically isomorphig to the model space Ky in the
de Branges—Rovnyak transcription, see [6].
@ His measure yu coinsides with the Clark measure fiq,
1475
o= ——;
1+7

the formulas are the same as Clark’s.
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