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A classical problem

A= {X}n CR. Is {eP*}y cp complete in L2(0,a)?

Theorem (Paley-Wiener, 1934)

RN > D(A) = limsup A0 (0:))

X—$00 X

Example: (Koosis, 1959) There exists A C R such that D(A) = 0 but
R(A) = oc.
[Inl?

H—Tt(O,/n) < 00. It is long otherwise.

I disjoint intervals is short if ) _
n

D*(N\) = sup{d : Jlong {lp} s.t. #£(AN 1) > d|ln|}

Theorem (Beurling & Malliavin)

R(A) = D*(A)
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In 2005, Makarov and Poltoratski reformulated the results of Beurling and
Malliavin, using Model Spaces and Toeplitz kernels.
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In 2005, Makarov and Poltoratski reformulated the results of Beurling and
Malliavin, using Model Spaces and Toeplitz kernels.

Restatement

If A is not complete in L2(0, ), then [ f(t)e=rtdt = 0= F(\,).
f|/\ = 0 i.e. Ais not a uniqueness set in PW,.
(Uniqueness set: F,G € PW,and F=Gon A= F=G.)

R(A) = sup{a: KerTs., = 0},

S(z) = e and Jj is a meromorphic inner function with {J = 1} = A.
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Model Spaces

Paley-Wiener Space
PW, = S72[H? & §%213],

iz

where 5(z) = e
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where 5(z) = e

| A\

Model Spaces

Ks2a = H?© S?H?
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Model Spaces

Paley-Wiener Space

PW, = 5—3[7_[2 o 5237_[2],

where S(z) = e?

v

Model Spaces

Ks2a = H?© S?H?
Ke = H?>cOH2

What about uniqueness sets of Kg?
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Meromorphic Inner Functions (MIFs)

Definition

An MIF © is a bounded analytic function on C,, with a meromorphic
continuation on C such that |©] =1 on R.
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Meromorphic Inner Functions (MIFs)

Definition
An MIF © is a bounded analytic function on C,, with a meromorphic
continuation on C such that |©] =1 on R.

eg. By(z) = Z=%(w € C,), 2% (a > 0).

Also a spectrum

{x € R|O(x) = e/*}
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Schrodinger Operators

Consider the Schrodinger operator
u— —u + qu

on L?(a,b).

Rishika Rupam (joint work with Mishko Mitke Inner Functions and Inverse Spectral theory March 10th, 2016 6 /13



Schrodinger Operators

Consider the Schrodinger operator
u— —u + qu
on L?(a,b).

cos(a)u(a) +sin(a)d’(a) = 0 (1)
cos(B)u(b) +sin(B)d'(b) = O. (2)
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Let L = (g, B).

The data (q_, (L)) determines L if for any Schrodinger operator [ with
potential g,
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Let L = (g, B).

a
e Y,A__Jc b
Q-

The data (q_, (L)) determines L if for any Schrodinger operator [ with
potential g,

q-=G o(l)=0o(l) > q=§
Q: For which value of ¢ does (g, o(L)) determine L?
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The data (q_, (L)) determines L if for any Schrodinger operator [ with
potential g,

¢ =G o(l)=0(l) = q=3
Q: For which value of ¢ does (g, o(L)) determine L?

@ Hochstadt-Liebermann: If ¢ = (a+ b), then (g—, o(L)) determines
L.
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@ Hochstadt-Liebermann: If ¢ = (a+ b), then (g—, o(L)) determines

L.
@ Borg: If ¢ =0, then we require 2 spectra to determine L.

Rishika Rupam (joint work with Mishko Mitke Inner Functions and Inverse Spectral theory March 10th, 2016 7/13



The data (q_, (L)) determines L if for any Schrodinger operator [ with
potential g,

q-=G o(l)=0o(l) > q=§
Q: For which value of ¢ does (g, o(L)) determine L?
@ Hochstadt-Liebermann: If ¢ = (a+ b), then (g—, o(L)) determines
L.
@ Borg: If ¢ =0, then we require 2 spectra to determine L.
© Del-Rio, Gesztezy, Simon:
(i) c=32(a+ b) & half the spectrum is enough to determine L.
(ii) c=3(a+ b) and 1} spectrum is enough to determine L.
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Fix 8. For A € C, let uy be a solution to —u” + qu = Au and (2).

m(\) = Zigg ... (Weyl m-function)
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Fix 8. For A € C, let uy be a solution to —u” + qu = Au and (2).

m(\) = Zigg ... (Weyl m-function)

Borg: The Weyl m-function determines the potential i.e., if g; and go have
m-functions m; and my respectively. Then my = my = g1 = g» a.e.

O(\) = nmm ... (Weyl inner-function)

Remark 1: The Weyl inner function determines the potential.
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Fix 8. For A € C, let uy be a solution to —u” + qu = Au and (2).

m(\) = Zigg ... (Weyl m-function)

Borg: The Weyl m-function determines the potential i.e., if g; and go have
m-functions m; and my respectively. Then my = my = g1 = g» a.e.
m(\) — i

O(\) = o) (Weyl inner-function)

Remark 1: The Weyl inner function determines the potential.
Remark 2: (L) = o(©).
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o
L2
o—

e 0(0_0,4)=0(L)

0g.=§.=6_=6,

o [g—,0(L)] determines q if [O_,0(©_0.)] determine O
(ie. fr6=0_6,, ifc(®)=0(0)=06,=06,)
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Q: Let © = ®V. Does [, 0(O)] determine W? i.e., can there exist a
different © = ®WVy, with 0(©) = 0(©2)?
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Q: Let © = ®V. Does [, 0(O)] determine W? i.e., can there exist a
different © = ®WV5, with 0(©) = 0(02)7

Toy problem

Let b(z) = 24, © = b2. 0(©) = {0, c0}.

my
Q: Does [b, 7(©)] determine © = b?, i.e., can there exist ¢ inner such

that o(by)) = 0(©) = {0,00}?
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Q: Let © = ®V. Does [, 0(O)] determine W? i.e., can there exist a
different © = ®WV5, with 0(©) = 0(02)7

Toy problem

Let b(z) = 4, © = B, 6(©) = {0, 00}.

Q: Does [b, 7(©)] determine © = b?, i.e., can there exist ¢ inner such
that o(by)) = 0(©) = {0, 0}?
Ans: 1)(z) = 272 for a > 0.

z+ia
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Q: Let © = ®V. Does [, 0(O)] determine W? i.e., can there exist a
different © = ®WV5, with 0(©) = 0(02)7

Toy problem

Let b(z) = 4, © = B, 6(©) = {0, 00}.

Q: Does [b, 7(©)] determine © = b?, i.e., can there exist ¢ inner such
that o(by)) = 0(©) = {0, 0}?
Ans: 1)(z) = 272 for a > 0.

z+ia

Q: Let © = V. [®,0(O)] determines V < o(©) determines V.

Let A C R. Does A define W? i.e. if there is another MIF W5 with
argV =argWVoon A & ¥ =Vy,?
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® is a Weyl inner function of a Schrodinger operator with potential in
L?(a, b). A is a sequence on R.
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® is a Weyl inner function of a Schrodinger operator with potential in
L?(a, b). A is a sequence on R.

Theorem (Mitkovski, R.)

The sequence N\ uniquely defines ® (in the class of Schrédinger Weyl inner
functions in L?(a, b)) if and only if the set AU {x} is a uniqueness set for
K<12>2' for all x € R\ A.
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Let L = (q, o, B).

0+

;Y_JC h
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Let L = (q, o, B).

0+

Theorem (Mitkovski, R.)

If D*(N) > 2(c — b), then [q—, ] determines q. If D*(N) < 2(c — b), then
there is a different potential § such that q_ = §_ that has the same
spectral data on A.

Corollary: Results of Del Rio, Gesztesy, Simon.
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Thank you!
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