Inner Functions and Inverse Spectral theory

Rishika Rupam (joint work with Mishko Mitkovski)

Labex CEMPI, Université de Lille 1

March 10th, 2016

$$\Lambda = \{\lambda_n\}_n \subset \mathbb{R}.$$

$$\Lambda = \{\lambda_n\}_n \subset \mathbb{R}$$
. Is $\{e^{i\lambda_n x}\}_{\lambda_n \in \Lambda}$

$$\Lambda=\{\lambda_n\}_n\subset\mathbb{R}. \text{ Is } \{e^{i\lambda_nx}\}_{\lambda_n\in\Lambda} \text{ complete in } L^2(0,a)?$$

$$\Lambda = \{\lambda_n\}_n \subset \mathbb{R}$$
. Is $\{e^{i\lambda_n x}\}_{\lambda_n \in \Lambda}$ complete in $L^2(0,a)$?

Theorem (Paley-Wiener, 1934)

$$R(\Lambda) \geq \bar{D}(\Lambda) = \limsup_{x \to \infty} \frac{\#(\Lambda \cap (0, x))}{x}$$

$$\Lambda = \{\lambda_n\}_n \subset \mathbb{R}$$
. Is $\{e^{i\lambda_n x}\}_{\lambda_n \in \Lambda}$ complete in $L^2(0,a)$?

Theorem (Paley-Wiener, 1934)

$$R(\Lambda) \geq \bar{D}(\Lambda) = \limsup_{x \to \infty} \frac{\#(\Lambda \cap (0, x))}{x}$$

Example: (Koosis, 1959) There exists $\Lambda \subset \mathbb{R}$ such that $\bar{D}(\Lambda) = 0$ but $R(\Lambda) = \infty$.

$$\Lambda = \{\lambda_n\}_n \subset \mathbb{R}$$
. Is $\{e^{i\lambda_n x}\}_{\lambda_n \in \Lambda}$ complete in $L^2(0,a)$?

Theorem (Paley-Wiener, 1934)

$$R(\Lambda) \geq \bar{D}(\Lambda) = \limsup_{x \to \infty} \frac{\#(\Lambda \cap (0, x))}{x}$$

Example: (Koosis, 1959) There exists $\Lambda \subset \mathbb{R}$ such that $\bar{D}(\Lambda) = 0$ but $R(\Lambda) = \infty$.

 I_n disjoint intervals is short if $\sum_n \frac{|I_n|^2}{1 + dist(0, I_n)} < \infty$. It is long otherwise.

$$D^*(\Lambda) = \sup\{d : \exists \log \{I_n\} \text{ s.t. } \#(\Lambda \cap I_n) \ge d|I_n|\}$$

$$\Lambda = \{\lambda_n\}_n \subset \mathbb{R}$$
. Is $\{e^{i\lambda_n x}\}_{\lambda_n \in \Lambda}$ complete in $L^2(0,a)$?

Theorem (Paley-Wiener, 1934)

$$R(\Lambda) \geq \bar{D}(\Lambda) = \limsup_{x \to \infty} \frac{\#(\Lambda \cap (0, x))}{x}$$

Example: (Koosis, 1959) There exists $\Lambda \subset \mathbb{R}$ such that $\bar{D}(\Lambda) = 0$ but $R(\Lambda) = \infty$.

 I_n disjoint intervals is short if $\sum_n \frac{|I_n|^2}{1 + dist(0, I_n)} < \infty$. It is long otherwise.

$$D^*(\Lambda) = \sup\{d : \exists \text{ long } \{I_n\} \text{ s.t. } \#(\Lambda \cap I_n) \ge d|I_n|\}$$

Theorem (Beurling & Malliavin)

$$R(\Lambda) = D^*(\Lambda)$$

Restatement

If Λ is not complete in $L^2(0,a)$, then $\int_{-a}^a f(t)e^{-i\lambda_n t}dt=0$

Restatement

If Λ is not complete in $L^2(0,a)$, then $\int_{-a}^a f(t)e^{-i\lambda_n t}dt=0=\hat{f}(\lambda_n)$.

Restatement

If Λ is not complete in $L^2(0,a)$, then $\int_{-a}^a f(t)e^{-i\lambda_n t}dt=0=\hat{f}(\lambda_n)$.

$$\hat{f}|_{\Lambda}=0$$

Restatement

If Λ is not complete in $L^2(0,a)$, then $\int_{-a}^a f(t)e^{-i\lambda_n t}dt = 0 = \hat{f}(\lambda_n)$. $\hat{f}|_{\Lambda} = 0$ i.e. Λ is not a uniqueness set in PW_a . (Uniqueness set: $F, G \in PW_a$ and F = G on $\Lambda \Rightarrow F \equiv G$.)

$$R(\Lambda) = \sup\{a : KerT_{\bar{S}^a I_{\Lambda}} = 0\},$$

 $S(z) = e^{iz}$ and J_{Λ} is a meromorphic inner function with $\{J = 1\} = \Lambda$.

Restatement

If Λ is not complete in $L^2(0,a)$, then $\int_{-a}^a f(t)e^{-i\lambda_n t}dt = 0 = \hat{f}(\lambda_n)$. $\hat{f}|_{\Lambda} = 0$ i.e. Λ is not a uniqueness set in PW_a . (Uniqueness set: $F, G \in PW_a$ and F = G on $\Lambda \Rightarrow F \equiv G$.)

$$R(\Lambda) = \sup\{a : KerT_{\bar{S}^a I_{\Lambda}} = 0\},$$

 $S(z) = e^{iz}$ and J_{Λ} is a meromorphic inner function with $\{J = 1\} = \Lambda$.

Restatement

If Λ is not complete in $L^2(0,a)$, then $\int_{-a}^a f(t)e^{-i\lambda_n t}dt = 0 = \hat{f}(\lambda_n)$. $\hat{f}|_{\Lambda} = 0$ i.e. Λ is not a uniqueness set in PW_a . (Uniqueness set: $F, G \in PW_a$ and F = G on $\Lambda \Rightarrow F \equiv G$.)

$$R(\Lambda) = \sup\{a : KerT_{\bar{S}^a I_{\Lambda}} = 0\},$$

 $S(z) = e^{iz}$ and J_{Λ} is a meromorphic inner function with $\{J = 1\} = \Lambda$.

Paley-Wiener Space

$$PW_a = S^{-a}[\mathcal{H}^2 \ominus S^{2a}\mathcal{H}^2],$$

where $S(z) = e^{iz}$

Paley-Wiener Space

$$PW_a = S^{-a}[\mathcal{H}^2\ominus S^{2a}\mathcal{H}^2],$$
 where $S(z) = \mathrm{e}^{\mathrm{i} z}$

Model Spaces

$$K_{S^{2a}} = \mathcal{H}^2 \ominus S^{2a}\mathcal{H}^2$$

Paley-Wiener Space

$$PW_a = S^{-a}[\mathcal{H}^2\ominus S^{2a}\mathcal{H}^2],$$
 where $S(z) = \mathrm{e}^{\mathrm{i} z}$

Model Spaces

$$\begin{array}{lcl} {\cal K}_{S^{2a}} & = & {\cal H}^2 \ominus S^{2a} {\cal H}^2 \\ {\cal K}_\Theta & = & {\cal H}^2 \ominus \Theta {\cal H}^2. \end{array}$$

Paley-Wiener Space

$$PW_a = S^{-a}[\mathcal{H}^2\ominus S^{2a}\mathcal{H}^2],$$
 where $S(z) = \mathrm{e}^{\mathrm{i} z}$

Model Spaces

$$K_{S^{2a}} = \mathcal{H}^2 \ominus S^{2a}\mathcal{H}^2$$

 $K_{\Theta} = \mathcal{H}^2 \ominus \Theta \mathcal{H}^2.$

What about uniqueness sets of K_{Θ} ?

Definition

An MIF Θ is a bounded analytic function on \mathbb{C}_+ , with a meromorphic continuation on \mathbb{C} such that $|\Theta|=1$ on \mathbb{R} .

Definition

An MIF Θ is a bounded analytic function on \mathbb{C}_+ , with a meromorphic continuation on \mathbb{C} such that $|\Theta| = 1$ on \mathbb{R} .

eg.
$$B_W(z) = \frac{z-w}{z-\overline{w}} (w \in \mathbb{C}_+),$$

Definition

An MIF Θ is a bounded analytic function on \mathbb{C}_+ , with a meromorphic continuation on \mathbb{C} such that $|\Theta| = 1$ on \mathbb{R} .

eg.
$$B_W(z)=rac{z-w}{z-\overline{w}}(w\in\mathbb{C}_+)$$
, e^{iaz} $(a\geq 0)$.

Definition

An MIF Θ is a bounded analytic function on \mathbb{C}_+ , with a meromorphic continuation on \mathbb{C} such that $|\Theta| = 1$ on \mathbb{R} .

eg.
$$B_W(z)=rac{z-w}{z-\overline{w}}(w\in\mathbb{C}_+),\;e^{iaz}\;(a\geq0).$$

Spectrum

$$\sigma(\Theta) = \{ x \in \mathbb{R} | \Theta(x) = 1 \}.$$

Definition

An MIF Θ is a bounded analytic function on \mathbb{C}_+ , with a meromorphic continuation on \mathbb{C} such that $|\Theta| = 1$ on \mathbb{R} .

eg.
$$B_W(z)=rac{z-w}{z-\overline{w}}(w\in\mathbb{C}_+),\;e^{iaz}\;(a\geq0).$$

Spectrum

$$\sigma(\Theta) = \{x \in \mathbb{R} | \Theta(x) = 1\}.$$

Also a spectrum

$$\{x \in \mathbb{R} | \Theta(x) = e^{i\alpha} \}$$

Schrödinger Operators

Consider the Schrödinger operator

$$u \rightarrow -u'' + qu$$

on $L^2(a,b)$.

Schrödinger Operators

Consider the Schrödinger operator

$$u \rightarrow -u'' + qu$$

on $L^{2}(a, b)$.

$$\cos(\alpha)u(a) + \sin(\alpha)u'(a) = 0 \tag{1}$$

$$\cos(\beta)u(b) + \sin(\beta)u'(b) = 0. \tag{2}$$

The data $(q_-, \sigma(L))$ determines L if for any Schrödinger operator \tilde{L} with potential \tilde{q} ,

$$q_{-} = \tilde{q}_{-}, \ \sigma(L) = \sigma(\tilde{L}) \Rightarrow q \equiv \tilde{q}$$

The data $(q_-, \sigma(L))$ determines L if for any Schrödinger operator \tilde{L} with potential \tilde{q} ,

$$q_{-}= ilde{q}_{-},\ \sigma(L)=\sigma(ilde{L})\Rightarrow q\equiv ilde{q}$$

Q: For which value of c does $(q_-, \sigma(L))$ determine L?

The data $(q_-, \sigma(L))$ determines L if for any Schrödinger operator \tilde{L} with potential \tilde{q} ,

$$q_{-}= ilde{q}_{-},\ \sigma(L)=\sigma(ilde{L})\Rightarrow q\equiv ilde{q}$$

Q: For which value of c does $(q_-, \sigma(L))$ determine L?

1 Hochstadt-Liebermann: If $c = \frac{1}{2}(a+b)$, then $(q_-, \sigma(L))$ determines L.

The data $(q_-, \sigma(L))$ determines L if for any Schrödinger operator \tilde{L} with potential \tilde{q} ,

$$q_{-}= ilde{q}_{-},\ \sigma(L)=\sigma(ilde{L})\Rightarrow q\equiv ilde{q}$$

Q: For which value of c does $(q_-, \sigma(L))$ determine L?

- Hochstadt-Liebermann: If $c = \frac{1}{2}(a+b)$, then $(q_-, \sigma(L))$ determines L.
- 2 Borg: If c = 0, then we require 2 spectra to determine L.

The data $(q_-, \sigma(L))$ determines L if for any Schrödinger operator \tilde{L} with potential \tilde{q} ,

$$q_{-}= ilde{q}_{-},\ \sigma(L)=\sigma(ilde{L})\Rightarrow q\equiv ilde{q}$$

Q: For which value of c does $(q_-, \sigma(L))$ determine L?

- **1** Hochstadt-Liebermann: If $c = \frac{1}{2}(a+b)$, then $(q_-, \sigma(L))$ determines
- 2 Borg: If c = 0, then we require 2 spectra to determine L.
- Oel-Rio, Gesztezy, Simon:
 - (i) $c = \frac{3}{4}(a+b)$ & half the spectrum is enough to determine L.
 - (ii) $c = \frac{1}{4}(a+b)$ and $1\frac{1}{4}$ spectrum is enough to determine L

$$m(\lambda) := \frac{u'_{\lambda}(a)}{u_{\lambda}(a)} \dots$$
 (Weyl m-function)

$$m(\lambda) := \frac{u'_{\lambda}(a)}{u_{\lambda}(a)} \dots$$
 (Weyl m-function)

Borg: The Weyl m-function determines the potential i.e., if q_1 and q_2 have m-functions m_1 and m_2 respectively. Then $m_1 = m_2 \Rightarrow q_1 = q_2$ a.e.

$$m(\lambda) := \frac{u'_{\lambda}(a)}{u_{\lambda}(a)} \dots$$
 (Weyl m-function)

Borg: The Weyl m-function determines the potential i.e., if q_1 and q_2 have m-functions m_1 and m_2 respectively. Then $m_1 = m_2 \Rightarrow q_1 = q_2$ a.e.

$$\Theta(\lambda) := \frac{m(\lambda) - i}{m(\lambda) + i} \dots$$
 (Weyl inner-function)

$$m(\lambda) := \frac{u'_{\lambda}(a)}{u_{\lambda}(a)} \dots$$
 (Weyl m-function)

Borg: The Weyl m-function determines the potential i.e., if q_1 and q_2 have m-functions m_1 and m_2 respectively. Then $m_1 = m_2 \Rightarrow q_1 = q_2$ a.e.

$$\Theta(\lambda) := \frac{m(\lambda) - i}{m(\lambda) + i}$$
 ... (Weyl inner-function)

Remark 1: The Weyl inner function determines the potential.

$$m(\lambda) := \frac{u'_{\lambda}(a)}{u_{\lambda}(a)} \dots$$
 (Weyl m-function)

Borg: The Weyl m-function determines the potential i.e., if q_1 and q_2 have m-functions m_1 and m_2 respectively. Then $m_1 = m_2 \Rightarrow q_1 = q_2$ a.e.

$$\Theta(\lambda) := \frac{m(\lambda) - i}{m(\lambda) + i}$$
 ... (Weyl inner-function)

Remark 1: The Weyl inner function determines the potential.

Remark 2: $\sigma(L) = \sigma(\Theta)$.

<ロト < 回 ト < 巨 ト < 巨 ト 、 巨 ・ り < ()

- $\sigma(\Theta_-\Theta_+) = \sigma(L)$
- $ullet q_- = ilde q_- \Rightarrow \Theta_- = ilde \Theta_+$
- $[q_-, \sigma(L)]$ determines q if $[\Theta_-, \sigma(\Theta_-, \Theta_+)]$ determine Θ_+ (i.e. for $\tilde{\Theta} = \Theta_- \tilde{\Theta}_+$, if $\sigma(\Theta) = \sigma(\tilde{\Theta}) \Rightarrow \Theta_+ = \tilde{\Theta}_+$)

Toy problem

Let
$$b(z) = \frac{z-i}{z+i}$$
, $\Theta = b^2$. $\sigma(\Theta) = \{0, \infty\}$.

Q: Does $[b, \sigma(\Theta)]$ determine $\Theta = b^2$, i.e., can there exist ψ inner such that $\sigma(b\psi) = \sigma(\Theta) = \{0, \infty\}$?

Toy problem

Let
$$b(z) = \frac{z-i}{z+i}$$
, $\Theta = b^2$. $\sigma(\Theta) = \{0, \infty\}$.

Q: Does $[b, \sigma(\Theta)]$ determine $\Theta = b^2$, i.e., can there exist ψ inner such that $\sigma(b\psi) = \sigma(\Theta) = \{0, \infty\}$?

Ans:
$$\psi(z) = \frac{z - ia}{z + ia}$$
 for $a > 0$.

Toy problem

Let $b(z) = \frac{z-i}{z+i}$, $\Theta = b^2$. $\sigma(\Theta) = \{0, \infty\}$.

Q: Does $[b, \sigma(\Theta)]$ determine $\Theta = b^2$, i.e., can there exist ψ inner such that $\sigma(b\psi) = \sigma(\Theta) = \{0, \infty\}$?

Ans: $\psi(z) = \frac{z - ia}{z + ia}$ for a > 0.

Q: Let $\Theta = \Phi \Psi$. $[\Phi, \sigma(\Theta)]$ determines $\Psi \Leftrightarrow \sigma(\Theta)$ determines Ψ .

Let $\Lambda \subset \mathbb{R}$. Does Λ define Ψ ? i.e. if there is another MIF Ψ_2 with arg $\Psi = \arg \Psi_2$ on $\Lambda \Leftrightarrow \Psi \equiv \Psi_2$?

 Φ is a Weyl inner function of a Schrödinger operator with potential in $L^2(a,b)$. Λ is a sequence on \mathbb{R} .

 Φ is a Weyl inner function of a Schrödinger operator with potential in $L^2(a,b)$. Λ is a sequence on \mathbb{R} .

Theorem (Mitkovski, R.)

The sequence Λ uniquely defines Φ (in the class of Schrödinger Weyl inner functions in $L^2(a,b)$) if and only if the set $\Lambda \cup \{x\}$ is a uniqueness set for $K^2_{\Phi^2}$, for all $x \in \mathbb{R} \setminus \Lambda$.

Theorem (Mitkovski, R.)

If $D^*(\Lambda) > 2(c-b)$, then $[q_-, \Lambda]$ determines q. If $D^*(\Lambda) < 2(c-b)$, then there is a different potential \tilde{q} such that $q_- = \tilde{q}_-$ that has the same spectral data on Λ .

Corollary: Results of Del Rio, Gesztesy, Simon.

Thank you!