Thermodynamic formalism of rational maps

JUAN RIVERA-LETELIER

U. of Rochester

Makarov fest Saas-Fee, Switzerland March 6-11, 2016

Integral means and geometric pressure

- Integral means spectrum;
- Quadratic Julia sets;
- 3 Geometric pressure function.

Integral means spectrum

 $\phi: \mathbb{D} \to \overline{\mathbb{C}}$: Univalent,

$$\phi(z) = \frac{1}{z} + b_1 z + b_2 z^2 + \cdots.$$

$$\beta_{\phi}(t) := \limsup_{r \to 1^{-}} \frac{\log \left(\int_{0}^{2\pi} \left| \phi'(re^{i\theta}) \right|^{t} d\theta \right)}{\left| \log(1-r) \right|}.$$

Integral means spectrum.

Integral means spectrum

 $\phi: \mathbb{D} \to \overline{\mathbb{C}}$: Univalent,

$$\phi(z) = \frac{1}{z} + b_1 z + b_2 z^2 + \cdots.$$

$$\beta_{\phi}(t) := \limsup_{r \to 1^{-}} \frac{\log \left(\int_{0}^{2\pi} \left| \phi'(re^{i\theta}) \right|^{t} d\theta \right)}{\left| \log(1-r) \right|}.$$

Integral means spectrum.

$$B(t) := \sup_{\Phi} \beta_{\Phi}(t).$$

Universal spectrum.

Conjeture: For
$$|t| < 2$$
, $B(t) = \frac{t^2}{4}$.

B(1) = LITTLEWOOD's constant;

 \Rightarrow Hölder domains and Brenan's conjectures.

LITTLEWOOD'S constant

$$\phi: \mathbb{D} \to \overline{\mathbb{C}}: \text{ Univalent, } \phi(z) = \frac{1}{z} + b_1 z + b_2 z^2 + \cdots.$$

$$\beta_{\phi}(1) = \limsup_{r \to 1^-} \frac{\log \text{Length} \left(\phi \left(\{ z \in \mathbb{D} : |z| = r \} \right) \right)}{|\log(1 - r)|}.$$

Length = Euclidean length in \mathbb{C} .

Theorem (LITTLEWOOD, 1925; CARLESON–JONES, 1992)
For every
$$\phi(z) = \frac{1}{z} + b_1 z + b_2 z^2 + \cdots$$
, $|b_n| \leq n^{B(1)}$.

Moreover, B(1) is the least constant with this property.

B(1) < 0.46, Hedenmalm–Shimorin, 2005. B(1) > 0.2308, Beliaev–Smirnov, 2010;

LITTLEWOOD'S constant

Figure : Equipotentials of $\phi(z) = \frac{1}{z} + z$, for $r = 1 - \frac{1}{2^2}$, $1 - \frac{1}{2^3}$, $1 - \frac{1}{2^4}$, and $1 - \frac{1}{2^5}$.

LITTLEWOOD'S constant

Figure: Extremal functions must have a fractal nature

Quadratic Julia sets

For $c \in \mathbb{C}$:

$$f_c: \mathbb{C} \to \mathbb{C}$$

 $z \mapsto f_c(z) := z^2 + c$

$$K_c := \left\{ z_0 \in \mathbb{C} : \left(f_c^n(z_0) \right)_{n \ge 1} \text{ is bounded} \right\}$$

Filled Julia set of f_c ;

= complement of the attracting basin of infinity.

$$J_c := \partial K_c$$

Julia set of f_c .

Quadratic Julia sets

Figure: Quadratic Julia set; from Tomoki Kawahira's gallery.

Quadratic Julia sets

Figure: Another quadratic Julia set, from Arnaud Chéritat's gallery.

The spectrum as a pressure function

 $c \in \mathbb{C}$: Such that J_c is connected;

 $\phi_c : \mathbb{D} \to \overline{\mathbb{C}}$: Conformal representation of $\overline{\mathbb{C}} \setminus K_c$,

$$\phi_c(z) = \frac{1}{z} + b_1 z + b_2 z^2 + \cdots$$

The universal spectrum can be computed with Julia sets of arbitrary degree (BINDER, JONES, MAKAROV, SMIRNOV).

The spectrum as a pressure function

 $c \in \mathbb{C}$: Such that J_c is connected;

 $\Phi_c: \mathbb{D} \to \overline{\mathbb{C}}$: Conformal representation of $\overline{\mathbb{C}} \setminus K_c$,

$$\phi_c(z) = \frac{1}{z} + b_1 z + b_2 z^2 + \cdots$$

The universal spectrum can be computed with Julia sets of arbitrary degree (BINDER, JONES, MAKAROV, SMIRNOV).

$$P_c(t) := (\beta_{\phi_c}(t) - t + 1) \log 2;$$

Geometric pressure function of f_c .

$$= \lim_{n \to \infty} \frac{1}{n} \log \sum_{z \in f_c^{-n}(z_c)} |Df_c^n(z)|^{-t};$$

Multifractal analysis

 ρ_c : Harmonic measure of J_c

= Maximal entropy measure of f_c .

$$D_c(\alpha) := \mathsf{HD}(\{z \in J_c : \rho_c(B(z,r)) \sim r^{\alpha}\}).$$

Local dimension spectrum; Frequently D_c is analytic (!!!).

Theorem (Sinaï, Ruelle, Bowen, 1970's)

 f_c uniformly hyperbolic \Rightarrow D_c and P_c are analytic and

$$D_c(\alpha) = \inf_{t \in \mathbb{R}} \left\{ t + \alpha \frac{P_c(t)}{\log 2} \right\}.$$

 \sim Legendre transform; Morally: P_C is analytic $\Leftrightarrow D_C$ is analytic.

Classification of phase transitions

- Basic properties of the geometric pressure function;
- Negative spectrum;
- 3 Phase transitions are of freezing type;
- Positive spectrum tricothomy;
- S Phase transitions at infinity.

Variational Principle

$$P_c(t) = \sup_{\mu \text{ invariant probability on } J_c} \left(h_{\mu} - t \int \log |Df_c| \, d\mu \right).$$

 h_{μ} = measure-theoretic entropy.

Definition

- Equilibrium state for the potential $-t \log |Df_c|$:= A measure μ realizing the supremum.
- Phase transition : = A parameter at which P_c is not analytic.

Comparison with statistical mechanics.

$$P_c(t) = \sup_{\mu \text{ invariant probability on } J_c} \left(h_{\mu} - t \int \log |Df_c| \, \mathrm{d}\mu \right).$$

- P_c is convex, Lipschitz, and non-increasing;
- $P_c(o) = \log 2$ topological entropy of f_c ;

$$P_c(t) = \sup_{\mu \text{ invariant probability on } J_c} \left(h_\mu - t \int \log |Df_c| \, \mathrm{d}\mu \right).$$

- P_c is convex, Lipschitz, and non-increasing;
- $P_c(o) = \log 2$ topological entropy of f_c ;
- $P_c(t) \ge \max\{-t\chi_{\inf}(c), -t\chi_{\sup}(c)\}$, where

$$\chi_{\sup}(c) := \lim_{t \to +\infty} \frac{P_c(t)}{-t};$$

= Supremum of Lyapunov exponents.

$$\chi_{\inf}(c) := \lim_{t \to -\infty} \frac{P_c(t)}{-t}.$$
= Infimum of Lyapunov exponents.

$$P_c(t) = \sup_{\mu \text{ invariant probability on } J_c} \left(h_\mu - t \int \log |Df_c| \, \mathrm{d}\mu \right).$$

- P_c is convex, Lipschitz, and non-increasing;
- $P_c(o) = \log 2$ topological entropy of f_c ;
- $P_c(t) \ge \max\{-t\chi_{\inf}(c), -t\chi_{\sup}(c)\}$, where

$$\chi_{\sup}(c) := \lim_{t \to +\infty} \frac{P_c(t)}{-t};$$

= Supremum of LYAPUNOV exponents.

$$\chi_{\inf}(c) := \lim_{t \to -\infty} \frac{P_c(t)}{-t}.$$

= Infimum of LYAPUNOV exponents.

Theorem (Generalized Bowen formula, Przytycki, 1998)

$$\inf\{t \in \mathbb{R} : P_c(t) = o\} = HD_{hyp}(J_c).$$

Mechanism: Gap in the LYAPUNOV spectrum.

 \Leftrightarrow there is a finite set Σ such that $f(\Sigma) = \Sigma$, $f^{-1}(\Sigma) \setminus \Sigma \subset Crit(f)$.

Negative spectrum

Mechanism: Gap in the Lyapunov spectrum.

 \Leftrightarrow there is a finite set Σ such that $f(\Sigma) = \Sigma$, $f^{-1}(\Sigma) \setminus \Sigma \subset Crit(f)$.

These phase transitions are removable.

Phase transitions are of freezing type

Phase transitions are of freezing type

Theorem (PRYZYCKI–RL, 2011)
$$P_c(t_0) > \max\{-t_0\chi_{\inf}(c), -t_0\chi_{\sup}(c)\}$$

$$\Rightarrow P_c \text{ is analytic at } t = t_0.$$

Positive spectrum tricothomy

$$\chi_{\operatorname{crit}}(c) := \liminf_{m \to +\infty} \frac{1}{m} \log |Df_c^m(c)|.$$

- 1 $\chi_{crit}(c) < 0 \Leftrightarrow f_c$ is uniformly hyperbolic;
- 2 $\chi_{crit}(c) = 0 \Leftrightarrow \text{Phase transition at the first zero of } P_c;$

 $\Leftrightarrow \chi_{\inf}(c) = 0$ PRZYTYCKI–RL–SMIRNOV (2003),

 ${\it ``High-temperature\ phase\ transition''}$

Mechanism: Lack of expansion.

Positive spectrum tricothomy

$$\chi_{\text{crit}}(c) := \liminf_{m \to +\infty} \frac{1}{m} \log |Df_c^m(c)|.$$

- 1 $\chi_{crit}(c)$ < 0 \Leftrightarrow f_c is uniformly hyperbolic;
 - _____
- 2 $\chi_{crit}(c) = 0 \Leftrightarrow \text{ Phase transition at the first zero of } P_c;$

 $\Leftrightarrow \chi_{inf}(c) = 0$ Przytycki–RL–Smirnov (2003),

PRZYTYCKI–KL–SMIRNOV (2003)

 ${\it ``High-temperature\ phase\ transition''}$

Mechanism: Lack of expansion.

Non-uniformly hyperbolic in a strong sense; Any phase transition in this case must be at "low-temperature": After the first zero of the geometric pressure function.

Positive spectrum tricothomy

Theorem (CORONEL-RL, 2013)

There is $c \in \mathbb{R}$ such that $\chi_{\text{crit}}(c) > 0$ and such that f_c has a phase transition at some $t_* > \text{HD}_{\text{hyp}}(J_c)$.

Moreover, c can be chosen so that the critical point of f_c is non-recurrent.

Examples show the phase transition can be of first order, or of "infinite order"; Inspired conformal Cantor of Makarov and Smirnov (2003).

Mechanism: Irregularity of the critical orbit.

Phase transitions at infinity

Theorem (Coronel-RL, 2016 (hopefully ...))

There is a quadratic-like map f such that:

- For every t > 0 there is a unique equilibrium state ρ_t for -t log|Df|;
- $\lim_{t\to+\infty} \rho_t$ does not exists.

Theorem (Sensitive dependence of equilibria)

There is a quadratic-like map f such that, for every sequence $(t(\ell))_{\ell\geq 1}$ going to infinity, there is \widetilde{f} arbitrarily close to f such that

- For every t > 0 there is a unique equilibrium state ρ
 _t of f
 for -t log|Df|;
- $\lim_{\ell \to +\infty} \widetilde{\rho}_{t(\ell)}$ does not exists.