Norm Control for Inverses of Convolutions and Large Matrices

Nikolai Nikolski
University Bordeaux 1
Steklov Institute / Chebyshev Lab
St.Petersburg

- Motivation: Effective Inversions (constructive, algorithmic, norm controlled)
- Example 1: Convolution T: f→ f*S on a group G as a map on a Banach function space X
- The visible spectrum of T: the range of the Fourier transform S^(G^). A necessary condition for inversion:

$$\delta$$
=: infl S^l > 0

«Well posed inversion»: $||T^{-1}|| \le c(\delta), \delta > 0$.

- Motivation: Effective Inversions (constructive, algorithmic, norm controlled)
- Example 2: Condition Numbers of Matrices T, nxn: CN(T)= ||T|| ||T^1|| .
- The visible spectrum of T: eigenvalues $\lambda_i(T)$, i=1,...,n; an invertibility condition:

$$\delta$$
=: inf $|\lambda_i(T)| > 0$

«Well posed inversion»:

$$CN(T) = ||T|| \cdot ||T^{-1}|| \le c(\delta/||T||), \delta > 0.$$

Enough motivations?..

Finally, let him who has never used a convolution or a large matrix cast the first stone...

My goal in effective inversions is to understand:

- Relations «Full Spectrum»/ «Visible Spectrum» (the Wiener-Pitt phenomenon)
- «Invisible» but Numerically
 Detectable Spectrum (c(δ)= ∞)

Plan for today:

- 1. Convolutions/Fourier multipliers
- 2.Large Matrices
- 3. Some Integration Operators

1. Convolutions/Fourier Multipliers

Notation:

- G a Locally Compact Abelian Group
- X a function space on G
- S a distribution which acts on X as a bounded convolution operator

$$S: X \longrightarrow X, Sf = S * f$$

- $\hat{S} = \mathcal{F}S$ Fourier transform of S (on the dual group \hat{G}), $\hat{S} \in L^{\infty}(\hat{G})$

More notation:

Given $0 < \delta \le 1$, we define

- the best possible upper bound for inverses with a given lower bound δ of \hat{S} on \hat{G} :

of
$$S$$
 on G :
$$c_1(\delta) = \sup\{\|S^{-1}\|_{X \longrightarrow X} : \delta \leq |\hat{S}(t)| \leq \|S\| \leq 1 \ (\forall t \in \hat{G})\},$$

- a "critical constant" $\delta_1 = \inf\{\delta: \ 0 < \delta \le 1, \ c_1(\delta) < \infty\}.$

Characteristic property of δ_1 :

- for $\delta_1 < \delta \le 1$, there is an estimate for δ -flat $S: ||S^{-1}|| \le c_1(\delta) < \infty$,
- for $0 < \delta < \delta_1$, there is NO estimate of $||S^{-1}||$: $c_1(\delta) = \infty$.

The problem is to find/bound δ_1 and $c_1(\delta)$ for $\delta_1 < \delta \le 1$.

Classical L^p Fourier multipliers

- M.Riesz: $Mult(L^1(G)) = \mathcal{M}(G) = all \ complex \ measures \ on \ G$
- N.Wiener and H.Pitt, 1938: $\delta_1(\mathcal{M}(\mathbb{R})) > 0$, and moreover, there exists an "invisible spectrum":

$$\exists \mu \in \mathcal{M}(\mathbb{R}), inf_{t \in \mathbb{R}} |\hat{\mu}(t)| > 0 \text{ but } \mu \text{ is NOT invertible } (\mu * \nu \neq \delta_0, \forall \nu)$$

- E.Hewitt/W.Rudin, 1958: the same for every nondiscrete LCAG
- S.Igari/M.Zafran, 1976: the same for all $Mult(L^p(G)), p \neq 2$
- J.Stafney, 1967: $\delta_1(l^1(z)) > 0$ (NO Wiener-Pitt phenomenon!)

Y.Katznelson-H.Shapiro conjecture, 1975: $\delta_1(l^1(z)) = 1/2$ (or, $\delta_1(l^1(z_+)) = 1/2$?...)

The case of a discrete group:

$$\mathfrak{m}(\mathcal{M}(\mathbf{z})) = \hat{\mathbf{z}} = \mathbf{T}, \ \mathfrak{m}(\mathcal{M}(G)) = \hat{G} \text{ (NO Wiener-Pitt phenomenon:} f \in \mathcal{FM}(\mathbf{z}), \ f(\zeta) \neq 0 \Rightarrow 1/f \in \mathcal{FM}(\mathbf{z}))$$

 $\mathcal{FM}(\mathbb{Z}_+) = \{ f = \sum_{k \geq 0} \hat{f}(k) z^k : \sum_{k \geq 0} |\hat{f}(k)| < \infty \}$ the holomorphic Wiener algebra; $\mathfrak{M}(W_+) = \overline{\mathbb{D}}$ the closed unit disc.

- (N.N., 1995) (1)
$$\delta_1(\mathcal{M}(z_+)) = 1/2$$
 and $c_1(\delta) = \frac{1}{2\delta - 1}$ for $1/2 < \delta \le 1$.

(2)
$$1/2 \le \delta_1(\mathcal{M}(z)) \le 1/\sqrt{2}$$
 and $c_1(\delta) \le (2\delta^2 - 1)^{-1}$ for $1/\sqrt{2} < \delta \le 1$.

- (O.El-Fallah, N.N., M.Zarrabi, 1995) Let G be an infinite LCAG.

(1)
$$1/2 \le \delta_1(\mathcal{M}(G)) \le 1/\sqrt{2}$$
 and $c_1(\delta) \le (2\delta^2 - 1)^{-1}$ for $1/\sqrt{2} < \delta \le 1$.

(2) If $G_+ \subset G$ is a "true" sub-semigroup of G and \hat{G}_+ its dual semigroup (of bounded semicharacters), then $\delta_1(\mathcal{M}(G_+)) = 1/2$.

(3) If
$$w = (w_n)_n$$
 is "regularly varying" weight on z such that $w_n \longrightarrow \infty$ (as $n \longrightarrow \infty$) such that the weighted Beurling-Sobolev space

$$A =: l^{p}(z, w_{n}) = \{x = (x_{k}) : (\sum |x_{n}w_{n}|^{p})^{1/p} < \infty\}$$

is a convolution algebra, then

$$\delta_1(A) = 0$$
, and hence $c_1(\delta) < \infty$ for every $0 < \delta \le 1$.

Multipliers (convolutions) on weighted L^p spaces:

$$L^{p}(\mathbf{T}, w) = \{f : \int_{\mathbf{T}} |f|^{p}wdm < \infty\}; w \geq 0, w \in L^{1}(\mathbf{T})$$

$$Mult(L^p(T, w)) =$$

$$= \{(\lambda_j)_{j \in \mathbb{Z}} : the \ map \ T_{\Lambda} : \sum c_j e^{ijx} \longmapsto \sum \lambda_j c_j e^{ijx} \ bdd \ on \ L^p(w) \}.$$

The "visible spectrum": eigenvalues $T_{\Lambda}(e^{ijx}) = \lambda_j e^{ijx}, j \in \mathbb{Z}$. Problem: estimate $||T_{\Lambda}^{-1}||$ in terms of $\delta_{\Lambda} = inf_j |\lambda_j| > 0$.

Observation: if the eigenfunctions $(e^{ijx})_{j\in\mathbb{Z}}$ form an unconditional basis $(\Leftrightarrow p=2 \text{ AND } w \text{ is bounded from above and from below)}$, then $Mult(L^p(\mathbb{T},w)) = l^\infty(\mathbb{Z})$ and $||T_\Lambda^{-1}|| \leq \frac{const}{\delta}$.

- (N.N., 2012): For every $p, 1 , and every <math>\epsilon > 0$, there exists a Muckenhoupt weight $w \in (A_p)$ ($\Leftrightarrow (e^{ijx})_{j \in z}$ is a Schauder basis in $L^p(w)$) and a $\Lambda = (\lambda_j)_{j \in z} \in Mult(L^p(w))$ such that $1 - \epsilon < \delta_{\Lambda}$, $||T_{\Lambda}|| \leq 1$ and $1/\Lambda \not\in Mult(L^p(w))$; in particular,

$$\delta_1(Mult(L^p(w))) \ge 1 - \epsilon.$$

Weights with norm control of inverses

- (I.Verbitsky, N.N., 2015): Let $w(\zeta) = w_1(\zeta \overline{\alpha}_1)...w_n(\zeta \overline{\alpha}_n), \zeta \in \mathbb{T}$, where $|\alpha_j| = 1$ and $\zeta \longmapsto w_j(\zeta) > 0$ (bounded) have the only singular point at $\zeta = 1$ vanishing "regularly" ("power-like") when $\zeta \longrightarrow 1$. Then,
- (1) If $1/w \notin L^1(T)$, then $Mult(L^2(w))$ is finite dimensional.
- (2) If $1/w \in L^1(\mathbb{T})$, then multipliers $(\lambda_j) \in Mult(L^2(w))$ can be completely described in terms of capacitary inequalities for differences $\lambda_j \alpha_k^j \lambda_{j+1} \alpha_l^{j+1}$ $(1 \le k, l \le n)$; always, $\delta_1 = 0$ and $c_1(\delta) \le c/\delta^2$, $0 < \delta \le 1$.

Comments: 1) $w_j(e^{it}) \approx |t|^{\gamma_j}$, $0 < \gamma_j < 2$ are OK.

- 2) Complete description of admissible weights: $w_j(e^{it}) = \sum_{k\geq 1} c_k Sin^2 \frac{kt}{2}$, $0 < \sum c_k < \infty$ (Lévy-Khinchin-Schoenberg (*LKS*) weights).
- **3)** No inclusions between (LKS) and (A_2) .

II. Large Matrices

- A is an nxn matrix
- $||A|| \le 1 \Rightarrow ||A^{-1}|| \le 1/|\det(A)| \le 1/\delta^n$ where $\delta = \min|\sigma(A)|$
- For a Banach normed Cⁿ, I · I it is √n times worth: ||A⁻¹|| ≤ √en/|det(A)| J.Schäffer (1970); sharpness E.Gluskin, M.Meyer, A.Pajor; J.Bourgain; H.Queffelec (1993)
- My subject below: Matrices commuting with a given A (or, just functions of A)

Condition numbers of matrices commuting with a given matrix

- Given a subset σ ⊂ D, consider the set A_σ of matrices A having ||A|| ≤ 1 and σ(A) ⊂ σ, as well as all matrices commuting with such an A.
- For \mathcal{A}_{σ} and δ (0 < δ < 1), define $c_1(\delta) = \sup\{\|T^{-1}\| : T \in \mathcal{A}_{\sigma}, |\lambda_j(T)| \geq \delta\}$, and the critical constant δ_1 as above.
- (P.Gorkin, R.Mortini, N.N. 2008): (1) If $\delta_1 < 1$ then σ is a sequence $\sigma = (\lambda_j)$ satisfying the Blaschke condition.
- (2) $\delta_1 = 0 \Leftrightarrow \sigma = (\lambda_j)$ satisfies the following Weak Embedding Property (WEP): $\forall \epsilon > 0 \; \exists C(\epsilon) > 0 \; s.t.$

$$\sum_{j} \frac{1 - |\lambda_{j}|^{2}}{|1 - \overline{\lambda}_{j}z|^{2}} \le \frac{C(\epsilon)}{1 - |z|^{2}} \text{ for } z \in \mathbb{D} \setminus \bigcup_{j} \{|b_{\lambda_{j}}(z)| < \epsilon\}.$$

- Comments: (1) The Carleson Embedding Property (CEP) for $\mu = \sum_{j} (1 |\lambda_{j}|^{2}) \delta_{\lambda_{j}}$ is equivalent to $\sup_{\epsilon > 0} C(\epsilon) < \infty$.
- (2) (WEP) does not imply (CEP) but this is the case for Stolz angular sequences (with a participation of S.Treil and V.Vasyunin).
- (3) $c_1(\delta)$ and δ_1 for \mathcal{A}_{σ} are the same as for the trace algebra $H^{\infty}|\sigma$.
- (4) (WEP) is also equivalent to a "corona theorem" for $H^{\infty}|\sigma((WEP)) \Leftrightarrow \sigma$ is dense in $\mathfrak{m}(H^{\infty}|\sigma)$.
- (V.Vasyunin, N.N. 2011): There exist σ 's with a given in advance value $\delta_1 = \Delta$, $0 \le \Delta < 1$.
- (A.Borichev 2014): There exist σ 's with $\delta_1 = 0$ ($\sigma \in (WEP)$) and an arbitrarily fast growth of $c_1(\delta) \uparrow \infty$ as $\delta \downarrow 0$.

III. Algebras Generated by Integration Operators

• Let μ be Borel probability measure on [0,1] and J_{μ} an integration operator

$$J_{\mu}f(x) = \int_{[0,x>} f d\mu, \ 0 \le x \le 1,$$

on the spaces $L^p([0,1],\mu)$.

• $[0, x > \text{can be } [0, x) \text{ or } [0, x], \text{ or - which is better for a symmetry reason between } J_{\mu} \text{ and } J_{\mu}^* \text{ - an arithmetic mean of these two:}$

$$J_{\mu}f(x) = \int_{[0,x>} f d\mu = \int_{[0,x)} f d\mu + \frac{1}{2}\mu(\{x\})f(x), \, x \in [0,1].$$

• Of course, if μ is continuous (in general, $\mu = \mu_c + \mu_d$, $\mu_d = \sum_{y \in [0,1]} \mu(\{y\}) \delta_y$ is a discrete component of μ and μ_c continuous), then

$$J_{\mu}f(x) = \int_{0}^{x} f d\mu.$$

The case $d\mu = dx$ corresponds to the standard Volterra operator.

• The subject of Part III of the talk - the algebras

$$A_{\mu,p} = alg_{L^p(\mu)}(J_\mu)$$

generated by $J_{\mu}: L^{p}(\mu) \longrightarrow L^{p}(\mu)$, $1 \leq p \leq \infty$ (the norm closure of polynomials in $J_{\mu}, J_{\mu}^{0} =: id$).

• The same questions as above: to find (or to estimate) δ_1 and $c_1(\delta)$ for $\delta_1 < \delta \le 1$.

And so to decide whether there exist an "invisible" but numerically detectable spectrum.

- I know **the answers** for two following cases only:
- p = 1 or ∞ AND $\mu = \mu_c$ (continuous measure),
- p = 2, μ arbitrary.
- One of the reasons why $p \neq 1, 2, \infty$ are more complicated: J_{μ} is a kind of convolution operator (the compression to [0,1] of a convolution on $[0,\infty)$) and on L^p spaces with $p \neq 1, 2, \infty$ very little is known on the spectrum of convolutions.

- The visible spectrum of an element $T \in A_{\mu,p} = alg_{L^p(\mu)}(J_\mu)$ is defined, of course, as the whole spectrum $\sigma(T)$: $\sigma(J_\mu : L^p(\mu) \longrightarrow L^p(\mu))$ does not depend on p and consists of $\{0\}$ and the eigenvalues $\frac{1}{2}\mu(\{y\})$, $y \in [0,1]$; next, for $T = f(J_\mu)$ by the spectral mapping theorem.
- The case p = 1, $\mu = \mu_c$:

$$\delta_1(A) = 1/2, \ c_1(A, \delta) = \frac{1}{2\delta - 1} \ \text{for} \ 1/2 < \delta \le 1.$$

The case p = 2: The following alternative holds.
 (1) Either, μ_c = 0 and σ(J_μ) is a (finite) union of N geometrically decreasing sequences, and then

$$\delta_1(A_{\mu,2}) = 0$$
 and $c_1(\delta) \le a \frac{\log \frac{1}{\delta}}{\delta^{2N}}, \ 0 < \delta < 1,$

where a > 0 depends on N and ratios of geometric sequences in $\sigma(J_{\mu})$.

- (2) Or, this is not the case, and then $\delta_1(A_{\mu,2}) = 1$ (so that, $c_1(\delta, A) = \infty$ for every $0 < \delta < 1$).
- The proof depends on Sarason-Sz.-Nagy-Foias model theory and the analysis of the algebra $H^{\infty}/\theta H^{\infty}$ from Part II of the talk.

Summary

- The nature of «invisible spectrum» is different (characters measurable wrt «thin σ -algebras», or forced holomorphic extensions, or complex homomorphisms in fibers over the boundary).
- The «invisible» but numerically detectable spectrum comes from a «true invisible spectrum» and its discontinuity wrt to a weak approximation.

The End

Thank you!

And Happy Birthday

to N.G.M.!!