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Complex analytic Hardy Spaces
felP(T,X), T={e?:|0|<n},D={z€C:|z| <1}

The harmonic extension of f to the unit disk

1oL
f(z)zi/_ L2 cioygn,  2eD.

27 J—7 |z — et|?

Define f € HP(T,X) if f € LP(T,X) and the harmonic
extension of f is analytic in D.



Hardy Martingales H1(TV, X)
TN the infinite torus-product with Haar measure dP.

Fi. : TN — C is F;. measurable iff

Fi(x) = Fi(z1,...,25), == (x;)j=1

Conditional expectation E,F = E(F|F) is integration,

B, F(z) = /

T
An (Fr) martingale F = (F}) is a Hardy martingale if

N F(x1,...,zE,w)dP(w).

y_>F]{:($17°"7xk—lay) EHl(TaX)

If AFp(z1,...,7_1,y) = my(x1,...,25_1)y then (F}) is
called a simple Hardy martingale.



Example: Maurey’s embedding.

Fix € > 0,w = (wi) € TV. Put ¢1(w) = ewy, and

on(w) = op_1(w) + e(1 = [op_1(w)|)*wn.

Then lim|pn| = 1 and ¢ = limyy, is uniformly dis-
tributed over T.

For any f € HI(T, X)

Fn(w) = f(en(w)), we T

IS an integrable Hardy martingale with uniformly small
increments

SUpE(|[Fullx) = [ Iflxdm and [ AF|x < 2¢ [ |f]xdm
neN T T



Pointwise estimates for AF,,.

FixweTY, neN, z=o,(w), u=y, 1(w)

AFn(w) = f(en(w)) — flen—1(w)).

Cauchy integral formula

e ¢ .
f(z)—f(u)—/E{C_Z C_u}f(od ()
Triangle inequality
ot |z — ul -
157G = F@lx < s =i Jo I lx



Example: Rudin Shapiro Martingales
Fix a complex sequence (c¢p) with > g |c,€|2 < 1.

Define recursively: F; = G; = 1 and for w = (wp) € TN
F(w) = Fp—1(w) + Gpp—1 (W) ecmwm,

Gm(w) = Gp—1(w) — Fyp—1(w)emwn.

Pythagoras for (Fm, Gm) and (Gm, —Fm) gives
| Fppep 1 () P4+ Grpg1 (w) 2 = (A |epa 112 (| P (w) 24 G (w) ).

(F) uniformly bounded and Fi,(w)—F,,_1(w) = G,,—1(w)cmwm

(Fn) is a simple Hardy martingale



The Origins 1

A. Pelczynski posed famous problems in “Banach Spaces
of analytic functions and absolutely summing operators,
(1977)."

Does H! have an unconditional basis?

Does there exist a subspace of L!/H! isomorphic to
Lz

Does L1/H! have cotype 27

Are the spaces A(D"™) and A(D™) not isomorphic when
n = m ¢ (Dimension Conjecture)



The Origins 11

Hardy martingales gave rise to the operators by which
Maurey proved that H! has an unconditional basis;

and to the isomorphic invariants by which Bourgain
proved the dimension conjecture, that L1/H! has co-
type 2 and that L! embeds into L1/H?!.

Pisier’s Ll/H1 valued Riesz products form a Hardy
martingale that is strongly intertwined with Bourgain’s
solutions and played an important role for the work of
Garling, Tomczak-Jaegermann, W. Davis on Hardy
martingale cotype and complex uniformly convexity of
Banach spaces.



Maximal Functions estimate

For any X valued Hardy martingale F = (F}), and any
0 <a<1, (||Fg—1]|%) is a non- negative submartingale

and

E(sup || Fill) < esupE(|| Fxl).
keN keN



Davies Decomposition (PFXM) A Hardy martingale
F = (F) can be decomposed into Hardy martingales
as F' = G + B such that

AGEx < CllFi-1lx,

and
0
E()  |[|[ABllx) < CE(||F| x)-
k=1
Lemma
If h € H3(T,X), z € X there exists g € H§°(T, X) with
19(Ollx < Collzllx, CeT
and

1
= [Ih=gllxdm < [ |2+ Al xdm.
I2lx + 5 [l =gllxdm < [ =+ hilxdm



Proof of Lemma (Sketch) . Let {z; : ¢t > 0} denote
complex Brownian Motion started at O € D, and

7=1inf{t > 0 |z > 1}.
Define

p=Iinf{t <7:|h(z)llx > Colzllx}, A={p<7}

e By choice of p, ||h(zp)| < Collz]lx-

e Doob’s projection generates the analytic function

g(¢) = E(h(2p)|zr =¢), (€T,
and also the testing function which yields lower esti-
mates for [t ||z + k|| xdm:

1 :
p(Q) = JE(Lalzr =), q=NPHHINGTD) g = ptg)



Basic Steps.
o ||z 4 hllxpdm > (1/2 = 1/(2C))E(||h(27)1 4l x

o Jtllz+ hlxlgldm > [|z]x (1 —3P(A)) e 1 =p+q

[ 1=+ Bllxdm = |l x + (1/2 = 8(CoDE(IA(=r) Lallx

o Jrllh—gllxdm < 2E(||h(zr)1allx)

Summing up:

Iz llxdm > el x +6 [ k=gl xdm



Sketch of Proof. Fix z € T*— 1. put
h(y) = AF(z,y) and 2z = Fj,_1(z).

Lemma yields a bounded analytic g with

I2lx+1/8 [ lIh=gllxdm < [ ll=+hlxdm: 1lg(lx < Collzllx-

Define

AGE(z,y) = g(y), ABi(z,y) =h(y) —g9(y).
Then

| Fr—1llx + 1/8E;_1([|[ABg||x) < Ex_1(|Frllx)-

Integrate and take the sum,

> _E(lAByllx) < 4supE(||Fillx)-



T he Davis decomposition yields vector valued Davis and
Garsia inequalities for Hardy martingales. At this point
a hypothesis on the Banach space X is necessary .

Let ¢ > 2. A Banach space X satisfies the hypothesis
H(q), if for each M > 1 there exists § = §(M) > 0 such
that for any x € X with ||z|| =1 and g € H5°(T, X) with
19]lco < M,

L1z + gllxdm > (146 [ Jlglidm)*/e. (1)

Remarks: e Condition (1) is required for uniformly
bounded analytic functions ¢, and § = 6(M) > 0 is
allowed to depend on the uniform estimates ||g|lco < M.

o If X = C, the hypothesis “H(q)" hold true with ¢ = 2.



Theorem 1 Let q > 2. Let X be a Banach satisfying
H(q). There exists M > 0 64 > O such that for any
h € HJ(T,X) and z € X there exists g € H(T,X)
satisfying

19Dl x < M||z]x, ¢ €T,
and

/ll +hllxdm > (H Ik +9 /|| Id )1/q+—1 /||h— I xd
m m m.

The Davis decomposition and hypothesis H(q) com-
bined give a decomposition of a Hardy martingale F
into Hardy martingales such that FF = G + B and

E(Y. B 1 |AGLIENYIHECY. |ABLlx) < AEIF| x).
k=1 k=1



Non- Linear teleskoping: Let 1 <g<oo, 1/p+ 1/q.

If
E(M{_, +oD)Y9<EM, for1<k<n, (2)

then

mn
ECY o)/ < 2(EMp)Y/9(E max M) /P (3)
p—1 k<n
(All random variables are non-negative, integrable)



Let X be complex Banach space. Assume that for every
X valued Hardy martingale (F}) we have:

e (X has ARNP) If supE||Fy|| < co then (F}) converges
a.e.

ee (Hardy martingale cotype ¢q) There exists ¢ < oo such
that

O (B ALF| x)) < C'sup E[| gl x
k

eee (AUMD) For every choice of signs +
El| Y +ALF|x < CSl}iD Ell Fill x-

AUMD and ARNP for a Banach space are already de-
termined by testing simple Hardy martingales. This re-
duction is open for non trivial Hardy martingale Cotype



Proof of Non- Linear teleskoping: P = q = 2 For
0<s<1, and A,B >0,

Bs < s2A+ (A2 4+ BH1/2 _ 4. (4)



Let O < e < 1. Choose bounded functions 0 < s < €
with -7_, s? < €2 to linearize the square function.

sk < stMy_1 + (M7_y +vP) Y2 — My, (5)
Integrate

E(vgsg) < E(s2My_1) + E(MZ_4 +02)Y2 —EM,,_;.

Use hypothesis for E(M7_, + v2)1/2.

E(vysg) < E(spMy_1) +EMy — EMy_q — By,



Sum over k<n

ECY vpsk) + Y Bwy, <EMp +E(Y stMy_1)

n

k=1 k=1 k=1 (6)
< EMy, + €’Emax M;,_1
k<n

Since Y7, s7 < €2,

n n
E(S vD)Y2 4+ Y Buwy, < EMy, + €E max Mj,_.
k=1 k=1 —

Divide by 0 < e <1, with

e? = (EMyp)(Emax M) 1.
k<n



