Davis-Garsia Inequalities for Hardy Martingales

Paul F.X. Müller

Johannes Kepler Universität Linz

Topics

- 1. Basic Examples
- 2. Maximal Functions
- 3. Davis Decomposition
- 4. Davis Garsia Inequalities

Complex analytic Hardy Spaces

$$f \in L^p(\mathbb{T}, X), \ \mathbb{T} = \{e^{i\theta} : |\theta| \le \pi\}, \ \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}.$$

The harmonic extension of f to the unit disk

$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1 - |z|^2}{|z - e^{i\alpha}|^2} f(e^{i\alpha}) d\alpha, \quad z \in \mathbb{D}.$$

Define $f \in H^p(\mathbb{T}, X)$ if $f \in L^p(\mathbb{T}, X)$ and the harmonic extension of f is analytic in \mathbb{D} .

Hardy Martingales $H^1(\mathbb{T}^{\mathbb{N}}, X)$

 $\mathbb{T}^{\mathbb{N}}$ the infinite torus-product with Haar measure $d\mathbb{P}$.

 $F_k: \mathbb{T}^{\mathbb{N}} \to \mathbb{C}$ is \mathcal{F}_k measurable iff

$$F_k(x) = F_k(x_1, \dots, x_k), \quad x = (x_i)_{i=1}^{\infty}$$

Conditional expectation $\mathbb{E}_k F = \mathbb{E}(F|\mathcal{F}_k)$ is integration,

$$\mathbb{E}_k F(x) = \int_{\mathbb{T}^N} F(x_1, \dots, x_k, w) d\mathbb{P}(w).$$

An (\mathcal{F}_k) martingale $F = (F_k)$ is a **Hardy martingale** if

$$y \to F_k(x_1,\ldots,x_{k-1},y) \in H^1(\mathbb{T},X).$$

If $\Delta F_k(x_1, \ldots, x_{k-1}, y) = m_k(x_1, \ldots, x_{k-1})y$ then (F_k) is called a simple Hardy martingale.

Example: Maurey's embedding.

Fix
$$\epsilon > 0, w = (w_k) \in \mathbb{T}^{\mathbb{N}}$$
. Put $\varphi_1(w) = \epsilon w_1$, and

$$\varphi_n(w) = \varphi_{n-1}(w) + \epsilon (1 - |\varphi_{n-1}(w)|)^2 w_n.$$

Then $\lim |\varphi_n| = 1$ and $\varphi = \lim \varphi_n$ is uniformly distributed over \mathbb{T} .

For any $f \in H^1(\mathbb{T}, X)$

$$F_n(w) = f(\varphi_n(w)), \qquad w \in \mathbb{T}^{\mathbb{N}}$$

is an integrable Hardy martingale with **uniformly small** increments

 $\sup_{n\in\mathbb{N}}\mathbb{E}(\|F_n\|_X) = \int_{\mathbb{T}} \|f\|_X dm \quad \text{and} \quad \|\Delta F_n\|_X \le 2\epsilon \int_{\mathbb{T}} \|f\|_X dm.$

Pointwise estimates for ΔF_n .

Fix
$$w \in \mathbb{T}^{\mathbb{N}}$$
, $n \in \mathbb{N}$, $z = \varphi_n(w)$, $u = \varphi_{n-1}(w)$
$$\Delta F_n(w) = f(\varphi_n(w)) - f(\varphi_{n-1}(w)).$$

Cauchy integral formula

$$f(z) - f(u) = \int_{\mathbb{T}} \left\{ \frac{\zeta}{\zeta - z} - \frac{\zeta}{\zeta - u} \right\} f(\zeta) dm(\zeta).$$

Triangle inequality

$$\|f(z) - f(u)\|_X \le \frac{|z - u|}{(1 - |u|)(1 - |z|)} \int_{\mathbb{T}} \|f\|_X dm$$

Example: Rudin Shapiro Martingales

Fix a complex sequence (c_n) with $\sum_{k=1}^{\infty} |c_k|^2 \leq 1$.

Define recursively: $F_1 = G_1 = 1$ and for $w = (w_n) \in \mathbb{T}^{\mathbb{N}}$ $F_m(w) = F_{m-1}(w) + \overline{G_{m-1}}(w)c_m w_m,$ $G_m(w) = G_{m-1}(w) - \overline{F_{m-1}}(w)c_m w_m.$

Pythagoras for (F_m, G_m) and $(\overline{G}_m, -\overline{F}_m)$ gives $|F_{m+1}(w)|^2 + |G_{m+1}(w)|^2 = (1+|c_{m+1}|^2)(|F_m(w)|^2 + |G_m(w)|^2).$

 (F_n) uniformly bounded and $F_m(w) - F_{m-1}(w) = \overline{G_{m-1}}(w)c_m w_m$

 (F_n) is a simple Hardy martingale

The Origins I

A. Pelczynski posed **famous problems** in "Banach Spaces of analytic functions and absolutely summing operators, (1977)."

Does H^1 have an unconditional basis?

Does there exist a subspace of L^1/H^1 isomorphic to L^1 ?

Does L^1/H^1 have cotype 2?

Are the spaces $A(D^n)$ and $A(D^m)$ not isomorphic when $n \neq m$? (Dimension Conjecture)

The Origins II

Hardy martingales gave rise to the operators by which **Maurey** proved that H^1 has an unconditional basis;

and to the isomorphic invariants by which **Bourgain** proved the dimension conjecture, that L^1/H^1 has co-type 2 and that L^1 embeds into L^1/H^1 .

Pisier's L^1/H^1 valued Riesz products form a Hardy martingale that is strongly intertwined with Bourgain's solutions and played an important role for the work of **Garling, Tomczak-Jaegermann, W. Davis** on Hardy martingale cotype and complex uniformly convexity of Banach spaces.

Maximal Functions estimate

For any X valued Hardy martingale $F = (F_k)$, and any $0 < \alpha \le 1$, $(||F_{k-1}||_X^{\alpha})$ is a non- negative submartingale and

$$\mathbb{E}(\sup_{k\in\mathbb{N}}\|F_k\|) \le e\sup_{k\in\mathbb{N}}\mathbb{E}(\|F_k\|).$$

Davies Decomposition (PFXM) A Hardy martingale $F = (F_k)$ can be decomposed into Hardy martingales as F = G + B such that

$$\|\Delta G_k\|_X \le C \|F_{k-1}\|_X,$$

and

$$\mathbb{E}(\sum_{k=1}^{\infty} \|\Delta B_k\|_X) \le C\mathbb{E}(\|F\|_X).$$

Lemma

If $h \in H_0^1(\mathbb{T}, X)$, $z \in X$ there exists $g \in H_0^\infty(\mathbb{T}, X)$ with $\|g(\zeta)\|_X \le C_0 \|z\|_X$, $\zeta \in \mathbb{T}$

and

$$||z||_X + \frac{1}{8} \int_{\mathbb{T}} ||h - g||_X dm \le \int_{\mathbb{T}} ||z + h||_X dm.$$

Proof of Lemma (Sketch). Let $\{z_t : t > 0\}$ denote complex Brownian Motion started at $0 \in \mathbb{D}$, and

 $\tau = \inf\{t > 0 : |z_t| > 1\}.$

Define

$$\rho = \inf\{t < \tau : \|h(z_t)\|_X > C_0\|z\|_X\}, \quad A = \{\rho < \tau\}.$$

- By choice of ρ , $||h(z_{\rho})|| \le C_0 ||z||_X$.
- Doob's projection generates the analytic function

$$g(\zeta) = \mathbb{E}(h(z_{\rho})|z_{\tau} = \zeta), \quad \zeta \in \mathbb{T},$$

and also the testing function which yields lower estimates for $\int_{\mathbb{T}} ||z + h||_X dm$:

$$p(\zeta) = \frac{1}{2} \mathbb{E}(1_A | z_\tau = \zeta), \quad q = e^{\ln(1-p) + iH \ln(1-p)}, \quad 1 = p + |q|.$$

Basic Steps.

- $\int_{\mathbb{T}} ||z+h||_X p dm \ge (1/2 1/(2C_0)) \mathbb{E}(||h(z_\tau) \mathbf{1}_A||_X)$
- $\int_{\mathbb{T}} ||z+h||_X |q| dm \ge ||x||_X (1-3\mathbb{P}(A))$ 1 = p + |q|.

$$\int_{\mathbb{T}} \|z+h\|_X dm \ge \|x\|_X + (1/2 - \delta(C_0)) \mathbb{E}(\|h(z_\tau)\mathbf{1}_A\|_X)$$

•
$$\int_{\mathbb{T}} \|h - g\|_X dm \leq 2\mathbb{E}(\|h(z_{\tau})\mathbf{1}_A\|_X)$$

Summing up:

$$\int_{\mathbb{T}} \|z+h\|_X dm \ge \|x\|_X + \delta \int_{\mathbb{T}} \|h-g\|_X dm$$

Sketch of Proof. Fix $x \in \mathbb{T}^{k-1}$. Put

 $h(y) = \Delta F_k(x, y)$ and $z = F_{k-1}(x)$.

Lemma yields a bounded analytic g with

 $\|z\|_X + 1/8 \int_{\mathbb{T}} \|h - g\|_X dm \le \int_{\mathbb{T}} \|z + h\|_X dm; \quad \|g(\zeta)\|_X \le C_0 \|z\|_X.$ Define

 $\Delta G_k(x,y) = g(y), \quad \Delta B_k(x,y) = h(y) - g(y).$

Then

$$||F_{k-1}||_X + 1/8\mathbb{E}_{k-1}(||\Delta B_k||_X) \le \mathbb{E}_{k-1}(||F_k||_X).$$

Integrate and take the sum,

$$\sum \mathbb{E}(\|\Delta B_k\|_X) \leq 4 \sup \mathbb{E}(\|F_k\|_X).$$

The Davis decomposition yields vector valued Davis and Garsia inequalities for Hardy martingales. At this point a hypothesis on the Banach space X is necessary :

Let $q \ge 2$. A Banach space X satisfies the hypothesis $\mathcal{H}(q)$, if for each $M \ge 1$ there exists $\delta = \delta(M) > 0$ such that for any $x \in X$ with ||x|| = 1 and $g \in H_0^{\infty}(\mathbb{T}, X)$ with $||g||_{\infty} \le M$,

$$\int_{\mathbb{T}} \|z + g\|_X dm \ge (1 + \delta \int_{\mathbb{T}} \|g\|_X^q dm)^{1/q}.$$
 (1)

Remarks: • Condition (1) is required for uniformly bounded analytic functions g, and $\delta = \delta(M) > 0$ is allowed to depend on the uniform estimates $||g||_{\infty} \leq M$.

• If $X = \mathbb{C}$, the hypothesis " $\mathcal{H}(q)$ " hold true with q = 2.

Theorem 1 Let $q \ge 2$. Let X be a Banach satisfying $\mathcal{H}(q)$. There exists M > 0 $\delta_q > 0$ such that for any $h \in H_0^1(\mathbb{T}, X)$ and $z \in X$ there exists $g \in H_0^\infty(\mathbb{T}, X)$ satisfying

$$\|g(\zeta)\|_X \le M \|z\|_X, \qquad \zeta \in \mathbb{T},$$

and

$$\int_{\mathbb{T}} \|z + h\|_X dm \ge \left(\|z\|_X^q + \delta_q \int_{\mathbb{T}} \|g\|_X^q dm \right)^{1/q} + \frac{1}{16} \int_{\mathbb{T}} \|h - g\|_X dm.$$

The Davis decomposition and hypothesis $\mathcal{H}(q)$ combined give a decomposition of a Hardy martingale Finto Hardy martingales such that F = G + B and

$$\mathbb{E}\left(\sum_{k=1}^{\infty} (\mathbb{E}_{k-1} \| \Delta G_k \|_X^q)\right)^{1/q} + \mathbb{E}\left(\sum_{k=1}^{\infty} \| \Delta B_k \|_X\right) \le A_q \mathbb{E}(\|F\|_X).$$

Non- Linear teleskoping: Let $1 \le q \le \infty$, 1/p + 1/q.

If

$$\mathbb{E}(M_{k-1}^q + v_k^q)^{1/q} \le \mathbb{E}M_k \quad \text{for } 1 \le k \le n, \quad (2)$$

then

$$\mathbb{E}(\sum_{k=1}^{n} v_k^q)^{1/q} \le 2(\mathbb{E}M_n)^{1/q} (\mathbb{E}\max_{k \le n} M_k)^{1/p}$$
(3)

(All random variables are non-negative, integrable)

Let X be complex Banach space. Assume that for every X valued Hardy martingale (F_k) we have:

- (X has ARNP) If sup $\mathbb{E}||F_k|| < \infty$ then (F_k) converges a.e.
- •• (Hardy martingale cotype q) There exists $q < \infty$ such that

$$(\sum_{k} (\mathbb{E} \| \Delta_{k} F \|_{X})^{q})^{1/q} \leq C \sup_{k} \mathbb{E} \| F_{k} \|_{X}.$$

••• (AUMD) For every choice of signs \pm
 $\mathbb{E} \| \sum_{k} \pm \Delta_{k} F \|_{X} \leq C \sup_{k} \mathbb{E} \| F_{k} \|_{X}.$

AUMD and ARNP for a Banach space are already determined by testing simple Hardy martingales. This reduction is open for non trivial Hardy martingale Cotype

Proof of Non- Linear teleskoping: P = q = 2 For $0 \le s \le 1$, and $A, B \ge 0$,

$$Bs \le s^2 A + (A^2 + B^2)^{1/2} - A.$$
(4)

Let $0 \le \epsilon \le 1$. Choose bounded functions $0 \le s_k \le \epsilon$ with $\sum_{k=1}^n s_k^2 \le \epsilon^2$ to linearize the square function.

$$v_k s_k \le s_k^2 M_{k-1} + (M_{k-1}^2 + v_k^2)^{1/2} - M_{k-1}$$
 (5)

Integrate

$$\mathbb{E}(v_k s_k) \le \mathbb{E}(s_k^2 M_{k-1}) + \mathbb{E}(M_{k-1}^2 + v_k^2)^{1/2} - \mathbb{E}M_{k-1}.$$

Use hypothesis for $\mathbb{E}(M_{k-1}^2 + v_k^2)^{1/2}$.

$$\mathbb{E}(v_k s_k) \leq \mathbb{E}(s_k^2 M_{k-1}) + \mathbb{E}M_k - \mathbb{E}M_{k-1} - \mathbb{E}w_k.$$

Sum over $k \leq n$

$$\mathbb{E}\left(\sum_{k=1}^{n} v_k s_k\right) + \sum_{k=1}^{n} \mathbb{E}w_k \le \mathbb{E}M_n + \mathbb{E}\left(\sum_{k=1}^{n} s_k^2 M_{k-1}\right)$$

$$\le \mathbb{E}M_n + \epsilon^2 \mathbb{E}\max_{k \le n} M_{k-1}$$
(6)

Since $\sum_{k=1}^{n} s_k^2 \leq \epsilon^2$,

$$\epsilon \mathbb{E} \left(\sum_{k=1}^{n} v_k^2\right)^{1/2} + \sum_{k=1}^{n} \mathbb{E} w_k \leq \mathbb{E} M_n + \epsilon^2 \mathbb{E} \max_{k \leq n} M_{k-1}.$$

Divide by $0 < \epsilon \leq 1$, with

$$\epsilon^2 = (\mathbb{E}M_n)(\mathbb{E}\max_{k\leq n}M_k)^{-1}.$$