Determinacy problem for measures

Mishko Mitkovski

Department of Mathematical Sciences Clemson University

March 10, 2016

M. Mitkovski (Clemson)

Determinacy problem for measures

Saas Fee, 2016 1 / 17

My favorite paper:

N. Makarov, A. Poltoratski. "*Meromorphic inner functions, Toeplitz kernels and the uncertainty principle.*" Perspectives in analysis. Essays in Honor of Lennart Carleson's 75th Birthday, 2005

Nick's favorite things: Model spaces, de Branges spaces, Toeplitz kernels.

・ロト ・ 同ト ・ ヨト ・ ヨ

Given a sequence $\{c_n\}$ of real numbers.

(Hamburger) moment problem:

1. (Existence) Is there a measure μ whose moments are $\{c_n\}$?

$$c_n = \int_{-\infty}^{\infty} t^n d\mu(t), n \ge 0.$$

2. (Uniqueness, determinacy) If such a measure exists, is it unique?

Related problems:

Let \mathcal{P} be the class of all polynomials.

Given a weight *W* s.t. $\mathcal{P} \subseteq C_0(W)$. Find a (necessary and sufficient) condition for \mathcal{P} to be dense in $C_0(W)$.

Given a measure μ with $\mathcal{P} \subseteq L^p(d\mu)$. Find a (necessary and sufficient) condition for \mathcal{P} to be dense in $L^p(d\mu)$.

Given a measure μ , consider the set Σ_{μ} of all ν s.t. $\int p d\mu = \int p d\nu$, for all $p \in \mathcal{P}$.

For a fixed $z \in \mathbb{C}_+$, consider the map: $\psi_z : \Sigma_\mu \to \mathbb{C}_+$ defined by

$$\psi_{z}(\nu) = \int \frac{d\nu(t)}{t-z}.$$

For each $z \in \mathbb{C}_+$ the range of ψ_z is a closed disc $D_z \subset \mathbb{C}_+$ (Weyl disc).

Given a measure μ , consider the set Σ_{μ} of all ν s.t. $\int p d\mu = \int p d\nu$, for all $p \in \mathcal{P}$.

For a fixed $z \in \mathbb{C}_+$, consider the map: $\psi_z : \Sigma_\mu \to \mathbb{C}_+$ defined by

$$\psi_{z}(\nu) = \int \frac{d\nu(t)}{t-z}.$$

For each $z \in \mathbb{C}_+$ the range of ψ_z is a closed disc $D_z \subset \mathbb{C}_+$ (Weyl disc). <u>Thm:</u> μ is determinate iff $\Sigma_{\mu}^{\mathcal{L}}$ is a singleton set.

<u>Thm</u>: $\operatorname{clos}_{L^1(d\mu)} \mathcal{P} = L^1(\mu)$ iff μ is an extreme point of Σ_{μ} .

<u>Thm</u>: $\operatorname{clos}_{L^2(d\mu)} \mathcal{P} = L^2(\mu)$ iff for some/any *z*, $\psi_z(\mu)$ is an extreme point of the disc D_z .

Def:
$$m(z) = \sup\{|p(z)| : p \in \mathcal{P}, \|p\|_2 \le 1\}.$$

<u>Thm</u> (M.Riesz): μ is indeterminate iff m(z) is finite for some/all $z \in \mathbb{C} \setminus \mathbb{R}$ iff $\log^+ m \in L^1(dx/(1+x^2))$

The usefulness of the previous result depends on the possibility to estimate the majorant m(z).

Replace $\mathcal P$ with a more general class of functions $\mathcal L.$

Conditions on \mathcal{L} :

- 1. The elements of \mathcal{L} are entire functions.
- 2. If $F \in \mathcal{L}$, $w \in \mathbb{C}$ with F(w) = 0, then $F(z)/(z w) \in \mathcal{L}$.

3. If
$$F \in \mathcal{L}$$
, then $F^*(z) = \overline{F(\overline{z})} \in \mathcal{L}$.

Such class \mathcal{L} is sometimes called an algebraic de Branges space.

Replace \mathcal{P} with a more general class of functions \mathcal{L} .

Conditions on \mathcal{L} :

- 1. The elements of \mathcal{L} are entire functions.
- 2. If $F \in \mathcal{L}$, $w \in \mathbb{C}$ with F(w) = 0, then $F(z)/(z w) \in \mathcal{L}$.
- 3. If $F \in \mathcal{L}$, then $F^*(z) = \overline{F(\overline{z})} \in \mathcal{L}$.

Such class \mathcal{L} is sometimes called an algebraic de Branges space.

 \mathcal{L} is said to be regular if 2. is replaced by

2'. If
$$F \in \mathcal{L}, w \in \mathbb{C}$$
, then $(F(z) - F(w))/(z - w) \in \mathcal{L}$.

 $\mathcal{L} = \mathcal{PW}_a = \text{Paley-Wiener space.}$ $\mathcal{E}_a = \{ e^{i\lambda x} : \lambda \in [-a, a] \}$

1. For a given μ , when can we say that there is no ν s.t.

$$\hat{\mu}(\boldsymbol{x}) = \hat{\nu}(\boldsymbol{x}), \boldsymbol{x} \in [-\boldsymbol{a}, \boldsymbol{a}]?$$

In such case we say that μ is *a*-determinate.

2. Given a weight W s.t. $\mathcal{E}_a \subseteq C_0(W)$. Find a necessary and sufficient condition for \mathcal{E}_a to be dense in $C_0(W)$.

3. Given a measure μ with $\mathcal{E}_a \subseteq L^p(d\mu)$. Find a necessary and sufficient condition for \mathcal{E}_a to be dense in $L^p(d\mu)$.

Try to solve these in the following form:

1. For a given μ , compute

 $Det(\mu) := \inf\{a \ge 0 : \mu \text{ is } a - \text{determinate}\}.$

2. Given a weight *W* s.t. $\mathcal{E}_a \subseteq C_0(W)$. Compute

 $T^{\infty}(W) := \inf\{a \ge 0 : \mathcal{E}_a \text{ is dense in } C_0(W)\}.$

3. Given a measure μ with $\mathcal{E}_a \subseteq L^p(d\mu)$. Compute

 $T^{p}(\mu) := \inf\{a \ge 0 : \mathcal{E}_{a} \text{ is dense in } L^{p}(d\mu)\}.$

If μ is *a*-indeterminate then there is ν s.t. signed measure $\sigma = \mu - \nu$ has a *spectral gap* (-*a*, *a*), i.e., $\hat{\sigma}(x) = 0, x \in (-a, a)$.

<u>Thm</u> (A. Beurling, 50's): If σ is a non-zero, signed, finite measure, which is supported on a set whose complement is long, then σ has no spectral gap.

A union of disjoint open intervals $\bigcup (a_n, b_n)$ is said to be *long* if

$$\sum_{n}\left(\frac{b_n-a_n}{a_n}\right)^2=\infty.$$

For a non-zero, signed measure to have a spectral gap its support must contain a sequence of positive interior Beurling-Malliavin density.

Previous results

<u>Thm</u> (N. Levinson, 40's): Let σ be a non-zero, signed, finite measure. If there exists a non negative function w(t) on \mathbb{R} which is increasing on $[0,\infty)$ and satisfies $e^{w(t)} \in L^1(|\sigma|)$ and $\int_1^\infty \frac{w(t)}{1+t^2} dt = \infty$, then σ has no spectral gap.

<u>Thm</u> (L. de Branges, 60's): Let σ be a non-zero, signed, finite measure. If there exists a non negative uniformly continuous function w(t) on \mathbb{R} satisfying $e^{w(t)} \in L^1(|\sigma|)$ and $\int \frac{w(t)}{1+t^2} dt = \infty$, then σ has no spectral gap.

<u>Thm</u> (A. Eremenko, D. Novikov): If σ is a nonzero, signed, finite measure with a spectral gap (-a, a), then the number of sign changes $s(r, \sigma)$ of σ on the interval (0, r) satisfies

$$\liminf_{r\to\infty}\frac{s(r,\sigma)}{r}\geq\frac{a}{\pi}.$$

Def: $m_{\mathcal{L}}(z) = \sup\{|f(z)| : f \in \mathcal{L}, \|f\|_2 \le 1\}.$

<u>**Thm**</u> (M.M, A. Poltoratski): μ is $(\mathcal{L} \odot \mathcal{L})$ -indeterminate <u>iff</u> $m_{\mathcal{L}}(z)$ is finite for some/all $z \in \mathbb{C} \setminus \mathbb{R}$ <u>iff</u> $\operatorname{clos}_{L^2(d\mu)} \mathcal{L}$ is a de Branges space.

Def: $m_{\mathcal{L}}(z) = \sup\{|f(z)| : f \in \mathcal{L}, \|f\|_2 \le 1\}.$

<u>**Thm**</u> (M.M, A. Poltoratski): μ is $(\mathcal{L} \odot \mathcal{L})$ -indeterminate <u>iff</u> $m_{\mathcal{L}}(z)$ is finite for some/all $z \in \mathbb{C} \setminus \mathbb{R}$ <u>iff</u> $\operatorname{clos}_{L^2(d\mu)} \mathcal{L}$ is a de Branges space.

In the regular case we have one more equivalent condition $\underset{iff}{iff} \log^+ m_{\mathcal{L}} \in L^1(dx/(1+x^2))$

The usefulness of the previous result depends on the possibility to estimate the majorant $m_{\mathcal{L}}(z)$.

<u>Cor:</u> If $(\operatorname{supp}\mu)^c$ contains a sequence of integrals $\{I_n\}$ s.t. $\sum_n \frac{|I_n|^2}{1+\operatorname{dist}(0,I_n)^2} = \infty$, then μ is *a*-determinate for all a > 0.

<u>Cor:</u> If there exists a non-negative, uniformly continuous *w* s.t. $e^w \in L^1(\mu)$ and $\int w(x)/(1 + x^2) = \infty$, then μ is *a*-determinate for all a > 0.

<u>Cor</u>: If there exists a non-negative *w*, increasing on $[1, \infty)$ s.t. $e^w \in L^1(\mu)$ and $\int_1^\infty w(x)/(1 + x^2) = \infty$, then μ is *a*-determinate for all a > 0.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

<u>**Thm**</u>(M.M, A. Poltoratski) Let μ be $\mathcal{L} \odot \mathcal{L}$ -indeterminate and let ϕ be the phase function corresponding to the de Branges space $\operatorname{clos}_{L^2(d\mu)}\mathcal{L}$. Then there exists $\Lambda \subset \operatorname{supp}(\mu)$ such that $\pi n_{\Lambda} - \phi = \tilde{h}$ for some Poisson summable *h*.

In the case $\mathcal{L} = \mathcal{PW}_a$, $\phi(x) = ax$ one can characterize (up to ϵ) all sequences Λ such that $\pi n_{\Lambda}(x) - ax = \tilde{h}(x)$ for some Poisson summable *h*.

<u>**Thm**</u>(M.M, A. Poltoratski) Let μ be $\mathcal{L} \odot \mathcal{L}$ -indeterminate and let ϕ be the phase function corresponding to the de Branges space $\operatorname{clos}_{L^2(d\mu)}\mathcal{L}$. Then there exists $\Lambda \subset \operatorname{supp}(\mu)$ such that $\pi n_{\Lambda} - \phi = \tilde{h}$ for some Poisson summable *h*.

In the case $\mathcal{L} = \mathcal{PW}_a$, $\phi(x) = ax$ one can characterize (up to ϵ) all sequences Λ such that $\pi n_{\Lambda}(x) - ax = \tilde{h}(x)$ for some Poisson summable *h*.

<u>Def</u> (Poltoratski) A real sequence $\Lambda = \{\lambda_n\}$ is said to be *a*-uniform if 1. (Density condition) $\int \frac{|n_{\Lambda}(x) - ax|}{1 + x^2} < \infty$. 2. (Energy condition) There exists a short partition $\{I_n\}$ such that $\sum_n \frac{\#(\Lambda \cap I_n)^2 \log^+ |I_n| - E_{I_n}(dn_{\Lambda})}{1 + \operatorname{dist}(0, I_n)^2} < \infty$.

Corollaries

<u>Cor</u>: If μ is *a*-indeterminate, then the support of μ contains a sequence which is a/π -uniform. In other words

 $Det(\mu) = \sup\{a \ge 0 : \operatorname{supp}\mu \text{ contains } a/\pi \text{-uniform sequence}\}.$

<u>Cor:</u> $2Det(\mu) = G(supp\mu)$.

<u>Thm</u>: Let *A* and *B* be disjoint closed subsets of \mathbb{R} . Then

 $G(A, B) = \pi \sup\{d \ge 0 : \exists \{\lambda_n\} \text{ } d\text{-uniform, } \{\lambda_{2n}\} \subset A, \{\lambda_{2n+1}\} \subset B\}.$

<u>**Thm:**</u> (A. Poltoratski) If $1 \le p < \infty$, then $G^p(\mu)$ is the supremum of all $a \ge 0$ such that for every weight W satisfying $\int W d\mu < \infty$ there exists an *a*-uniform $\Lambda = \{\lambda_n\}$ such that $\sum \frac{\log W(\lambda_n)}{1+\lambda_n^2} < \infty$.

<u>**Thm:**</u> (A. Eremenko, D. Novikov) If σ is a nonzero signed measure with spectral gap (-a, a) then the number of sign changes $s(r, \sigma)$ of σ on the interval (0, r) satisfies

$$\liminf_{r\to\infty}\frac{s(r,\sigma)}{r}\geq\frac{a}{\pi}$$

<u>Thm</u>: (M.M., A. Poltoratski) If σ is a nonzero signed measure with spectral gap (-a, a) then there exists an a/π -uniform sequence $\{\lambda_n\}$ such that σ has at least one sign change in every $(\lambda_n, \lambda_{n+1})$.

Thank you.

æ

3