#### Harmonic measure on random trees

#### Nicolas Curien and Jean-François Le Gall

Université Paris-Sud

Saas Fee, March 2016

**EN 4 EN** 

Makarov's theorem: The harmonic measure of a simply connected plane domain is supported on a set of Hausdorff dimension 1, regardless of the dimension of the boundary.

 $\longrightarrow$  "dimension drop" phenomenon

#### Goal of the lecture:

Similar phenomenon for "typical" **large** discrete trees.



For a (large) ball in a large discrete tree, most of harmonic measure is supported on a small subset of the boundary. (in the associated continuous model, the dimension of harmonic measure is  $\beta \approx 0.78$ whereas the dimension of the boundary is 1)

4 3 5 4 3 5

Consider a large (rooted) discrete tree



Nicolas Curien and Jean-François Le Gall Harmonic meas

Harmonic measure on random trees

Saas Fee, March 2016 3 / 19

< A

Consider a large (rooted) discrete tree



Ball of radius k = {vertices at graph distance < k from  $\rho$ } (k = 4 here)

Nicolas Curien and Jean-François Le Gall

Harmonic measure on random trees

Saas Fee, March 2016 4 / 19

#### Consider a large (rooted) discrete tree



Ball of radius k = {vertices at graph distance < k from  $\rho$ } (k = 4 here) Harmonic measure: distribution of exit point from ball by simple random walk starting from  $\rho$  Let T(N) be chosen uniformly at random in the set of all (rooted) plane trees with *N* vertices. Set

 $\mathbf{T}_k(N) = \{ \text{vertices at distance } k \text{ from root} \}$ 

 $\mu_k^{(N)}$  harmonic measure of ball of radius k (supported on  $\mathbf{T}_k(N)$ )

#### Theorem (A)

There a constant  $\beta \approx 0.78$  such that, for every  $\varepsilon > 0$  and  $\delta > 0$ ,

$$\lim_{\substack{k,N\to\infty\\k=o(\sqrt{N})}} \mathbb{P}\Big(\mu_k^{(N)}(\{v:k^{-\beta-\varepsilon}\leq \mu_k^{(N)}(v)\leq k^{-\beta+\varepsilon}\})>1-\delta\Big)=1.$$

Interpretation: A typical point chosen according to harmonic measure has harmonic measure approximately  $k^{-\beta}$ .

It is known that  $\#\mathbf{T}_k(N)$  is of order k, so (since  $\beta < 1$ ) this means that harmonic measure is essentially supported on a small subset of the boundary.

Note. The condition  $k = o(\sqrt{N})$  ensures that w.h.p. there are vertices outside the ball of radius k, so that harmonic measure, is well defined, so

Nicolas Curien and Jean-François Le Gall

Let T(N) be chosen uniformly at random in the set of all (rooted) plane trees with *N* vertices. Set

 $\mathbf{T}_k(N) = \{ \text{vertices at distance } k \text{ from root} \}$ 

 $\mu_k^{(N)}$  harmonic measure of ball of radius k (supported on  $\mathbf{T}_k(N)$ )

#### Theorem (A)

There a constant  $\beta \approx 0.78$  such that, for every  $\varepsilon > 0$  and  $\delta > 0$ ,

$$\lim_{\substack{k,N\to\infty\\k=o(\sqrt{N})}} \mathbb{P}\Big(\mu_k^{(N)}(\{v:k^{-\beta-\varepsilon}\leq \mu_k^{(N)}(v)\leq k^{-\beta+\varepsilon}\})>1-\delta\Big)=1.$$

Interpretation: A typical point chosen according to harmonic measure has harmonic measure approximately  $k^{-\beta}$ .

It is known that  $\#\mathbf{T}_k(N)$  is of order k, so (since  $\beta < 1$ ) this means that harmonic measure is essentially supported on a small subset of the boundary.

Note. The condition  $k = o(\sqrt{N})$  ensures that w.h.p. there are vertices outside the ball of radius k, so that harmonic measure, is well defined, so

Nicolas Curien and Jean-François Le Gall

Let T(N) be chosen uniformly at random in the set of all (rooted) plane trees with *N* vertices. Set

 $\mathbf{T}_k(N) = \{ \text{vertices at distance } k \text{ from root} \}$ 

 $\mu_k^{(N)}$  harmonic measure of ball of radius k (supported on  $\mathbf{T}_k(N)$ )

#### Theorem (A)

There a constant  $\beta \approx 0.78$  such that, for every  $\varepsilon > 0$  and  $\delta > 0$ ,

$$\lim_{\substack{k,N\to\infty\\k=o(\sqrt{N})}} \mathbb{P}\Big(\mu_k^{(N)}(\{v:k^{-\beta-\varepsilon} \le \mu_k^{(N)}(v) \le k^{-\beta+\varepsilon}\}) > 1-\delta\Big) = 1.$$

Interpretation: A typical point chosen according to harmonic measure has harmonic measure approximately  $k^{-\beta}$ .

It is known that  $\#\mathbf{T}_k(N)$  is of order k, so (since  $\beta < 1$ ) this means that harmonic measure is essentially supported on a small subset of the boundary.

Note. The condition  $k = o(\sqrt{N})$  ensures that w.h.p. there are vertices outside the ball of radius k, so that harmonic measure is well defined  $l_{a,a}$ 

Nicolas Curien and Jean-François Le Gall

#### Consequences.

 For δ > 0, there exists with probab. → 1 a subset A of the boundary s.t.

$$\# A \leq k^{eta + arepsilon}$$
 and  $\mu_k^{(N)}(A) > 1 - \delta$ 

(recall that the boundary has of order k points)

• Conversely,  $\sup_{A\,:\,\#A\leq k^{eta-arepsilon}}\mu_k^{(N)}(A)\underset{k
ightarrow\infty}{\longrightarrow} 0$ 

Similar result for other types of combinatorial trees (binary trees, Cayley, etc.), with the same constant  $\beta$ .

The proof relies on the fact that combinatorial trees can be interpreted as (conditioned) Galton-Watson trees.

#### 1. Galton-Watson trees and reduced trees

Let  $\theta$  be a probability measure on  $\{0, 1, ...\}$ , such that  $\theta(1) < 1$  and  $\sum_{j=0}^{\infty} j\theta(j) = 1 \text{ (critical)}, \qquad \sum_{j=0}^{\infty} j^2\theta(j) < \infty \text{ (finite variance)}$ 

The Galton-Watson tree with offspring distribution  $\theta$  is the genealogical tree of a population starting with one ancestor or root, where each individual has *j* children with probability  $\theta(j)$ . This tree is finite a.s.



 $T_n$  Galton-Watson tree conditioned to have height at least n

The harmonic measure of the ball of radius n is supported on

 $\mathcal{T}_n[n] := \{ \text{vertices at height } n \}.$ 

Key idea : consider reduced trees.



 $T_n$  Galton-Watson tree conditioned to have height at least n

 $\mathcal{T}_n^* = \{ \text{vertices of } \mathcal{T}_n \\ \text{having descendants at} \\ \text{height } n \}$ 

The Sec. 74

#### Key idea : consider reduced trees.



 $\mathcal{T}_n$  Galton-Watson tree conditioned to have height at least n

 $\mathcal{T}_n^* = \{ \text{ vertices of } \mathcal{T}_n \\ \text{having descendants at} \\ \text{height } n \}$ 

The hitting distribution of the set of vertices at height *n* is the same for SRW on  $\mathcal{T}_n^*$  as for SRW on  $\mathcal{T}_n$ 

**E N 4 E N** 

#### A large reduced tree



A large Galton-Watson tree and the corresponding reduced tree.

11/19

## 2. The continuous limit of reduced trees

 $d_{\mathrm{gr}}$  graph distance on  $\mathcal{T}_n^*$ **Fact**:  $(\mathcal{T}_n^*, \frac{1}{n}d_{\mathrm{gr}}) \xrightarrow[n \to \infty]{(d)} (\mathcal{T}_\infty^*, D)$  in the Gromov-Hausdorff sense.

height 1  $U_{22}$  $U_{21}$  $U_{11}$  $U_{12}$  $U_2$  $U_1$  $U_{\alpha}$ root  $\rho$ The tree  $\mathcal{T}^*_{\infty}$ .

 $U_{\varnothing}$  uniform on [0, 1]  $U_1, U_2$  uniform on  $[0, 1 - U_{\varnothing}]$  $U_{11}, U_{12}$  uniform on  $[0, 1 - U_{\varnothing} - U_1]$ and so on.

*D* is the tree metric on the (completion of the) union of the segments, denoted by  $\mathcal{T}^*_{\infty}$ .

By definition 
$$\partial \mathcal{T}^*_{\infty} := \{ x \in \mathcal{T}^*_{\infty} : D(\rho, x) = 1 \}_{\mathbb{T}_{\infty}}$$

Nicolas Curien and Jean-François Le Gall

Harmonic measure on random trees

# Harmonic measure on $\partial \mathcal{T}^*_\infty$

Let  $\Gamma_t$  be Brownian motion on  $\mathcal{T}^*_{\infty}$  $\longrightarrow$  easy to define up to  $\mathcal{T} := \inf\{t \ge 0 : \Gamma_t \in \partial \mathcal{T}^*_{\infty}\}$ 

(at each branching point, Brownian motion chooses with equal probabilities each of the three possible directions)

Let  $\mu$  be the law of  $\Gamma_T$  (harmonic measure on  $\partial \mathcal{T}^*_{\infty}$ )

Theorem (B) A.s.,  $\mu(dx)$  a.e.,  $\lim_{r \to 0} \frac{\log \mu(B_D(x, r))}{\log r} = \beta$ 

In particular, dim  $\mu = \beta$ .

**Note**: dim $(\partial T^*_{\infty}) = 1$  a.s. (dimension drop as in Makarov's theorem)

This theorem is a key ingredient of the proof of the discrete results. (also explains why  $\beta$  is universal in the discrete setting)

# Harmonic measure on $\partial \mathcal{T}^*_\infty$

Let  $\Gamma_t$  be Brownian motion on  $\mathcal{T}^*_{\infty}$  $\longrightarrow$  easy to define up to  $\mathcal{T} := \inf\{t \ge 0 : \Gamma_t \in \partial \mathcal{T}^*_{\infty}\}$ 

(at each branching point, Brownian motion chooses with equal probabilities each of the three possible directions)

Let  $\mu$  be the law of  $\Gamma_T$  (harmonic measure on  $\partial \mathcal{T}^*_{\infty}$ )

Theorem (B) A.s.,  $\mu(dx)$  a.e.,  $\lim_{r \to 0} \frac{\log \mu(B_D(x, r))}{\log r} = \beta$ 

In particular, dim  $\mu = \beta$ .

**Note**: dim $(\partial T^*_{\infty}) = 1$  a.s. (dimension drop as in Makarov's theorem)

This theorem is a key ingredient of the proof of the discrete results. (also explains why  $\beta$  is universal in the discrete setting)

# 3. The Yule tree

Scale the heights in  $\mathcal{T}^*_\infty$  with

 $h(r) = -\log(1-r)$ 

Then  $\mathcal{T}_{\infty}^*$  is transformed in the Yule tree  $\mathbb{T}$ = genealogical tree of population with

- binary branching
- exp(1) lifetimes

Γ (Brownian motion on  $\mathcal{T}_{\infty}^*$ ) is transformed (up to time change) in *W* Brownian motion on  $\mathbb{T}$ with drift  $\frac{1}{2}$  upwards



# The boundary of the Yule tree

 $\mathbb T$  Yule tree The boundary  $\partial \mathbb T$  is

 $\partial \mathbb{T} := \{ \text{geodesic rays} \}$ 

One can define  $W_{\infty}$ the exit ray of the Brownian motion W

(unique ray visited by *W* at arbitrarily large times)



# and a particular geodesic ray $y_{\perp}$

# Asymptotics for the law of the exit ray

Recall:  $W_{\infty}$  exit ray of Brownian motion (with drift  $\frac{1}{2}$ ) on the Yule tree  $\mathbb{T}$  Set:

 $\nu = \text{law of } W_{\infty}$  (harmonic measure on  $\partial \mathbb{T}$ )

For  $y \in \partial \mathbb{T}$  and r > 0, let

 $\mathcal{B}(y, r) = \{\text{geodesic rays that coincide with } y \text{ up to height } r\}$ 

An equivalent form of Theorem (B) is:

Theorem (C) A.s.,  $\nu(dy)$  a.e.,  $\lim_{r \to \infty} \frac{1}{r} \log \nu(\mathcal{B}(y, r)) = -\beta.$ 

End of the lecture: ideas for the proof of Theorem (C).

# 4. Ergodic theory

 $\Omega = \{ \mathsf{Yule-type trees} \}$ 

$$\Omega^* = \{(\mathcal{T}, y) : \mathcal{T} \in \Omega, y \text{ ray of } \mathcal{T}\}$$

Shifts on  $\Omega^*$ :

 $au_r(\mathcal{T}, \mathbf{y}) = (\mathcal{T}', \mathbf{y}')$ , where

- *T*' is the subtree above level r "containing" y
- y' is the ray in  $\mathcal{T}'$  corresponding to y

 $\Theta^*(\mathsf{d}\mathcal{T}\,\mathsf{d}y) = \mathsf{law}\;\mathsf{of}\;(\mathbb{T},W_\infty)$ ( $\mathbb{T}$  Yule tree,  $W_\infty$  exit ray for BM)

 $\Theta^*$  is NOT invariant under the shifts, BUT one can find an absolutely continuous measure  $\Lambda^*$  which is invariant (and ergodic)



A pair 
$$(\mathcal{T}, \mathbf{y}) \in \Omega^*$$
 and the shift  
 $(\mathcal{T}', \mathbf{y}') = \tau_r(\mathcal{T}, \mathbf{y})$   
 $\mathcal{T}'$  is the blue subtree

Nicolas Curien and Jean-François Le Gall

17/19

### Applying Birkhoff's ergodic theorem

For  $(\mathcal{T}, y) \in \Omega^*$  (= pairs consisting of a tree + a geodesic ray), set

$$F_r(\mathcal{T}, \mathbf{y}) = -\log \nu_{(\mathcal{T})}(\mathcal{B}_{(\mathcal{T})}(\mathbf{y}, \mathbf{r}))$$

where

- ν<sub>(T)</sub> = harmonic measure on ∂T (law of exit ray for Brownian motion on T)
- $\mathcal{B}_{(\mathcal{T})}(y, r) = \text{rays of } \mathcal{T} \text{ that coincide with } y \text{ up to height } r$ hen, for every  $r, s \ge 0$ ,

$$F_{r+s} = F_r + F_s \circ \tau_r$$

(conditionally on the event that Brownian motion escapes in a subtree T' above height r, the law of the exit ray is given by the harmonic measure of T')

By Birkhoff's theorem,

$$\frac{1}{r}F_r \xrightarrow[r \to \infty]{} \beta := \Lambda^*(F_1)$$

#### $\Lambda^*$ a.s. hence also $\Theta^*$ a.s. (recall $\Theta^*$ has a density wart. $\Lambda^*$ ), $\Box$

### Applying Birkhoff's ergodic theorem

For  $(\mathcal{T}, y) \in \Omega^*$  (= pairs consisting of a tree + a geodesic ray), set

$$F_r(\mathcal{T}, \mathbf{y}) = -\log \nu_{(\mathcal{T})}(\mathcal{B}_{(\mathcal{T})}(\mathbf{y}, \mathbf{r}))$$

where

•  $\nu_{(\mathcal{T})}$  = harmonic measure on  $\partial \mathcal{T}$ (law of exit ray for Brownian motion on  $\mathcal{T}$ )

•  $\mathcal{B}_{(\mathcal{T})}(y, r) = \text{rays of } \mathcal{T} \text{ that coincide with } y \text{ up to height } r$ Then, for every  $r, s \ge 0$ ,

$$F_{r+s} = F_r + F_s \circ \tau_r$$

(conditionally on the event that Brownian motion escapes in a subtree T' above height *r*, the law of the exit ray is given by the harmonic measure of T')

By Birkhoff's theorem,

$$\frac{1}{r}F_r \xrightarrow[r \to \infty]{} \beta := \Lambda^*(F_1)$$

 $\Lambda^*$  a.s. hence also  $\Theta^*$  a.s. (recall  $\Theta^*$  has a density w.r.t.  $\Lambda^*$ )

The last convergence

$$\frac{1}{r}F_r \underset{r \to \infty}{\longrightarrow} \beta := \Lambda^*(F_1), \quad \Theta^* \text{ a.s.}$$

gives Theorem (C) (recall that  $\Theta^*$  is the law of  $(\mathbb{T}, W_{\infty})$ ).

There is an explicit formula for  $\beta$  in terms of integrals with respect to the distribution of the conductance of the continuous reduced tree (the latter distribution is itself determined by a fixed point equation).

**Remark.** The preceding ideas are related to the work of Lyons, Pemantle and Peres (1995,1996) in a different setting.

イベト イラト イラト