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LOOP-ERASED RANDOM WALK (LERW)

Start with simple random walks and erase loops in
chronological order to get a path with no self-intersections.
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Figure : Realization of LERW
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Can also be described as Laplacian random walk.

LERW is Laplacian growth at the tip.

Diffusion limited aggregation (DLA) is Laplacian growth on
the entire cluster.

In two dimensions, study of LERW led to construction of
Schramm-Loewner evolution (SLE2) of parameter κ.

Can also consider growth by harmonic measure to a power b.

There is a corresponding continuous process called SLEκ with

b =
6− κ

2κ
.

Unknown (even nonrigorously) if there is convergence for
b 6= 1. The only discrete model we will consider today is
LERW (b = 1) but we will consider SLEκ for various values of
κ.
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Scaling Limit

Given bounded simply connected domain D containing the
origin with analytic boundary and two boundary points
a′, b′ ∈ ∂D.

For each N let AN be the lattice approximation of ND.

Choose aN, bN ∈ ∂AN close to Na′, Nb′. Let
a = aN/N, b = bN/b. Consider a probability measure PN on
paths from aN to bN in AN.

Critical exponent fractal dimension d. We assume that a
typical path under PN has of order Nd points.
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Given PN, d we have a measure on scaled paths where

η = [η0, η1, . . . , ηk]

is scaled to be the continuous curve η̃ of time duration
T = k/Nd given by

η̃

(
k

Nd

)
=

ηk

N
.

η̃ becomes a continuous curve by linear interpolation.

A scaling limit is a limit for the induced probability measure
on scaled curves.

We have given the discrete curves the (normalized) natural or
length parametrization.
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The fractal dimension for LERW

Given conformal invariance of planar Brownian motion, good
reason to believe conformal invariance of limit.

Kenyon (2000) used relationship with dimer models to
rigorously show that d = 5

4 .

Although Kenyon’s result was exact on the value of the
dimension he did not give sufficiently sharp asymptotics that
our needed for our proof.

While his result did not suffice, an important idea (zippers)
from his proof was used in later work.
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Find the limit measure

Schramm (2000) considered possible scaling limits for the
LERW assuming conformal invariance and another property,
domain Markov property.

He showed there is a one parameter family of processes
satisfying conformal invariance and domain Markov property
— these are now called the Schramm-Loewner evolution
(SLEκ).

Using another property of LERW he was able to determine
that κ = 2 would have to be the limit of LERW assuming the
scaling limit existed and was conformally invariant.

This measure was really on curves modulo reparametrization.
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(Half plane) Loewner equation

Let γ : (0, ∞)→H be a simple curve with γ(0+) = 0 and
γ(t)→ ∞ as t→ ∞.
gt : H \ γ(0, t]→H

Ut

g
t(t)

0

γ

Choose gt and reparametrize so that

gt(z) = z +
2t
z
+ · · · , z→ ∞

Then gt satisfies the (half plane) Loewner equation

∂tgt(z) =
2

gt(z)−Ut
, g0(z) = z.

Moreover, Ut = gt(γ(t)) is continuous in t.
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(Schramm) The only possible conformally invariant limit for
LERW is the solution to the Loewner equation with
Ut =

√
2 Bt, where Bt is a standard Brownian motion. More

generally, Ut =
√

κ Bt gives (chordal) SLEκ.

SLEκ, κ < 8 is a measure on simple curves of fractal
dimension d = 1 + κ

8 . We will consider only κ < 8 in this talk.

The paths are simple for κ ≤ 4. (Rohde-S)

We have also chosen a particular parametrization called the
capacity parametrization.

The measure is defined in other simply connected domains by
conformal invariance.

(L-Schramm-Werner) The scaling limit of LERW in the
capacity parametrization is SLE2.
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Example: outer boundary of Brownian motion
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Mandelbrot conjectured that outer boundary has dimension 4
3 .

Burdzy - L: outer boundary is Jordan curve.

Makarov: Parametrization by harmonic measure is carried on
a set of dimension 1.

LSW: Outer boundary is locally the same as SLE8/3 and
hence has dimension 4

3 .

The capacity parametrization from SLE8/3 is carried on a set
of dimension strictly between 1 and 4/3.

Under this parametrization the curve is weakly-Hölder

continuous of order 10−4
√

6
11−4

√
6
= .168 · · ·.

The “natural parametrization” should be carried on a set of
dimension 4

3 and should be weakly-Hölder continuous of order
3
4 .
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Some results for random walk boundaries, e.g.,
L (1993). A Discrete Analogue of a Theorem of Makarov,
Combinatorics, Probability and Computing, 2, pp 181-199.
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Johansson Viklund - L

The capacity parametrization for SLEκ, κ < 8 is carried on a
set dimension (roughly speaking) 1 + κ

κ+8 (< 1 + κ
8 ).

This is one case of a general result about the tip multifractal
spectrum of the curve. Another special case is the Hausdorff
dimension of the path (originally proved by Beffara).

The curve is weakly-Hölder continuous of order

1− κ

24 + 2κ − 8
√

8 + κ
.

(One direction first proved by Lind.)

Parametrization by harmonic measure is a special case of full
boundary (two-sided) multifractal spectrum (in the case of outer
boundary of Brownian motion it is Brownian intersection
exponents).
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Natural parametrization of SLEκ, κ < 8

We want to parametrize SLE path by the normalized limit of
the length (number of steps) of the discrete walk.

Natural parametrization of a smooth curve is another term for
parametrization by arclength.

For a d-dimensional curve, we would like to parametrize by
“d-dimensional length”.

Although the Hausdorff dimension of SLEκ is d = 1 + κ
8 , the

Hausdorff d-measure is zero (Rezaei).

Finding a nontrivial Hausdorff gauge function is an unsolved
problem and seems very difficult.
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Minkowski content

The d-dimensional Minkowski content of a compact
V ⊂ C = R2 is given by (provided that the limit exists)

Cont(V) = Contd(V) = lim
ε↓0

εd−2 Area{z : dist(z, V) < ε}.

Interested in this for V = γ, an SLEκ curve from w to w′ in a
domain D.

One-point estimate: find d and function G(z) = GD(z; w, w′)
such that

P{dist(z, γ) < ε} ∼ G(z) ε2−d, ε ↓ 0.

If f : D→ f (D) is conformal,

GD(z; w, w′) = |f ′(z)|2−d Gf (D)(f (z); f (w), f (w′)).
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(Rohde-Schramm) If such a relation holds then d = 1 + κ
8 and

GH(z; 0, ∞) = c [Imz]d−2 [sin arg z]β, β =
8
κ
− 1.

(L, -Werness, -Rezaei) There exists c, α such that

P{dist(z, γ) < ε} = G(z) ε2−d [1 + O(εα)], ε ↓ 0.

Also there exists a two-point function G(z, z′),

P{dist(z, γ) < ε, dist(z′, γ) < ε} ∼ G(z, z′) ε2(2−d), ε ↓ 0.

dist(z, z′) � G(z) |z− z′|d−2, z′ → z.
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Minkowski content

Theorem (L-Rezaei)

If γ is an SLEκ(κ < 8) curve from w to w′ in D, then

Θt := Cont (γ[0, t])

exists, is Hölder continuous, and strictly increasing in t.

If D is bounded with analytic boundary, then

E [Cont(γ)] = E [Θ∞] =
∫

D
GD(z) dA(z) < ∞,

E
[
Cont(γ)2] = E

[
Θ2

∞
]
=
∫

D×D
GD(z, z′) dA(z) dA(z′) < ∞
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Natural parametrization of SLE

γ(t) is SLEκ with the natural parametrization (or natural
length) if it is the time change of Schramm’s SLE with

Cont (γt) = t, γt = γ[0, t].

Note that

E [Cont(γ∞) | γt] = Cont(γt) + Ψt,

where Ψt =
∫

D\γt

GD\γt(z; γ(t), w′) dA(z).

The first definition (L-Sheffield) of natural parametrization
was as the increasing process Θt such that Θt + Ψt is a
martingale (Doob-Meyer decomposition). This
characterization is important in comparing to LERW.
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Conjecture (but not proven): SLEκ under the natural
parametrization is weakly Hölder-continuous of order 1/d.

Werness: There is a parametrization at least for κ ≤ 4 that is
weakly Hölder-continuous of order 1/d.

No way to reparametrize to get a higher order.
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Outline to prove Minkowski content exists

For z ∈ D let

σε = σε,z = inf{t : |γ(t)− z| = ε}.

Show that
P {σε < ∞} ∼ G(z) ε2−d.

Let
Yε(z) = P {σε < ∞ | γ[0, σ2ε]} .

Show that as ε ↓ 0, Yε(z) (given σ2ε < ∞) has a limit
distribution independent of ε, z.

Show that if z, z′ are separated, then for ε small Yε(z) and
Yε(z′) are almost independent.

Need double points of path to have strictly smaller dimension
than the path.
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Return to Loop-Erased Random Walk

A, finite simply connected subset of Z2 containing the origin.

a, b ∈ ∂A, distinct.

Let PA,a,b denote the probability measure of LERW from a to
b in A. This is a measure on self-avoiding paths

η = [η0, η1, . . . , ηk]

from a to b in A. We write

ηn = [η0, . . . , ηn],

Let An denote the connected component of A \ ηn that
contains b on its boundary.
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Domain Markov property: the distribution of the remainder of
η given ηn is PAn,ηn,b.

Let T denote the total number of steps of the walk.

EA,a,b [T] = ∑
ζ∈A

PA,a,b{ζ ∈ η}.

EA,a,b [T | ηn] = n + Φn,

where
Φn = EAn,ηn,b[T] = ∑

ζ∈A
PAn,ηn,b{ζ ∈ η}.

We need to estimate PA,a,b{ζ ∈ η} precisely even for A with
“rough boundary”.
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Let DA be the domain obtained from A by replacing each
point z with a square of side length one centered at z

.

Theorem (Beneš-L-Viklund)

There exists c0, u > 0 such that

PA,a,b{ζ ∈ η} = (c0 ĉ) r−
3
4
[

S3 + O(r−u)
]

= c0 GDA,a,b(ζ) + O(r−
3
4−u),

where r = rDA(ζ), S = SDA(ζ; a, b) and G denotes the SLE2
Green’s function.

The proof makes no use of SLE.

The estimates are uniform over all finite simply connected A
and hence they apply to PAn,an,b.

The proof uses the relationship between LERW and the
random walk loop measure.
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This relationship is algebraic and does not require the bond
weights on the random walks to be positive.

Using the zipper idea of Kenyon, we assign weights of bonds
crossing the zipper to be negative.

A determinantal relationship (Fomin’s identity) relates the
probability we need with a certain measure of paths under the
signed measure.

We finally need to estimate the usual loop measure of loops in
A that have odd winding number about ζ: There exists β
such that

1
8

log rA(ζ) + β + o(1).

The exponent −3/4 in the theorem comes from the constant
1/8 in this formula.

−3
4
= −1 + 2

1
8

.
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The calculation is first done for a conformally invariant object,
the Brownian loop measure (L.-Werner).

The result for the random walk measure uses a very close
coupling of the two (L-Trujillo Ferreras) which allows for sharp
estimates of the error terms.

There are also careful estimates for the random walk Poisson
kernel in the domains DA in terms of the Brownian kernel.
This uses work in Kozdron-L (and is closed related to results
in L-Schramm-Werner for random walk in slit domains).

The exponent 3 can be calculated “in the limit” for Brownian
motion but must be verified for the random walk.
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Theorem (L- Viklund)

For any simple connected bounded domain D with analytic
boundary and a′, b′ ∈ ∂D, the measures on loop-erased walks
scaled with d = 5

4 converge to the Schramm-Loewner evolution
with parameter κ = 2 (SLE2), parametrized by (a constant
multiple times the) 5

4 -dimensional Minkowski content (natural
parametrization).

The key new part of this this theorem is that the convergence
is with respect to curves parametrized by Minkowski content
(natural length).

The proof requires detailed estimates for both the LERW and
the SLE.
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Basic strategy of proof of main theorem

Fix a lattice spacing 1/N.

Using the observable “probability that LERW goes through
z”, we can couple an SLE γ and a scaled LERW η so that
their paths are close (similar to idea in LSW paper).

Let
η̃t = η̃t,N = N−1 η

(
ctN5/4

)
be the scaled version of η of time duration

T̃ = [cN5/4]−1T.

Consider the martingales (actually considered at discrete
times)

Mt := E [Cont(γ∞) | γt] = Cont(γt) + Ψt,

M̃t = E
[
T̃ | η̃t

]
= T̃t + Φ̃t,

28 / 30



We have a martingale Nt

Nt = Mt − M̃t = Cont(γt)− T̃t + Ψt − Φ̃t,

Nt = Bt + Yt,

where Bt is bounded variation with B0 = 0.

Using the coupling of the SLE and LERW along with Green’s
function estimates for both SLE and LERW we see that
E[Yt

2] is very close to zero. (This requires the precise
asymptotics of LERW Green’s function.)

We conclude that Bt is close to zero.

Although the basic program of proof is not too hard to state,
there are a lot of details to verify, both for SLE and LERW, to
make this work.
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HAPPY BIRTHDAY , NICK!
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