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Scaling limits
Scaling limits of discrete 2d models: percolation, Ising, . . .

I SLE, CLE: Statistics of boundary curves
I Conformal Field Theory: Correlation functions of local

fields, operator algebras representing symmetries
While SLE is a probabilistic description the study of CFT has
been mostly algebraic

Exceptions:
I Kang and Makarov on GFF
I Chelkak, Hongler, Izyurov, Kytölä, Smirnov, ... on Ising

Problem: direct continuum formulation of most CFT’s missing

Liouville CFT:
I Explicite (formal) functional integral formulation
I One of the simplest and one of the most mysterious CFTs!

Our aim is to study its properties using probabilistic methods.



Conformal Field Theory

What does it mean to construct CFT?

• Expectation 〈. . . 〉

• Primary fields (in general not distribution valued) Φ∆(z),
z ∈ C of conformal weight ∆

• Correlation functions 〈
∏

i Φ∆i (zi)〉 zi 6= zj

• Global conformal invariance: f Möbius

〈
∏

i

Φ∆i (f (zi))〉 =
∏

i

|f ′(zi)|−2∆i 〈
∏

i

Φ∆i (zi)〉

• Local conformal invariance: a holomorphic field T (z)
"Energy-Momentum Tensor"



Energy-Momentum tensor

Local conformal invariance:

〈T (z)
n∏

i=1

Φαi (zi)〉 and 〈T (z)T (z ′)
n∏

i=1

Φαi (zi)〉

are analytic in z 6= z ′ ∈ C \ {z1, . . . , zn}
Singularities given by Conformal Ward identities:

〈T (z)
∏

i

Φ∆i (zi )〉 =
∑

j

(
∆j

(z − zj )2 +
1

z − zk
∂zk )〈

∏
i

Φ∆i (zl )〉

〈T (z)T (z ′)
∏

i

Φ∆i (zi )〉 =
c

(z − z ′)4 〈
∏

i

Φ∆i (zi )〉+
2

(z − z ′)2 〈T (z ′)
∏

i

Φ∆i (zi )〉

+
1

z − z ′
∂z′〈T (z ′)

∏
i

Φ∆i (zi )〉+ regular(z − z ′)

c central charge



Algebraic Structure

OS-positivity of 〈. . . 〉 =⇒ Hilbert Space H

Ward identities =⇒ unitary representation of Virasoro Algebra
on H

How does this representation reduce?

Fusion rules for tensoring representations

Conformal bootstrap for determining correlations



Gaussian Free Field

〈F 〉 =

∫
Map(C→R)

F (X )e−
1

4π

∫
C |∂zX |2dzDX

To define this pick a smooth metric g(z)dz2 on Ĉ and let Xg be
Gaussian Free Field normalized with∫

C
Xg gdz = 0

Then X = Xg + c, c ∈ R i.e.

〈F 〉 =

∫
R

[EF (Xg + c)]dc :=

∫
F (X )dνGFF (X )

I νGFF (dX ) = P(dXg)dc is not a probability measure

I 〈. . . 〉 is independent of the metric since Xg
law
= X ′g + const .

I Central charge = 1
I Primary fields eiαX (renormalized), α ∈ R. ∆α = α2

4 .



Liouville theory

Perturbation of GFF

νL = e−
1

4π

∫
C(QRgX+µeγX )gdzνGFF

I Rg = −∆ log g scalar curvature
I Q = 2

γ + γ
2 , γ > 0, µ > 0

I eγX gdz := Mg(dz) is Gaussian multiplicative chaos

Mg(dz) = lim
ε→0

eγXg,ε− γ
2

2 E[X 2
g,ε]gdz

I Mg is a random multifractal measure on C.
I Mg 6= 0 iff γ < 2 and Mg(C) <∞ a.s.



Knizhnik, Polyakov, and Zamolodchikov ’88
Let Φ∆ be a primary field of a CFT with c = 25− 6Q2 < 1.

Then the corresponding field on a random surface is

Φ∆eγ∆qX

with X the Liouville field and

∆ = ∆q +
γ2

4
∆q(∆q − 1)

Hence to understand CFT on a random surface need to
understand correlations of vertex operators

Vα(z) = eαX(z)

in Liouville theory.

These can be reduced to the study of Multiplicative Chaos.



Liouville correlations

〈
∏

i

Vαi (zi)〉L =

∫ ∏
i

eαi X(zi )e−
1

4π

∫
C(QRgX+µeγX )gdzdνGFF (X )

Since X = Xg + c and by Gauss-Bonnet:
∫
C Rggdz = 8π we get

=

∫ ∏
i

eαi Xg(zi )e(
∑

i αi−2Q)ce−
1

4π

∫
C(QRgXg+µeγceγXg )gdzdP(Xg)dc.

We can perfom the c integral to get

〈
∏

i

Vαi (zi)〉L =
Γ(s)

µsγ
E[
∏

i

eαi Xg(zi )e−
1

4π

∫
C QRgXggZ−s

0 ]

provided

s :=
1
γ

(
∑

i

αi − 2Q) > 0.

and
Z0 =

∫
C

eγXg gdz



Liouville correlations
Covariance of Xg

C(z, z ′) = EXg(z)Xg(z ′) = log |z − z ′|−1 + . . .

By Girsanov theorem we make a shift

Xg(z)→ Xg(z) +
∑

αiC(z, zi) +

∫
C(z, z ′)Rgg dz ′

and Liouville correlation becomes

〈
∏

i

Vαi (zi)〉L =
Γ(s)

µsγ

∏
i<j

|zi − zj |−αiαjEZ−s

where Z is an integral over Multiplicative Chaos:

Z =

∫
C

eγXg
∏

i

|z − zi |−γαi g1− γ4
∑
αi dz



Liouville correlations

Modulus of continuity of Chaos: Mg(Br ) ∼ rγQ =⇒
|z − zi |−γαi integrable iff

αi < Q

Corollary. Since
∑
αi > 2Q need at least three vertex

operators to have finite correlators.

The vertex operator eαi X(zi creates a conical singularity in the
quantum metric eγX g.



Classical vs. Quantum

Extrema of classical Liouville action functional (with Q = 2/γ)∫
C

(|∂zX |2 + QRggX + µeγX g)dz

are constant negative curvature metrics eγX g on Ĉ.

To have these classically need to have at least three conical
singularities.

This holds for quantum Liouville too.

Classical Liouville action is Möbius invariant.

This holds for the quantum Liouville correlations too.



Global Conformal Invariance

Theorem

(a) Conformal covariance. Let ψ be Möbius. Then

〈Vα1(ψ(z1)) . . .Vαn (ψ(zn))〉 =
∏

i

|ψ′(zi)|−2∆αi 〈Vα1(z1) . . .Vαn (zn)〉

where ∆α = α
2 (Q − α

2 ).

(b) Weyl invariance. Let g′ = eφg. Then

〈Vα1(z1) . . .Vαn (zn)〉′ = eS(φ,g)〈Vα1(z1) . . .Vαn (zn)〉

where S(φ,g) = cL−1
96π (

∫
|∂φ|2 gdz +

∫
2Rĝφgdz) and

cL = 1 + 6Q2

is the central charge of the Liouville theory.



Liouville measure
If αi < Q and

∑
i αi − 2Q > 0 we can define probability

dPαi ,zi (X ) :=
1

Zαi ,zi

n∏
i=1

Vαi (zi)dµL(X )

Consider the law of the chaos measure Mĝ under Pµ,γ . Let

A = Mĝ(Ĉ)

be the "volume of the universe". Then
Theorem. Under Pαi ,zi the law of A is Γ(s, µ) (s =

∑
i αi−2Q

γ ) :

EF (A) =
µs

Γ(s)

∫ ∞
0

F (y)yse−µy dy .

Remark. With n = 3, αi = γ this agrees with Planar Maps with
an O(n) loop model of c = 25− 6Q2 justifying KPZ.



Planar maps with matter

Let T be a triangulation of S2 with three marked points.

Define probability

P(T ) ∝ e−µ0|T |ZQ(T )

ZQ(T ) partition function of loop model on T with c = 25− 6Q2.

Map T conformally to Ĉ \ {z1, z2, z3}

Area measure on T → random measure νµ0 on Ĉ.

Take scaling limit as µ0 ↓ µcrit . Then the total mass has
Γ(

∑
i αi−2Q

γ , µ) law (n = 3, αi = γ).



Conformal Ward identities
Define the Energy-momentum tensor

T (z) = Q∂2
z X (z)− ((∂zX (z))2 − E(∂zX (z))2)

Theorem

E
(
T (z)

n∏
i=1

Vαi (zi)
)

and E
(
T (z)T (z ′)

n∏
i=1

Vαi (zi)
)

are analytic in z, z ′ ∈ C \ {z1, . . . , zn} and satisfy the conformal
Ward identities:

T (z)T (z ′) =
c

(z − z ′)4 +
2

(z − z ′)2 T (z ′) +
1

z − z ′
∂T (z ′) +O(1)

T (z)V (zi) =
∆i

(z − zi)2 V (zi) +
1

z − zi
∂V (zi) +O(1)



Conformal Ward identities

Proof. Use integration by parts, e.g.

〈∂2
z X (z)

∏
eαi X(zi )〉L = 1

2

∑
i

αi

(z−zi )2 〈
∏

eαi X(zi )〉L

− µγ

2

∫
1

(z−u)2 〈e
γX(u)

∏
eαi X(zi )〉Ldu

Need to control Beurling transforms of Liouville correlations.

These are singular as zi − zj → 0 i.e. need to understand
Liouville operator product expansion

Vα(u)Vβ(v) ∼ |u − v |−δVγ(v)

This relates to the freezing phenomenon in Chaos theory.



3-point function

In CFT 3-point function believed to determine whole theory.
Möbius invariance =⇒ suffices to consider

C(α1, α2, α3) = 〈Vα1(0)Vα2(1)Vα3(∞)〉

= µ−sΓ(s)E (

∫
eγX(z) 1

|z|γα1 |z − 1|γα2
ρdz)−s

This is finite only if s = 1
γ (
∑

i αi − 2Q) > 0.

For s = −k k ∈ N it may be evaluated formally in terms of
diverging Selberg-integrals.

These have a finite "analytic continuation", the explicit DOZZ
formula due to Dorn, Otto, Zamolodchikov and Zamolodchikov

How to prove this?



BPZ Equations

CFT’s have degenerate fields leading to PDE’s for
correlations.

In Liouville V− γ2 is degenerate: we prove

Theorem. Let F (z, z1, . . . , zN) = 〈V− γ2 (z)
∏

l Vαl (zl)〉 then

4
γ2∂

2
z F +

∑
k

∆αk

(z − zk )2 F+
∑

k

1
z − zk

∂zk F = 0.

For N = 3 this equation has a unique solution expressed in
terms of hypergeometric functions.

As a corollary we prove a recursion for C(α1, α2, α3) whose
unique solution in analytic functions is the DOZZ conjecture.

A major problem is to prove analyticity.



Hilbert space

νGFF and µL are reflection positive:

(F ,G) :=

∫
F (X )(ΘG)(X )dµL(X ) ≥ 0 ∀F ,G ∈ FD

I FD = {F (X ) supported on X |D}.
I (ΘF )(X ) := F (X (1/z̄)).

Define the Physical Hilbert space:

H := FD/{F : (F ,F ) = 0}



Hilbert space

Splitting of GFF to independents:

Xg = c + XD + XDc + Pφ

I XD and XDc Dirichlet GFF
I φ GFF on ∂D ("1/f noise")
I Pφ harmonic extension of φ on ∂D.

Then
UGFF F = EDF (c + XD + Pφ)

is a unitary map UGFF : HGFF → L2(dc)× L2(P(dφ)).

For Liouville

UF = e−QcED(e−µ
∫
D eγX dzF (c + XD + Pφ))

is a unitary map U : HL → L2(dc)× L2(P(dφ)).



Dilation semigroup

Dilation z → λz acts on FD =⇒ contraction semigroup

λL0 λ̄L̄0 : H → H

H := L0 + L̄0 ≥ 0 Hamiltonian operator of the CFT.

For GFF get

HGFF = −1
2

d2

dc2 +
∑
n>0

n(a∗nan + b∗nbn)

and for Liouville formally

HL = 1
2 (− d2

dc2 + Q2) +
∑
n>0

n(a∗nan + b∗nbn) +
( ∫

T
eγφ
)

renormalized



Virasoro algebra

Ward identities =⇒ unitary representation of Virasoro
algebra on L2(dc)× L2(P(dφ)):

[Lm,Ln] = (m − n)Lm+n +
c

12 δm,−n

with
Ln = U

∮
|z|=r<1

zn+1T (z)U−1

and c = 1 for GFF, c = 1 + 6Q2 for Liouville.

For Liouville the domain of Ln poses some challenges!



Spectrum

Reduction of the Virasoro representation on H?

I Highest weight module Mα = span{Lnψα,n ≤ 0},
L0ψα = ∆αψα, Lnψα = 0, n > 0.

Conjectures:
I Each α = Q + iP occurs with multiplicity one:

H =

∫ ⊕
R
HP dP

I All correlation functions 〈Vα1 . . .Vαn〉 determined by the
three point functions 〈Vα1Vα2Vα3〉 ("conformal
boostrap").



Constructive CFT

• Liouville CFT has a straightforward probabilistic definition.

• Probabilistic methods allow to prove some of its basic
properties: Seiberg bounds, KPZ scaling and Ward identities.

• It remains to be seen if they can bridge the gap to the
axiomatic-algebraic approach by justifying its assumptions on
the spectrum and correlation functions.



γ =
√

2, (c = −2) Quantum Sphere



Punctures
We are interested in S2 with 3 marked points z1, z2, z3.

To have a constant negative curvature metric on S2 one needs
to include conical singularities. Let us do this at the points
z1, z2, z3. Such metrics are extrema of the functional

S(X ,g, αi , zi) = S(X ,g)−
3∑

i=1

αiX (zi)

suitably renormalized. The angle of the cone at zi is

Ωi = 2π(1− αi/Qclass), Qclass = γ/2

and one needs∑
i

(2π − Ωi) > 4π i.e.
∑

αi > 2Qclass.

hence since Ωi > 0 need at least three conical singularities.



Vertex operators
Do the same in the random case. The density

e−S(X ,g,αi ,zi ) =
3∏

i=1

eαi X(zi )e−S(X ,g)

is defined in terms of the vertex operators

Vα(z) := lim
ε→0

eγXg,ε− γ
2

2 E[X 2
g,ε]

Define the probability for punctured sphere

dPαi ,zi (X ) :=
1

Zαi ,zi

3∏
i=1

Vαi (zi)dµL(X )

with normalization

Zαi ,zi =

∫
R

e−2Qc
(
Eĝ

n∏
i=1

Vαi (zi)e−µeγcMĝ(S2)
)

dc



Seiberg bounds

Now the c-integral becomes∫
R

e(
∑
αi−2Q)c−µeγcMĝ(S2) dc

This is finite if and only if
∑
αi > 2Q .

Theorem Let
∑
αi > 2Q. Then Z <∞ and Z > 0 if and only if

αi < Q for all i .

Proof Girsanov theorem: punctures give rise to volume form∏
i

|z − zi |−γαi eγX(z)g(z)dz

Modulus of continuity of Chaos: integrable iff αi < Q.

Corollary. Indeed, need at least three vertex operators as in
the classical case.



Planar maps with matter

Let TN = triangulations of S2, N faces with 3 marked faces

I T ∈ TN is a graph with topology of S2 and faces triangles
I For γ ∈ [

√
2,2] ∃ critical lattice model on the graph T .

I γ =
√

2 spanning trees, γ =
√

8/3 percolation, γ =
√

3,
Ising model, γ = 2 GFF

I Zγ(T ) partition function of the model
I Z√2(T ) = det ∆T , Z√8/3(T ) = 1, Z2(T ) = det−

1
2 ∆T

For µ0 > 0 consider the probability Pµ0,γ on T = ∪NTN :

Eµ0,γF :=
1

Zµ0,γ

∑
N

e−µ0N
∑

T∈TN

Zγ(T )F (T )



Planar maps with matter

It is conjectured∑
T∈TN

Zγ(T ) = N
1− 4

γ2 eµ̄N(1 + o(1)).

Hence
lim
µ0↓µ̄

Eµ0,γ |T | →
∑

N

N
2− 4

γ2 =∞

provided γ ∈ [
√

2,2].

As µ0 ↓ µ̄ Pµ0,γ concentrated on large triangulations.



Random measure on S2

Conformal structure on T : triangles equilateral area 1.

Map T conformally to S2 s.t. marked faces map to z1, z2, z3.

Image of volume on T is a measure νT (dz) on S2.

Under Pµ0,γ , νT becomes a random measure νµ0,γ on S2.



Scaling limit

As µ0 ↓ µ̄ typical size of triangulation diverges.

Let µ > 0 and define

ρ(ε)
µ,γ := ενµ̄+εµ,γ

Conjecture. ρ(ε)
µ,γ converges in law as ε→ 0 to a random

multifractal measure ρµ,γ on S2.

Since ενT (S2) = εN the law of total volume ρ(ε)
µ,γ(S2) is:

E[F (ρ(ε)
µ,γ(S2))] =

1
Zε

∑
N

e−µεNN
1− 4

γ2 F (εN).

It converges to Γ(2− 4
γ2 , µ) as ε→ 0.

We will construct a measure ρµ,γ on S2 with this law for its total
mass.



2d Gravity a la Polyakov
Polyakov (81), Kniznik, Polyakov, Zamolochikov (88):

ρµ,γ(dz) = eγX(z)dz

X (z) is a random field on S2, Liouville CFT

The law Pγ,µ of X is formally given by functional integral

Eγ,µ f (X ) = Z−1
∫

f (X ) e−S(X ,g)DX (1)

where S is the Liouville action functional:

S(X ,g) :=

∫
S2

(
|∇gX |2 + QRgX + µeγX)gdz

I g = g(z)dz2 is any smooth conformal metric on S2

I Rg = −∆ log g scalar curvature
I Q = 2/γ + γ/2



Classical Liouville theory

If we take
Q = 2/γ

extrema of S(X ,g) are solutions of Liouville equation

ReγX g = −1
2µγ

2.

Solutions define metrics eγX g with constant negative curvature
and lead to the uniformisation theorem of Riemann surfaces.

For the quantum (random) case we need to take

Q = 2/γ + γ/2.

The resulting quantum geometry has interesting parallels with
the classical one.



Quantum Liouville theory

We want to give meaning to the integral∫
F (X )e−

∫
S2 (|∇gX |2+QRX+µeγX )gdzDX

by viewing it as a perturbation of

e−
1

4π

∫
S2 (|∇gX |2dzDX (2)

which looks like a Gaussian measure.

Indeed, one could interpret (2) as the Gaussian Free Field on
S2 i.e. the Gaussian measure with covariance (−∆g)−1.



Constant mode

However, GFF is defined only up to an additive constant
since ∆g annihilates constants.

I We want to include constant fields to DX : the "gaussian"
measure will not be a probability measure

I Quadratic part of action is independent on metric:∫
S2
|∇gX |2 gdz =

∫
S2
|∇X |2 dz.

so look for a measure having this property.



Gaussian Free Field (GFF)

Let Xg be Gaussian Free Field with zero average in metric g:

〈Xg〉g :=
1

volg(S2)

∫
S2

Xg(z)g(z)dz = 0

As g varies the fields differ by random additive constants:

Xg − 〈Xg〉g′
law
= Xg′ .

Define
X = Xg + c

where c is uniform on R.

"Law" of X is independent of g
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