Network models, quenched quantum gravity, and critical behavior at quantum Hall transitions

Ilya A. Gruzberg
Ohio State University

Coauthors: E. Bettelheim, Jerusalem

A. W. W. Ludwig, Santa Barbara

A. Klümper, Wuppertal

W. Nuding, Wuppertal

A. Sedrakyan, Yerevan

General setting

- Critical points in 2D disordered systems, Anderson transitions
- Statistical treatment: all observables are random, need to find their distribution (or the mean and the moments)
- Average over disorder leads to conformal field theory with $\,c=0\,$
- SLE connection: $\kappa = 8/3$ (SAW) or $\kappa = 6$ (percolation)
- Many more critical points
- Conformal restriction measures and $SLE(8/3, \rho)$
- Recent development: coupling to quantum gravity

Integer quantum Hall effect

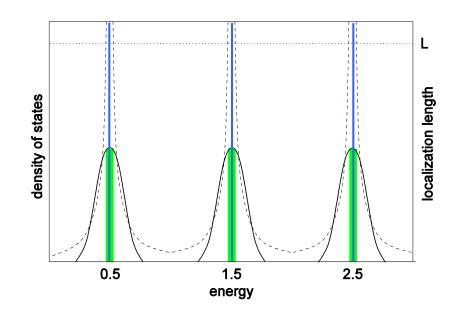
Single electron in a magnetic field and a random potential

$$H = \frac{1}{2m} \left(-i\hbar \nabla + \frac{e}{c} \mathbf{A} \right)^2 + U(\mathbf{r})$$

- Most states are localized
- Extended states at E_n
- Localization length diverges

$$\xi(E) \propto |E - E_n|^{-\nu}$$

• Universal critical exponent ν

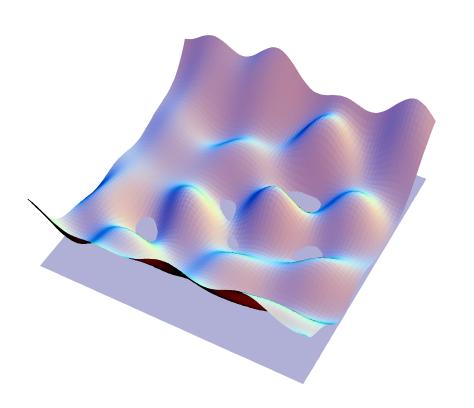


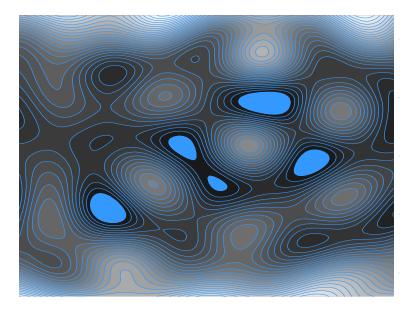
Theory of IQH plateau transition

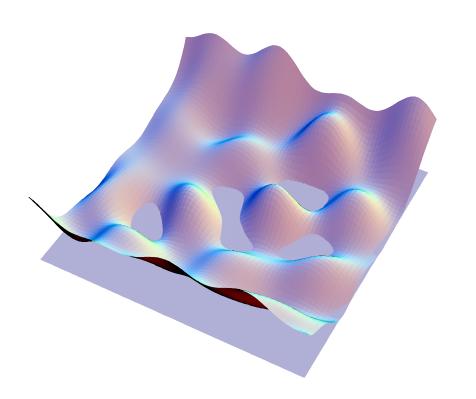
- Goals for a theory of the transition:
 - Critical exponents and scaling functions
 - Correlation functions at the transition
- Expect conformal invariance at the transition (confirmed numerically)
- A lot of intuition comes from a network model, also numerics

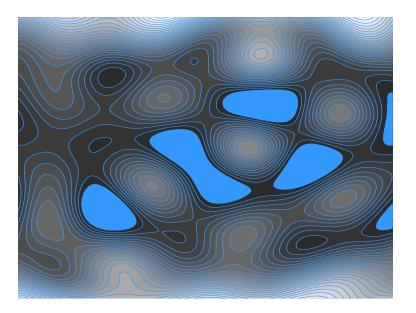
J. T. Chalker and P. D. Coddington `88

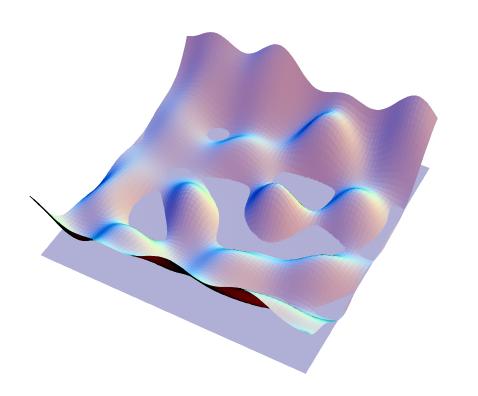
Motivation for the network model: Electrons in a smooth random potential

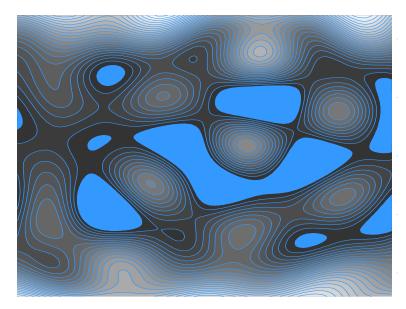


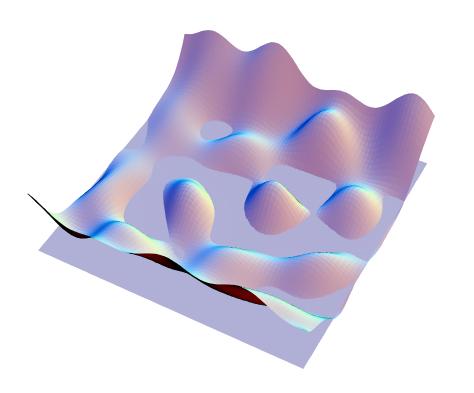


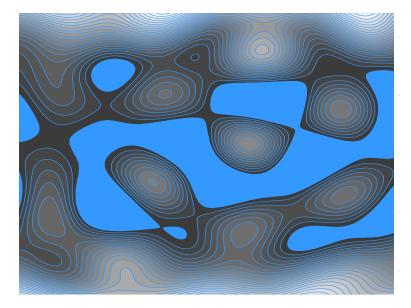


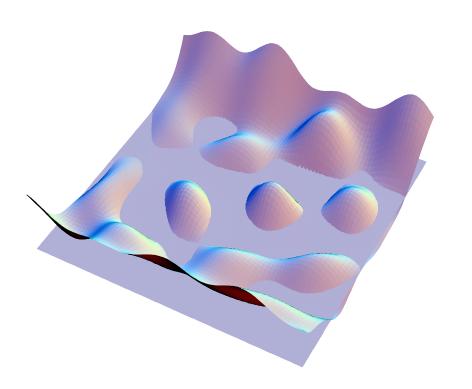


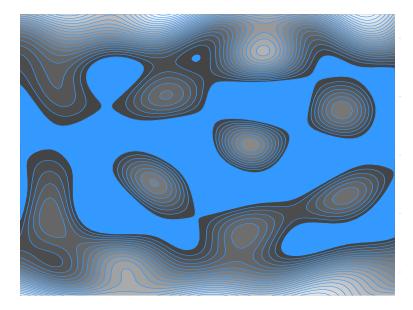


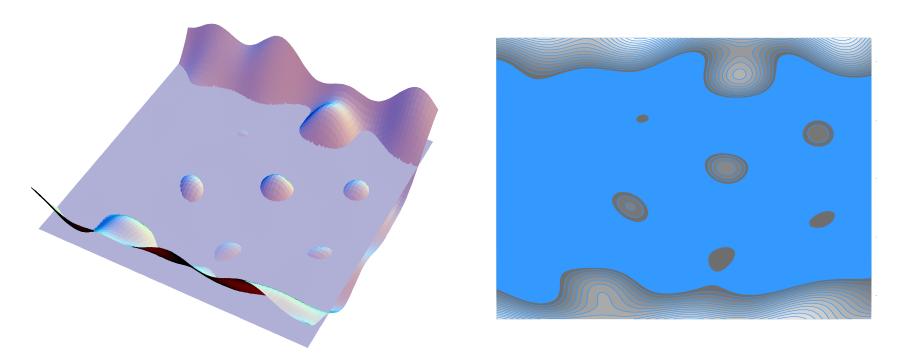










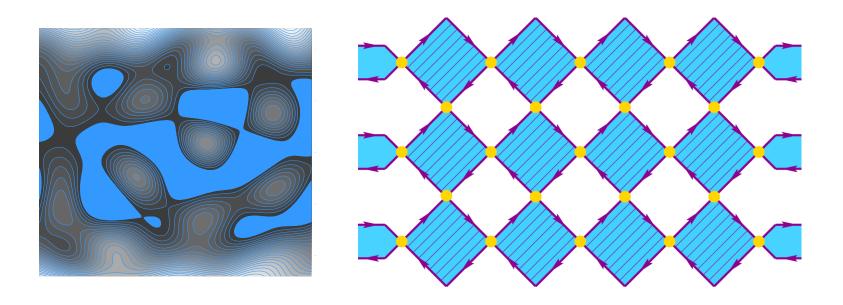


- The picture resembles classical percolation
- Essential difference:
 - tunneling across saddle points
 - quantum interference and random phases

Chalker-Coddington network model

J. T. Chalker, P. D. Coddington `88

Obtained from semi-classical drifting orbits in smooth potential



- Complex fluxes (currents) on links, scattering at nodes
- Regular lattice is convenient for numerical transfer matrix calculations

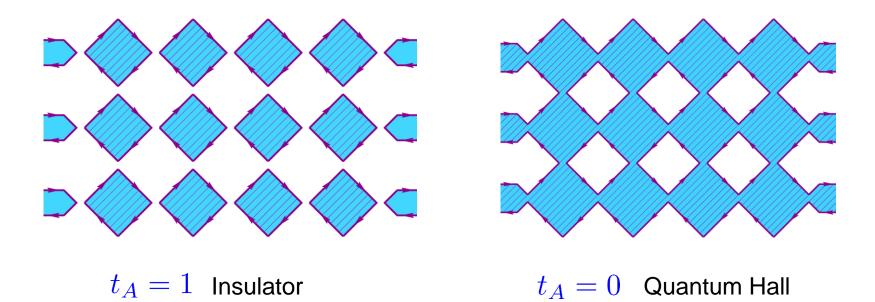
Chalker-Coddington network model

- States of the system specified by $Z \in \mathbb{C}^{N_l}$, N_l the number of links
- Evolution (discrete time) specified by a random $U \in \mathrm{U}(N_l)$

$$S_{S} = \begin{pmatrix} e^{i\phi_{1}} & 0 \\ 0 & e^{i\phi_{2}} \end{pmatrix} \begin{pmatrix} \sqrt{1 - t_{S}^{2}} & t_{S} \\ -t_{S} & \sqrt{1 - t_{S}^{2}} & 0 \\ 0 & e^{i\phi_{4}} \end{pmatrix} \begin{pmatrix} e^{i\phi_{3}} & 0 \\ 0 & e^{i\phi_{4}} \end{pmatrix}$$

Chalker-Coddington network model

Extreme limits in the isotropic case (reminds percolation)



• Critical point at $t_A^2 = 1/2$

Observables in network model

- Propagator (resolvent matrix element) $G_{ij} = \langle i | (1 e^{-\eta} U)^{-1} | j \rangle$
- Graphical representation in terms of a sum over (Feynman) paths

$$G_{ij} = \sum_{f: i \to j} A_{ij}(f)$$

$$A_{ij}(f) = \prod_{\text{nodes} \in f} S_{ab}$$

$$A_{ij}(f) = \sum_{f: i \to j} A_{ij}(f) = \sum_{f: i \to$$

- Point contact conductance (PCC) $g_{ij} = |G_{ij}|^2$
- Its distribution (the mean and the moments)

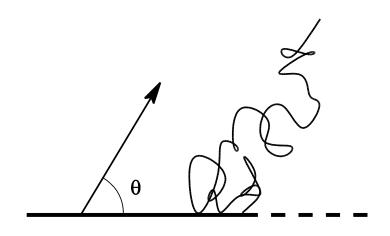
Our approach

E. Bettelheim, IAG, A. W. W. Ludwig, 2012

- We consider point contact conductances (PCC) within the Chalker-Coddington network model
- Map average PCC to a classical problem
- Establish a restriction property that in the continuum limit allows us to use the theory of conformal restriction
- Obtain PCC in systems with various boundary conditions

"Baby" version: classical CC network model

- Classical random walk on the CC network
- Right (left) turns with probability $p_R = t^2 \, (p_L = 1 t^2)$
- This model is not random.
- Continuum limit reflected Brownian motion (diffusion in a magnetic field)



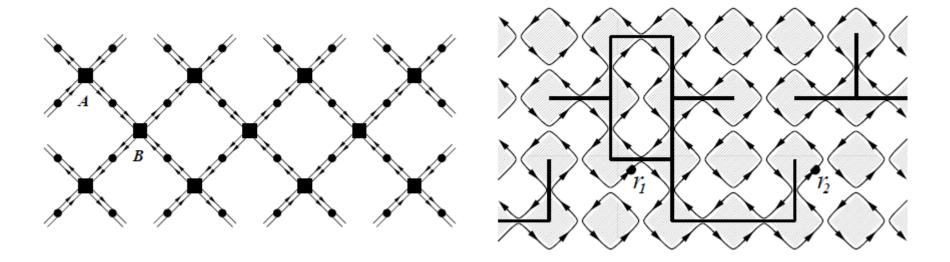
$$\tan \theta_R = \frac{p_L}{p_R}$$

$$\tan \theta_L = -\frac{p_R}{p_L}$$

Another network model

IAG, A. W. W. Ludwig, N. Read, 1999

- Spin quantum Hall (SQH) transition
- Two channels on links, fluxes mixed by $\mathrm{SU}(2)$ matrices
- Average over $\mathop{
 m SU}(2)$: mapping to bond percolation on square lattice



Quantum propagation in CC network model

Graphical representation of propagator as a sum over (Feynman) paths

$$G_{ij} = \sum_{f:i\to j} A_{ij}(f), \qquad A_{ij}(f) = \prod_{\text{nodes}\in f} S_{ab}$$

$$A_{ij}(f) = \bigcup_{i} A_{ij}(f)$$

• Point contact conductance (PCC) $g_{ij} = |G_{ij}|^2$

Mapping to a classical problem

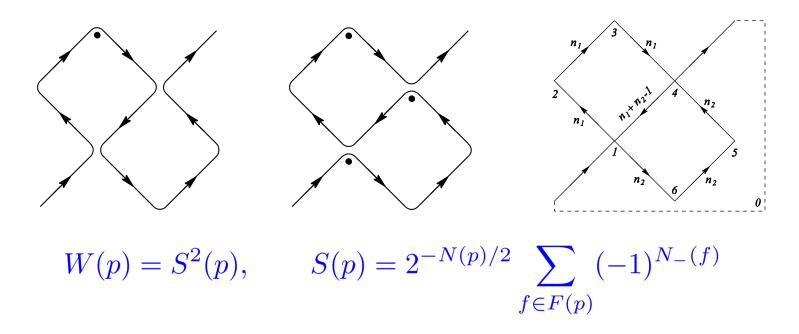
Average point contact conductance over random phases on links

$$\langle g \rangle = \langle |A|^2 \rangle = \sum_{f} \langle |A(f)|^2 \rangle + \sum_{f_1 \neq f_2} \langle A^*(f_1)A(f_2) \rangle$$

- Can write as a sum of positive terms $\langle g \rangle = \sum_p W(p)$
- W(p) are intrinsic positive weights of "pictures" p
- This representation is valid at and away from the critical point as well as for anisotropic variants of the model

Pictures and paths

Picture is obtained by "forgetting" the order in which links are traversed



- Detailed analysis of the weights $\overline{W}(p)$ may lead to a complete solution
- We try to go to continuum directly using restriction property

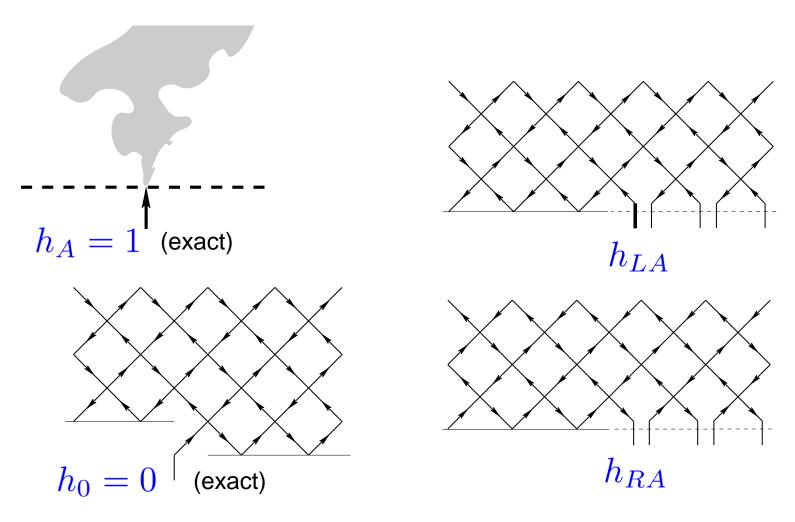
Restriction in the CC model

- Weights of pictures W(p) are intrinsic
- Pictures satisfy restriction property with respect to absorbing boundaries
- Assume conformal invariance, then can use conformal restriction theory
 G. Lawler, O. Schramm, and W. Werner '03
- Average point contact conductances are restriction partition functions

$$\langle g(a,b)\rangle = Z_D(a,b)$$

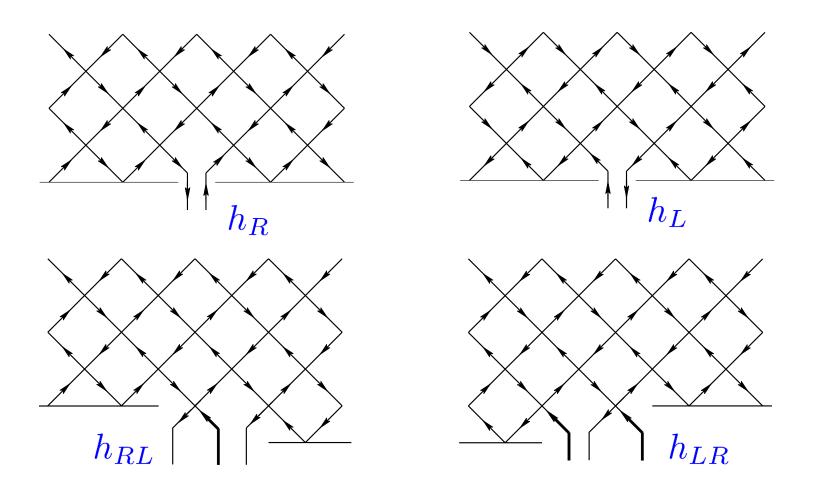
- Current insertions create pictures, and are *primary* CFT operators
- Important to know their scaling dimensions (restriction exponents)
- Explicit analytical results for average PCC with various boundaries

Boundary operators and dimensions



Dimensions known numerically

Boundary operators and dimensions

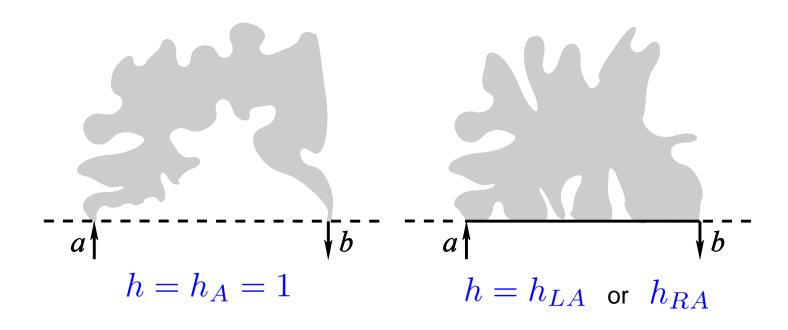


Dimensions known numerically

Boundary operators and dimensions

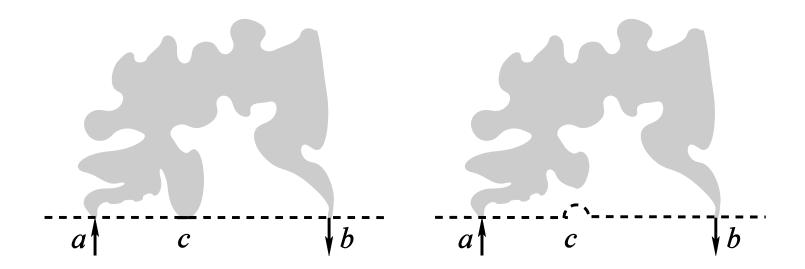
	IQH transition	SQH transition	Classical CC model
h_A	1	$h_{1,4}(6) = 1$	1
h_T	2	$h_{1,5}(6) = 2$	2
h_l	1	$h_{1,4}(6) = 1$	1
h_{BC}	0	$h_{1,2}(6) = 0$	0
h_{RA}	0.8	$h_{1,4}(6) = 1$	$1/2 + \theta_R^H/\pi$
h_{LA}	0.32	$h_{1,3}(6) = 1/3$	$1/2 + \theta_L^H/\pi$
h_R		$h_{1,3}(6) = 1/3$	0
h_L		$h_{1,3}(6) = 1/3$	0
h_{RL}		$h_{1,4}(6) = 1$	1/2
h_{LR}		$h_{1,3}(6) = 1/3$	0
h_0	0	$h_{1,2}(6) = 0$	0

Exact results for PCC: two-point functions



• Two-point PCCs
$$\langle g(a,b)
angle = rac{C}{|a-b|^{2h}}$$

Exact results for PCC: three-point functions

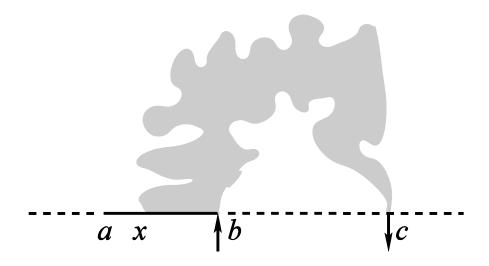


Change in the PCC upon perturbing the boundary near c

$$\delta\langle g(a,b)\rangle = \frac{C\epsilon^{h_T}}{|a-b|^{2h_A-h_T}|a-c|^{h_T}|b-c|^{h_T}}$$

$$h_A = 1, \qquad h_T = 2$$

Exact results for PCC: three-point functions



PCC with reflecting interval. "Lift-off" points.

$$\langle g(b,c;a)\rangle = \int_{a}^{b} dx \, \langle g(b,c;a,x)\rangle$$

$$\langle g(b,c;a,x)\rangle = \frac{C}{|x-b|^{h_l+h_b-h_A}|x-c|^{h_l+h_A-h_b}|b-c|^{h_b+h_A-h_l}}$$

$$h_l = h_A = 1$$

Conformal restriction gives restricted results

- The results obtained from conformal invariance alone are very generic
- No results for "interesting" dimensions and exponents h_{RA}, h_{LA}, ν that are specific to a particular critical point
- Work in progress: "interiors" of pictures, relation to trees, dimers, and CLEs

E. Bettelheim and IAG, 20??

- Especially interesting is the localization length exponent u
- It has been measured experimentally and computed numerically in the CC network model

A puzzle

• All recent numerical results for ν agree with each other

$$\nu_{\rm num} \approx 2.6$$

They all differ from the experimental value

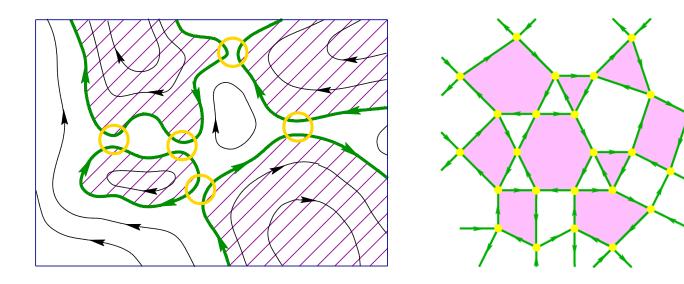
$$\nu_{\rm exp} \approx 2.38$$

• We propose a possible explanation: Geometric disorder

A. Klümper, W. Nuding, IAG, A. Sedrakyan, 2016

Geometric disorder

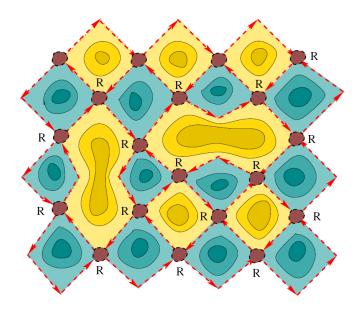
- Arbitrary number of nodes around a puddle
- Network models on random graphs, disorder average includes summing over graphs



- Random graph similar to used in discrete models of quantum gravity
- Mapping to classical model still goes through
- Limit: restriction measures and SLE coupled to quantum gravity

Geometric disorder: numerical implementation

Randomly choose a node and open it up



- Numerical result: $\nu = 2.37 \pm 0.02$
- Agrees with experiments, perhaps a coincidence
- Geometric disorder is relevant and needs to be understood

Continuum action for CC model: Dirac fermions

Continuum limit of CC model

C. M. Ho, J. T. Chalker `96

$$S = \int d^2x \, \bar{\psi} [\sigma_{\mu} (i \overleftrightarrow{\partial}^{\mu} + A^{\mu}) + m\sigma_3 + V] \psi$$

- Random mass, gauge and scalar potentials X = (A, m, V)
- Quenched disorder, need supersymmetry (or replicas)

$$\overline{\langle O \rangle} = \int \mathcal{D}X \langle O \rangle = \int \mathcal{D}X \frac{\int \mathcal{D}\psi \, O(\psi) \, e^{-S[\psi, X]}}{\int \mathcal{D}\psi \, e^{-S[\psi, X]}}$$
$$= \int \mathcal{D}X \int \mathcal{D}\psi \mathcal{D}\phi \, O(\psi) e^{-S[\psi, X] - S[\phi, X]}$$

Continuum action for geometric fisorder: Dirac fermions coupled to quenched quantum gravity

 Continuum limit for the network with geometric disorder has additional coupling to quenched quantum gravity:

$$S = \int d^2x \, e \, \bar{\Psi} [\sigma_{\mu} e^{\mu}_{\alpha} (i \overleftrightarrow{\partial}^{\alpha} + A^{\alpha}) + m\sigma_3 + V] \Psi$$

Disorder now includes geometric data (frames or metric)

$$X = (A, m, V, e)$$

- Needs further study: does KPZ apply?
- What is the meaning of v in quantum gravity?

Summary

- PCCs in the CC network model in terms of a classical model
- Classical weights satisfy restriction property
- Conformal restriction gives some exact results for PCCs
- Geometric disorder in the network model changes critical behavior
- Critical exponent in a random network is close to experimental value
- Conformal restriction measures and SLE coupled to quantum gravity
- Field theory description with quenched quantum gravity
- Lots of open questions