Rescaling Ward identities in the random normal matrix model

Yacin Ameur Main collaborators: N. G. Makarov, N.-G. Kang

> Centre for Mathematical Sciences Lund University, Sweden

Yacin.Ameur@maths.lth.se

Saas-Fee Conference 2016

Particle systems

A system $\{\zeta_i\}_1^n \in \mathbb{C}$ ("point charges") in external field nQ.

Energy:

$$H_n = \sum_{j \neq k}^n \log \frac{1}{|\zeta_j - \zeta_k|} + n \sum_{j=1}^n Q(\zeta_j).$$

Boltzmann–Gibbs law:

$$d\mathbf{P}_n(\zeta) = \frac{1}{Z_n^{\beta}} e^{-\beta H_n(\zeta)} d^{2n} \zeta, \quad \zeta = (\zeta_j)_1^n. \tag{1}$$

• Assumptions. $Q:\mathbb{C}\to\mathbb{R}\cup\{+\infty\}$ is l.s.c., C^ω -smooth, and

$$Q(\zeta) >> \log |\zeta|, \quad (\zeta \to \infty).$$

A minimizer $\{\zeta_i\}_1^n$ of H_n is a Fekete-configuration.

Frostman's equilibrium measure

ullet Q-energy of a Borel p.m. μ on $\mathbb C$

$$\mathit{I}(\mu) := \iint \log rac{1}{|\zeta - \eta|} \; d\mu(\zeta) d\mu(\eta) + \int Q \; d\mu.$$

The equilibrium measure σ minimizes $I(\mu)$ where $\mu(\mathbb{C}) = 1$.

Droplet

$$S = S[Q] := \operatorname{supp} \sigma. \tag{2}$$

Theorem

(Frostman)

$$d\sigma(z) = \chi_S(z) \Delta Q(z) dA(z).$$

(In particular $\Delta Q \geq 0$ on S.)

Conformal metric: $ds^2 = \Delta Q(\zeta)|d\zeta|^2$.

Abrikosov: Fekete configuration ↔ honeycomb lattice.

Nature of droplets

Lemma

Fix $p \in \partial S$. There is a nbh N of p and a "local Schwarz function" $s(\zeta)$ on N obeying

- s is analytic in $N \setminus S$,
- s is continuous on N and

$$\bar{\zeta} = s(\zeta), \quad \zeta \in (\partial S) \cap N.$$

Theorem

(Sakai, 1991) ∂S is a union of finitely many analytic curves. Possible singularities: cusps pointing out of S and double points.

Complement S^c is an *Unbounded Quadrature Domain* (in wide sense of Shapiro).

Droplets 1

Technical assumptions:

- Q is real-analytic in a nbh of S.
- $\Delta Q > 0$ in a nbh of ∂S .

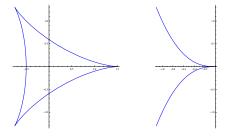


Figure: The Deltoid is not admissible; it has three maximal 3/2 cusps. 5/2 cusp is OK.

Droplets 2

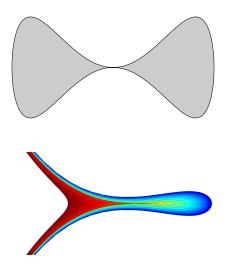


Figure: Double point and 5/2 cusp under Hele-Shaw flow.

Joint intensities

Let $\{\zeta_j\}_1^n$ random sample. k-point function

$$\begin{split} \mathbf{R}_{n,1}(\eta) &= \lim_{\epsilon \to 0} \frac{\mathbf{P}_n(D(\eta;\epsilon) \cap \{\zeta_j\}_1^n \neq \emptyset)}{\epsilon^2}, \\ \mathbf{R}_{n,2}(\eta_1,\eta_2) &= \lim_{\epsilon \to 0} \frac{\mathbf{P}_n(D(\eta_I;\epsilon) \cap \{\zeta_j\} \neq \emptyset, \quad I = 1,2)}{\epsilon^4}, \text{ etc.} \end{split}$$

Asymptotics as $n \to \infty$ should give CFT.

If $\beta = 1$, the process is *determinantal*,

$$\mathbf{R}_{n,k}(\eta_1,\ldots,\eta_k) = \det \left(\mathbf{K}_n(\eta_i,\eta_j)\right)_{i,j=1}^k$$
.

Here \mathbf{K}_n is a "correlation kernel" = reprokernel for

$$\mathcal{W}_n := \{q \cdot e^{-nQ/2}; \text{ degree}(q) < n\} \subset L^2.$$

Note:
$$\mathbf{E}_n(f(\zeta_1,\ldots,\zeta_k)) = \frac{(n-k)!}{n!} \int_{\mathbb{C}^k} f \cdot \mathbf{R}_{n,k}$$
.

"Classical" convergence result (for all β)

Random measure

$$\mu_n := \frac{1}{n} \sum_{1}^{n} \delta_{\zeta_j}.$$

For $f \in W^{1,2}$

$$\sigma_n(f) := \mathbf{E}_n(\mu_n(f)) = \frac{1}{n} \sum_{1}^{n} \mathbf{E}_n(f(\zeta_j)) = \frac{1}{n} \int_{\mathbb{C}} f \cdot \mathbf{R}_n.$$

Theorem

(HM) $\frac{1}{n}$ **R**_n $dA \rightarrow \sigma$ and

$$\sigma_n(f) \to \int f d\sigma, \qquad (n \to \infty).$$

(Here $\mathbf{R}_{n} = \mathbf{R}_{n,1}$.)

Example: Ginibre ensemble ($\beta = 1$)

Let $Q(\zeta) = |\zeta|^2$. Then $S = \{|\zeta| \le 1\}$ and $\sigma = \chi_S dA$.

The process $\{\zeta_i\}_1^n$ can be interpreted as eigenvalues of an $n \times n$ -matrix with i.i.d. centered complex Gaussian entries of variance 1/n.

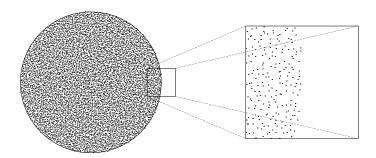


Figure: A sample of the Ginibre process for a large value of *n*. We will later look at the process near the boundary.

Fluctuation theorem ($\beta = 1$)

Random measures fluct_n := $n(\mu_n - \sigma) = \sum_{1}^{n} \delta_{\zeta_j} - n\sigma$. Random variables on $(\mathbb{C}^n, \mathbf{P}_n)$

fluct_n
$$(f) = \sum_{1}^{n} f(\zeta_{j}) - n\sigma(f), \quad (f \in C_{b}^{\infty}(\mathbb{C})).$$

Theorem

fluct_n(f) converges in distribution to the normal $N(e_f, \sigma_f^2)$, where

$$e_f = rac{1}{8\pi} \int_{\mathbb{C}} f \cdot \Delta(\chi_S + L^S), \quad \sigma_f^2 = rac{1}{2} \int_{\mathbb{C}} |
abla f^S|^2, \quad (L = \log \Delta Q).$$

Here f^S equals f in S and is harmonic and bounded in $\mathbb{C} \setminus S$.

Comments

- There is no $(1/\sqrt{n})$ -normalization!
- Theorem says that random distributions

fluct_n
$$-\Delta(\chi_S + L^S)$$

converge to GFF on S with free boundary conditions.

- **3** Test-class should be $f \in W^{1,2}(\mathbb{C})$.
- The theorem is only proved for connected S with everywhere regular boundary.
- **5** There are "physical" results for arbitrary β ; also results by Johansson in dim 1. Our method "should" extend, but we need some estimates.
- (Expansion of Bergman kernel in the bulk is an easy consequence of the fluctuation theorem.)

Ward's identity

Let $\{\zeta_j\}_1^n$ system. For smooth ψ define r.v.'s

$$A_{\psi} = \frac{1}{2} \sum_{j \neq k}^{n} \frac{\psi(\zeta_{j}) - \psi(\zeta_{k})}{\zeta_{j} - \zeta_{k}}, B_{\psi} = n \sum_{1}^{n} \partial Q(\zeta_{j}) \psi(\zeta_{j}), C_{\psi} = \sum_{1}^{n} \partial \psi(\zeta_{j}).$$

Theorem

For all ψ

$$\mathsf{E}_{\mathsf{n}}(\beta\cdot(\mathsf{A}_{\psi}-\mathsf{B}_{\psi})+\mathsf{C}_{\psi})=0.$$

This is an implicit relation between $\mathbf{R}_{n,1}$ and $\mathbf{R}_{n,2}$.

(Proof: reparametrization invariance of the partition function

$$Z_n := \int_{\mathbb{C}^n} e^{-\beta H_n} dV_n.$$

Rescaling

 $\{\zeta_j\}_1^n$ random sample from \mathbf{P}_n . Fix $p_n \in \mathcal{S}$, $\theta_n \in \mathbb{R}$.

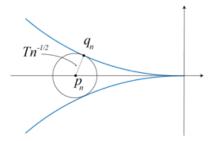
Mesoscopic scale: $r_n = r_n(p_n)$ satisfies:

$$n \cdot \int_{D(p_n,r_n)} \Delta Q(\zeta) dA(\zeta) = 1.$$

If $\Delta Q(p) > 0$ then $r_n \sim 1/\sqrt{n\Delta Q(p)}$.

Rescaled system:

$$z_j=e^{-i\theta_n}r_n^{-1}(\zeta_j-p_n).$$



Rescaled process ($\beta = 1$)

Rescaled process $\Theta_n := \{z_j\}_1^n$ has k-point function

$$R_{n,k}(z_1,\ldots,z_k)=r_n^{2k}\mathbf{R}_{n,k}(\zeta_1,\ldots,\zeta_k).$$

We have:

$$R_{n,k}(z_1,\ldots,z_k)=\det(K_n(z_i,z_j))_{i,j=1}^k,\quad K_n(z,w):=r_n^2\mathbf{K}_n(\zeta,\eta).$$

Known: if $p \in \text{Int } S$, then $R_{n,k}(z_1, \ldots, z_k) \to \det(G(z_i, z_j))_{k \times k}$ where

$$G(z, w) = e^{z\bar{w}-|z|^2/2-|w|^2/2}.$$

is Ginibre kernel.

Compactness and analyticity

A *cocycle* is a function $c(z, w) = g(z)\bar{g}(w)$ where g is continuous and unimodular. Correlation kernels are only determined up to cocycles.

Theorem

There are cocycles c_n such that (on subsequences)

$$c_{n_k}K_{n_k} o K$$
, where $K(z,w) = G(z,w)\Psi(z,w)$.

Here $G(z, w) = e^{-|z|^2/2 - |w|^2/2 + z\overline{w}}$ and $\Psi(z, w)$ is Hermitian entire.

(Proof: Taylor's formula + normal families.)

A limit point $K = G\Psi$ is called a *limiting kernel* at (moving) point p.

Limiting point fields

A limiting kernel K is correlation kernel of a limiting point field $\{\zeta_j\}_1^{\infty}$ with k-point function $R_k(\eta_1,\ldots,\eta_k)=\det(K(\eta_i,\eta_j))_{i,j=1}^k$. Limiting 1-pt function

$$R(z) := K(z,z) = \Psi(z,z).$$

R determines Ψ by polarization and $K = G\Psi$ so

R determines all k-point functions.

Forrester-Honner's formula

Theorem

Let $Q = |\zeta|^2$ and rescale about a boundary point in the outer normal direction. Then $R(z) = F(z + \bar{z})$ where F is "free boundary plasma function"

$$F(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{-(z-t)^2/2} dt.$$

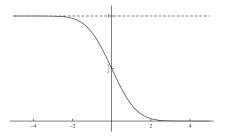


Figure: F is the analytic continuation to \mathbb{C} of the d.f. of the standard normal.

Rescaled Ward identity

Suppose $R(z) = \Psi(z, z) \not\equiv 0$. Put

$$B(z,w) := \frac{|K(z,w)|^2}{R(z)} = e^{-|z-w|^2} \frac{|\Psi(z,w)|^2}{\Psi(z,z)}, \quad C(z) := \int \frac{B(z,w)}{z-w} dA(w).$$

Theorem

R>0 everywhere, C(z) is smooth, and we have Ward's equation

$$\bar{\partial}C(z) = R(z) - 1 - \Delta \log R(z).$$

Since $R \mapsto \Psi$ by polarization, this is an equation for R!

Note: Ward's equation holds at any (moving) point s.t. $R \neq 0$. To fix R uniquely, we need side-conditions. These depend on the nature of the point we're zooming on (bulk point, regular boundary pt, singular boundary pt).

Apriori estimates (side conditions)

Rescale about a regular boundary point in outer normal direction. Let R(z) a limiting 1-point function.

Exterior estimate:

$$R(z) \leq Ce^{-2x^2}, \quad (x \geq 0).$$

2 1/8-formula:

$$\int_{-\infty}^{+\infty} t \cdot (R(t) - \chi_{(-\infty,0)}(t)) dt = \frac{1}{8}.$$

(Proof: (1) by potential theory; (2) fluctuation theorem.)

Complementarity

A limiting kernel $K = G\Psi$ is a positive matrix in Aronszajn's sense,

$$\sum_{j,k=1}^{N} \alpha_j \bar{\alpha}_k K(z_j, z_k) \geq 0.$$

(Because $\det(K(z_j, z_k))_{N \times N} = R_N(z_1, \dots, z_N) \geq 0.$)

Theorem

The complementary kernel

$$\tilde{K}(z,w) = G(z,w)(1-\Psi(z,w))$$

is also a positive matrix. In particular $R(z) = \Psi(z, z) \le 1$.

Warning: \tilde{K} does not solve Ward, in general.

Translation Invariance (T.I.)

$$R(z) = \Psi(z, z)$$
 is called *t.i.* if $\Psi(z + it, w + it) = \Psi(z, w)$, $t \in \mathbf{R}$. Equivalently,

$$\Psi(z,w)=\Phi(z+\bar{w})$$

where Φ is entire.

Gaussian representation

Theorem

If $K(z,w)=G(z,w)\Phi(z+\bar{w})$ is a t.i. limiting kernel, then there exists a Borel function f on \mathbf{R} with $0\leq f\leq 1$ such that

$$\Phi(z) = \gamma * f(z) = \int_{-\infty}^{+\infty} \gamma(z-t)f(t) dt,$$

where γ is the Gaussian kernel

$$\gamma(z)=\frac{1}{\sqrt{2\pi}}e^{-z^2/2}.$$

Examples:

- Bulk: $\Phi \equiv 1 = \gamma * \chi_{\mathbb{R}}$
- The plasma kernel: $F = \gamma * \chi_{(-\infty,0)}$

Proof: Uses Bochner's theorem on positive definite functions (also for the complementary kernel).

T.i. solutions to Ward's equation

Theorem

Let $R(z) = \Phi(z + \bar{z})$ a t.i. limiting 1-point function with $R \not\equiv 0$. Then R solves Ward's equation iff there is an interval $I \subset \mathbb{R}$ such that

$$\Phi = \gamma * \chi_I.$$

Corollary

If $R(z) = \Phi(z + \bar{z})$ is rescaled about a regular boundary point and R is t.i. then

$$\Phi = F = \gamma * \chi_{(-\infty,0)}.$$

Comments:

- Conjecture: An arbitrary limiting kernel is t.i (exception: bulk singularities).
- 2 In the general (non-t.i.) case, Ward is a twisted convolution equation. The physically relevant ones "should" be the above.

23 / 38

Consequences

For radial $Q(\zeta) = Q(|\zeta|)$ and for "ellipse potential" $Q = |\zeta|^2 - t \operatorname{Re}(\zeta^2)$ we know that any limiting 1-point function R is t.i.

Corollary

If Q is one of the types above, rescale about a boundary point. The rescaled systems $\{z_j\}_1^n$ converges to the field with kernel

$$K(z, w) = G(z, w) \cdot F(z + \bar{w}).$$

- This should be true for a general potential at a regular boundary point.
- Lee and Riser obtained this for the ellipse potential $Q(\zeta) = |\zeta|^2 t \operatorname{Re}(\zeta^2)$ using orthogonal polynomials.

Singular boundary points

Now assume that p is a cusp or a double point. If p is a cusp, we assume it has type $(\nu, 2)$ where $\nu > 3$, i.e. it resembles

$$x^{\nu}=y^2$$
.

Theorem

Rescale according to $z_j = \sqrt{n\Delta Q(p)}(\zeta_j - p)$. Then any limiting kernel is trivial: R = 0.

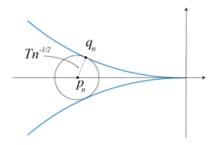
(Proof: exterior estimate (suitable coord system)

$$R(z) = \Psi(z, z) \leq Ce^{-2x^2}$$
.

Since $L(z, w) = e^{z\bar{w}}\Psi(z, w)$ is Hermitian-entire and positive definite, $\log L(z, z)$ is subharmonic. This gives $\Psi = 0$, by the maximum principle.)

Cusps; moving points

Assume S has a $(\nu,2)$ cusp at p and fix T>0. Let $p_n\in S$ be the point of distance $T/\sqrt{n\Delta Q(p)}$ from the boundary which is closest to p.



Rescale about p_n

$$z_i = e^{-i\theta_n} r_n^{-2} (\zeta_i - p_n), \quad j = 1, ..., n$$

where θ_n is chosen so that $e^{-i\theta_n}(p-p_n)$ is positive imaginary.

Existence theorem

Theorem

If T is sufficiently large, then each limiting 1-point function R(z)=K(z,z) is positive, satisfies Ward's equation, and the estimate

$$R(z) \le Ce^{-2(|x|-T)^2}$$
. (3)

- Estimate (3) shows that R is associated with a "new" determinantal point field.
- After the rescaling, the droplet looks like the strip

$$\Sigma_T: -T \leq \operatorname{Re} z \leq T,$$

so it is natural to assume that the field is t.i.

Natural candidates 1

• For *s* > 0 let

$$\Phi_s(z) = \gamma * \chi_{(-s,s)}(z) = \frac{1}{\sqrt{2\pi}} \int_{-s}^s e^{-(z-t)^2/2} dt.$$

If $s \le 2T$ then $R_s(z) = \Phi(z + \bar{z})$ satisfies $R_s(x) \le Ce^{-2(|x|-T)^2}$ and Ward's equation.

- How should we choose s?
- In regular case, we used 1/8-formula:

$$\int_{\mathbb{R}} t \cdot (R(t) - \chi_{(-\infty,0)}(t)) dt = \frac{1}{8}.$$

Something similar should hold at cusps.

Conclusion. We must extend the boundary fluctuation theorem to domains with cusps.

Natural candidates 2

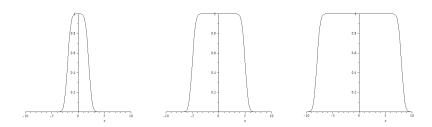


Figure: The graphs of $R_T(x) := \Phi_{T/2}(2x)$ for T = 2, 5, 8.

The hard edge (Neumann B.C.'s)

Let Q be a potential. Define $Q^S = Q$ on S and $Q^S = +\infty$ otherwise. Let $\{\zeta_j\}$ be a random sample from \mathbf{P}_n and rescale about a *regular* boundary point p to obtain $\{z_j\}_1^n$.

Theorem

For u.t.i. potentials, the processes $\{z_j\}_1^n$ converge to a unique point field with correlation kernel

$$K(z,w) = G(z,w)H(z+\bar{w})\chi_{\mathbb{L}}(z)\chi_{\mathbb{L}}(w), \quad \mathbb{L} = \{\textit{Re } z < 0\},$$

where H is the hard edge plasma function,

$$H(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} \frac{e^{-(z-t)^2/2}}{F(t)} dt,$$

(F = free boundary plasma function).

Hard edge plasma function

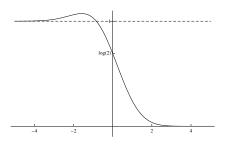


Figure: The graph of *H*.

The hard-edge theory is parallel to the free boundary; we can obtain existence of new hard edge fields near cusps, and so on.

Natural candidates 3: hard edge near a singular point

For T > 0 define

$$H_T(z) := rac{1}{\sqrt{2\pi}} \int_{-2T}^{2T} rac{e^{-(z-t)^2/2}}{F_T(t)} dt, \quad (F_T = \gamma * \chi_{(-2T,2T)}).$$

The "1-point function" is then $R_T^h(z) := H_T(z + \bar{z})\chi_{(-T,T)}(\operatorname{Re} z)$.

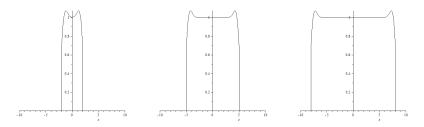


Figure: The graph of R_T^h restricted to the reals, for T = 2, T = 5, and T = 8.

Bulk singularities 1

Suppose that $0 \in \text{Int } S$ and $\Delta Q(0) = 0$. Taylor expansion

$$Q(x+iy) = Q_0(x+iy) + \operatorname{Re} H(z) + \dots$$

where $Q_0(x+iy) = \sum_{j=0}^{2k} a_j x^j y^{2k-j}$ is homogeneous of degree 2k. Mesoscopic scale

$$r_n \sim n^{-1/2k}$$
.

Limiting rescaled kernels take the form

$$K(z, w) = L(z, w)e^{-Q_0(z)/2 - Q_0(w)/2}$$
.

Let $L_0(z, w)$ be the Bergman kernel of $L_a^2(\mu_0)$, $d\mu_0 = e^{-Q_0}dA$ and $R_0(z) = L_0(z, z)e^{-Q_0(z)}$.

Bulk Singularities 2

We can prove, that under suitable assumptions on Q we have $R = R_0$ for each limiting 1-point function. If $Q_0 = |\zeta|^{2k}$, $R_0(z) = M_k(|z|^2)e^{-Q_0(z)}$ where M_k is a Mittag-Leffler function.

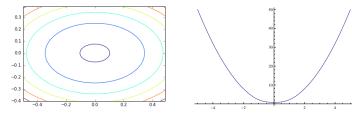


Figure: R_0 for $Q_0 = |z|^4 - |z|^2 \text{Re}(z^2)/2$ and the graph of the Mittag-Leffler function $M_2(x^2)$

Bulk singularities 3

Berezin kernels $B(z, w) = |L_0(z, w)|^2 e^{-Q_0(w)}/L_0(z, z)$ corresponding to $Q = |\zeta|^4$.

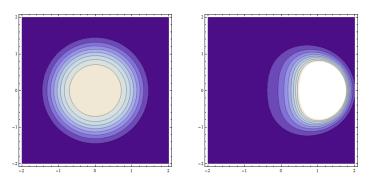


Figure: Berezin kernels rooted at 0 and at 1

Ward: $\bar{\partial} C = R - \Delta Q_0 - \Delta \log R$.

Fekete points

Let p be a regular boundary point, and let $\mathcal{F}_n = \{\zeta_{jn}\}_{j=1}^n$ be an n-Fekete configuration, $n = 1, 2, \ldots$ Denote

$$d_n(\zeta_{nj}) = \sqrt{n\Delta Q(\zeta_{nj})} \cdot \min_{k \neq j} |\zeta_{nj} - \zeta_{nk}|,$$

and ("asymptotic separation constant")

$$\Delta(\mathcal{F}) = \liminf_{n \to \infty} \min_{j=1,\dots,n} \left\{ d_n(\zeta_{nj}) \right\}.$$

Theorem

$$\Delta(\mathcal{F}) \geq 1/\sqrt{e}$$
.

We believe that $\Delta(\mathcal{F}) = \sqrt{2/\sqrt{3}}$. (This comes close to Abrikosov's conjecture.)

Comparison: the one-dimensional case

If Q is real-analytic on $\mathbb R$ and $Q=+\infty$ outside $\mathbb R$, then S is a finite union of compact intervals. Let p be a boundary point. Rescale by

$$x_j=cn^{2/3}(\xi_j-p).$$

Theorem

In free boundary case, there is a c such that $\{x_i\}_1^n$ converges to the Airy process with kernel

$$K(x,y) = \frac{Ai(x)Ai'(y) - Ai'(x)Ai(y)}{x - y}.$$

In hard edge case we get a Bessel process with kernel

$$K(x,y) = \frac{J_0(\sqrt{x})\sqrt{y} J_0'(\sqrt{y}) - \sqrt{x} J_0'(\sqrt{x}) J_0(\sqrt{y})}{2(x-y)}.$$

These are reprokernels for "de Branges spaces". The two-dimensional plasma kernels are quite different.

β -ensembles

We don't now have a kernel, but we put

$$B(z,w) = \frac{R(z)R(w) - R_2(z,w)}{R(z)}$$

and

$$C(z) = \int_{\mathbb{C}} \frac{B(z, w)}{z - w} \, dA(w).$$

Ward's equation is

$$\bar{\partial}C = R - 1 - \frac{1}{\beta}\Delta \log R.$$

The equation needs to be "closed". When $\beta=1$ we used the extra structure of existence of a kernel $K=G\Psi$.

What can we do in general?