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Particle systems

A system {(;}{ € C ("point charges”) in external field nQ.
@ Energy:

Zlog +nZQC,
o C\

@ Boltzmann-Gibbs law:
1
dPn(() = —5 eI = (G, (1)

n

@ Assumptions. Q: C — RU {+o0} is l.s.c., C¥-smooth, and

Q(¢) >>log ], (¢ — o0).

A minimizer {(;}] of Hy, is a Fekete-configuration.
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Frostman’s equilibrium measure

@ Q-energy of a Borel p.m. pon C

)= [ [ tog 1= du)u(m + [ Q.

The equilibrium measure o minimizes /(1) where p(C) = 1.
@ Droplet

S = S[Q] := suppo. (2)

Theorem
(Frostman)

do(z) = xs(z) AQ(z) dA(z2).
(In particular AQ>0o0nS.)

Conformal metric: ds? = AQ(¢)|d(¢|?.
Abrikosov: Fekete configuration «+» honeycomb lattice.
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Nature of droplets

Lemma

Fix p € 0S. There is a nbh N of p and a "local Schwarz function” s(¢)
on N obeying

@ sis analyticin N\ S,
@ s is continuous on N and

¢=s(¢), ¢e(@S)nN.

Theorem

(Sakai, 1991) 9S is a union of finitely many analytic curves. Possible
singularities: cusps pointing out of S and double points.

Complement S¢ is an Unbounded Quadrature Domain (in wide sense
of Shapiro).
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Droplets 1

Technical assumptions:
@ Qs real-analytic in a nbh of S.
@ AQ > 0inanbh of 0S.

Figure: The Deltoid is not admissible; it has three maximal 3/2 cusps. 5/2
cusp is OK.
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Droplets 2

Figure: Double point and 5/2 cusp under Hele-Shaw flow.
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Joint intensities

Let {¢;}{ random sample. k-point function

Pn(D(n; €) N {G}1 # 0)
6 )

Pn(D(n; )ﬂ{C/}#@) I=1,2)

6

Rn1(n) = lim
e—0

Rn72(’l71,772) = lim , etc.
e—0

Asymptotics as n — oo should give CFT.
If 3 =1, the process is determinantal,

k
Rn,k(771 PR ﬂ?k) = det (Kn(nia 77/.))[,]:1 .

Here K, is a "correlation kernel” = reprokernel for

nQ/2. degree(q) < n} c L.

Wh:={q-e"

Note: Eq(f(C1, ..., k) = L [ Ry
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"Classical” convergence result (for all )

Random measure )
1
pn = g o¢;-
1

For f ¢ W12

n

7o) = Enliun) = 5 SEnf(G) = 5 [ 1R

1

Theorem
(HM) %Rn dA — o and

(Here R, =Rj1.)
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Example: Ginibre ensemble (5 = 1)

Let Q(¢) = |¢|?. Then S= {|¢| < 1} and ¢ = x5 dA.
The process {¢;}{ can be interpreted as eigenvalues of an n x n-matrix
with i.i.d. centered complex Gaussian entries of variance 1/n.

Figure: A sample of the Ginibre process for a large value of n. We will later
look at the process near the boundary.
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Fluctuation theorem (5 = 1)

Random measures fluct, := n(up — o) = 37 ¢ —
Random variables on (C", P,)

flucta(f) = > f(¢) — no(f), (f € C(C)).
1

Theorem

fluct,(f) converges in distribution to the normal N(ey, 02), where

.1

1
o — Sﬁ/f Alxs + L9), a?:E/Cyws\z, (L=10g AQ).

Here fS equals f in S and is harmonic and bounded in C \ S.
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Comments

@ There is no (1/+/n)-normalization!
@ Theorem says that random distributions

fluct, —A(xs + L)

converge to GFF on S with free boundary conditions.
© Test-class should be f € W'2(C).

© The theorem is only proved for connected S with everywhere
regular boundary.

© There are "physical” results for arbitrary 3; also results by

Johansson in dim 1. Our method "should” extend, but we need
some estimates.

© (Expansion of Bergman kernel in the bulk is an easy consequence
of the fluctuation theorem.)
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Ward’s identity

Let {¢;}7 system. For smooth ¢ define r.v.s
Ji

22 Cf k) , B, _nZan (¢, Cy = 0(§)-
J#k 1

Theorem
For all v
En(8- (Ay — By) + Cy) = 0.

This is an implicit relation between R, 1 and R, 5.

(Proof: reparametrization invariance of the partition function
Zn = f(c,-, e_BH” an)
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Rescaling

{¢;}{ random sample from P,. Fix p, € S, 6, € R.
Mesoscopic scale: r, = ry(pp) satisfies:

n. / AQ(C) dA(C) = 1.
D(pn,rm)
If AQ(p) > 0then r, ~1//nAQ(p).

Rescaled system:

zi=e"""r; (G — pn)-
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Rescaled process (8 = 1)

Rescaled process ©,, := {z}{ has k-point function

Rn,k(zh- . 'azk) = rﬁkRn,k(Ch- . 7Ck)‘

We have:
Rok(21,. .., 2k) = det(Kn(2i, )=y, Kn(2, W) := r3Kn((,m).
Known: if p € Int S, then R, x(zy, ..., zx) — det(G(z;, z;))kxk Where

G(z,w) = ezW—|z\2/2—|w|2/2'

is Ginibre kernel.
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Compactness and analyticity

A cocycle is a function ¢(z, w) = g(z)g(w) where g is continuous and
unimodular. Correlation kernels are only determined up to cocycles.

Theorem
There are cocycles ¢, such that (on subsequences)

CnKn, — K, where K(z,w)= G(z,w)¥(z,w).

Here G(z, w) = e~ |2/2=IwI*/2+2% angw(z, w) is Hermitian entire.

(Proof: Taylor’s formula + normal families.)
A limit point K = GV is called a limiting kernel at (moving) point p.
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Limiting point fields

A limiting kernel K is correlation kernel of a limiting point field {¢;}7°
with k-point function Rk(n1,...,1x) = det(K(n,-,n,-))f-fj:1.
Limiting 1-pt function

R(z) = K(z,z) =V¥(z,2).
R determines WV by polarization and K = GV so

R determines all k-point functions.
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Forrester—Honner’s formula
Theorem

Let Q = [¢|? and rescale about a boundary point in the outer normal
direction. Then R(z) = F(z + Z) where F is "free boundary plasma

function” o
1 2
Fz) = —— / e=(z=0%/2 gt
( ) vV 27T —00

L
)

L
2 4

Figure: F is the analytic continuation to C of the d.f. of the standard normal.
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Rescaled Ward identity
Suppose R(z) = V(z,z) # 0. Put
5 2
B(zw) = G0 _ gt MEWE i) = [ B2 a0

Theorem
R > 0 everywhere, C(z) is smooth, and we have Ward's equation

0C(z) = R(z) — 1 — Alog R(2).

Since R — WV by polarization, this is an equation for R!

Note: Ward’s equation holds at any (moving) point s.t. R # 0. To fix R
uniquely, we need side-conditions. These depend on the nature of the
point we’re zooming on (bulk point, regular boundary pt, singular
boundary pt).
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Apriori estimates (side conditions)

Rescale about a regular boundary point in outer normal direction. Let
R(z) a limiting 1-point function.

@ Exterior estimate:
R(z) < Ce 2, (x> 0).

Q 1/8-formula:

+o00 1
JARRGOE O S

—00

(Proof: (1) by potential theory; (2) fluctuation theorem.)
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Complementarity

A limiting kernel K = GV is a positive matrix in Aronszajn’s sense,
N
Z Ozl'o_sz(Zj, zx) > 0.
jk=1
(Because det(K(z;, zk))nxv = An(z1,...,2n) 2 0.)
Theorem
The complementary kernel
R(Z, W) = G(Z, W)(1 - \U(Z, W))

is also a positive matrix. In particular R(z) = V(z,z) < 1

Warning: K does not solve Ward, in general.
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Translation Invariance (T.1.)

R(z) =V(z,z)iscalled t.i. if W(z + it,w + it) = W(z,w), t € R.
Equivalently,
V(z,w) =d(z+ w)

where ¢ is entire.
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Gaussian representation
Theorem

IfK(z,w) = G(z, w)P(z + w) is a Li. limiting kernel, then there exists
a Borel function f on R with 0 < f < 1 such that

¢(z):7*f(z):/+°°

—00

V(z = Of(t) o,

where ~ is the Gaussian kernel

Le_z2/2‘

v(2) = o

Examples:
@ Buk: d=1=vxxg
@ The plasma kernel: F = v x x(_o0,0)

Proof: Uses Bochner’s theorem on positive definite functions (also for
the complementary kernel).
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T.i. solutions to Ward’s equation
Theorem

Let R(z) = ®(z + z) a t.i. limiting 1-point function with R # 0. Then R
solves Ward'’s equation iff there is an interval | C R such that

S =%y

Corollary

If R(z) = ®(z + 2) is rescaled about a regular boundary point and R is
ti. then

® = F = 7% X(~00,0)-
Comments:

@ Conijecture: An arbitrary limiting kernel is t.i (exception: bulk
singularities).

@ In the general (non-t.i.) case, Ward is a twisted convolution
equation. The physically relevant ones "should” be the above
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Consequences

For radial Q(¢) = Q(|¢|) and for "ellipse potential” Q = |¢|?> — tRe (¢?)
we know that any limiting 1-point function R is t.i.

Corollary

If Q is one of the types above, rescale about a boundary point. The
rescaled systems {z;}{] converges to the field with kernel

K(z,w) = G(z,w) - F(z+ w).

@ This should be true for a general potential at a regular boundary
point.

@ Lee and Riser obtained this for the ellipse potential
Q(¢) = |¢|? — tRe (¢?) using orthogonal polynomials.
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Singular boundary points

Now assume that p is a cusp or a double point. If p is a cusp, we
assume it has type (v,2) where v > 3, i.e. it resembles

v y2‘

Theorem

Rescale according to z; = \/nAQ(p)(¢; — p). Then any limiting kernel
is trivial: R = 0.

(Proof: exterior estimate (suitable coord system)

R(z) = V(z,z) < Ce2¢.

Since L(z, w) = €?"V¥(z, w) is Hermitian-entire and positive definite,
log L(z, z) is subharmonic. This gives ¥ = 0, by the maximum
principle.)
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Cusps; moving points

Assume S has a (v, 2) cusp at pand fix T > 0.

Let p, € S be the point of distance T/,/nAQ(p) from the boundary
which is closest to p.

Rescale about p,

zi=e " 2(¢—pp), j=1,...,n

where 6, is chosen so that e"»(p — p,,) is positive imaginary.
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Existence theorem

Theorem

If T is sufficiently large, then each limiting 1-point function
R(z) = K(z, z) is positive, satisfies Ward’s equation, and the estimate

R(z) < Ce 2(XI=T7, 3)

@ Estimate (3) shows that R is associated with a "new”
determinantal point field.

@ After the rescaling, the droplet looks like the strip
Yr: —T<Rez<T,

so it is natural to assume that the field is t.i.
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Natural candidates 1

@ For s> 0let

s 2
e =072 g,

—S

1

ds(2) = _ Z)= —

s(2) T X( s,s)( ) N

If s < 2T then Rs(z) = ®(z + Z) satisfies Rs(x) < Ce~2(XI-T)*
and Ward'’s equation.

@ How should we choose s?
@ In regular case, we used 1/8-formula:

[ 1RO = x( o)t =
R

Something similar should hold at cusps.

Conclusion. We must extend the boundary fluctuation theorem to
domains with cusps.
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Natural candidates 2

Figure: The graphs of Rr(x) := ®7/2(2x) for T = 2,5, 8.
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The hard edge (Neumann B.C.’s)

Let Q be a potential. Define Q5 = Q on S and QS = +o otherwise.
Let {¢;} be a random sample from P, and rescale about a regular
boundary point p to obtain {z;}].

Theorem

For u.t.i. potentials, the processes {z;}| converge to a unique point
field with correlation kernel

K(z,w) = G(z,w)H(z + w)xL(2)xL(w), L ={Rez < 0},

where H is the hard edge plasma function,

1 0 g—(z-1)?/2
M= 7= [ F

(F =free boundary plasma function).
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Hard edge plasma function

. .
-4 -2 2 4

Figure: The graph of H.

The hard-edge theory is parallel to the free boundary; we can obtain
existence of new hard edge fields near cusps, and so on.
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Natural candidates 3: hard edge near a singular point
For T > 0 define

—(z—1)?/2
Hr(2) = / ot (Fr=n~+x(_erem).

The "1-point function” is then R’}(Z) = Hr(z+ 2)x(-1.n)(Re2).

Figure: The graph of Fm”} restricted to the reals, for T =2, T =5,and T = 8.
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Bulk singularities 1

Suppose that 0 € Int S and AQ(0) = 0. Taylor expansion
Q(x+1iy) = Qo(x +1iy) +Re H(z) + ...

where Qo(x + iy) = Z]?fo aix'y?~/ is homogeneous of degree 2k.
Mesoscopic scale

ro o~ p /2K,

Limiting rescaled kernels take the form

K(Z, W) = L(Z, W)e_QO(Z)/Z—Oo(w)/z.

Let Lo(z, w) be the Bergman kernel of L2(uo), dpuo = e~ @ dA and
Ro(2) = Lo(z,z)e~(2),
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Bulk Singularities 2

We can prove, that under suitable assumptions on Q we have R = Ry
for each limiting 1-point function. If Qy = |¢|?X, Ro(2) = Mk(|z|2)e~%(2)
where My is a Mittag-Leffler function.

EXN E¥) 00 0z [

Figure: Ry for Qp = |z|* — |z|?Re (2%)/2 and the graph of the Mittag-Leffler
function My (x?)
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Bulk singularities 3

Berezin kernels B(z, w) = |Lo(z, w)|?e~ %) /L4(z, z) corresponding
to Q = [¢|*.

-1 [ 1 2 -2 -1 [ 1

Figure: Berezin kernels rooted at 0 and at 1

Ward: 6C = R— AQp — Alog R.
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Fekete points

Let p be a regular boundary point, and let 7, = {(j»}7_4 be an
n-Fekete configuration, n=1,2,.... Denote

dn(Crj) = 1/ NAQ((r) - fp;fj] Cnj — Skl

and ("asymptotic separation constant”)

A(F) =liminf min {dn(Cnf)}

n—oo /_

Theorem

A(F) > 1/Ve. J

We believe that A(F) = 4/2//3.
(This comes close to Abrikosov’s conjecture.)
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Comparison: the one-dimensional case
If Q is real-analytic on R and Q = +oc outside R, then S is a finite
union of compact intervals. Let p be a boundary point. Rescale by

x; = crP/3(g; — p).

Theorem

In free boundary case, there is a ¢ such that {x;}{ converges to the
Airy process with kernel

R ) = Ai(x)Af(y)i : ?I’(X)Ai(y)'

In hard edge case we get a Bessel process with kernel

K, 3) = SVENTRT) = ERK)b(F)

v

These are reprokernels for "de Branges spaces”. The two-dimensional
plasma kernels are quite different.
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G-ensembles

We don’t now have a kernel, but we put

R(z)R(w) — Rx(z,w)

B(z,w) = R
e C(2) = / Bz.w) jaw)
c Z—w '

Ward’s equation is
dOC=R—-1- ;AlogR.

The equation needs to be "closed”. When 5 = 1 we used the extra
structure of existence of a kernel K = GV.
What can we do in general?
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