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My	main	 interests	 and	areas	of	 research	are symplectic and contact	 geometry
and topology, and	their	deeper	underlying	topological	structure. In	joint	work	I
have	developed topological	Hamiltonian and contact	dynamics (with	Yong-Geun
Oh	and	Peter	 Spaeth, respectively), which	are natural and genuine	 extensions
of	smooth	Hamiltonian	and	contact	dynamics	 to	 topological	dynamics, and	of
symplectic	and	contact	diffeomorphisms	to	homeomorphisms	as	transformations
preserving	the	additional	geometric	structure. These	two	theories	have	numerous
applications	to	their	smooth	counterparts, as	well	as	to	other	areas	of	mathematics,
such	as topological	dynamics, in	particular	in low	dimensions, and	to geodesic
flows on	Riemannian	manifolds. I also	have	 an	 interest	 in action	 selectors in
Hamiltonian	Floer	theory and	related	subjects.

Topological	Hamiltonian	and	contact	dynamics

Several	well-known	topological	phenomena	in	symplectic	and	contact	topology,
as	well	as	more	recent	developments, have	revealed	the	need	for	a	generalization
of	Hamiltonian	and	contact	dynamical	systems	to	topological	dynamical	systems
with	non-smooth	Hamiltonian	functions	and	transformations. By	definition, such
a	dynamical	system	is	the limit of	a	sequence	of	smooth	Hamiltonian	or	contact
dynamical	 systems	with	 respect	 to	a	metric	 that	combines	 the topological C0-
metric with	the dynamical	Hofer	metric. Similarly, topological	automorphisms	of
a symplectic or contact	structure or form are C0-limits	of	symplectic	or	contact
diffeomorphisms	(together	with	their	conformal	factors	in	the	contact	case).

The	objects	of	these	theories	are	non-smooth	in	general. Nevertheless, ample
evidence	asserts	 they	comprise	 the	correct	 topological	analogs	of	Hamiltonian
and	contact	dynamics. For	instance, a	topological	Hamiltonian	or	contact	isotopy
is not generated	by	a	vector	field, and	may not even	be	Lipschitz continuous;
nonetheless, it	is uniquely	determined by	its	associated	topological	Hamiltonian
function, and	in	turn, in	the	contact	case	it determines	uniquely its	topological
conformal	factor. Composition and inversion can	therefore	be	defined	as	in	the
smooth	case, and	the	usual transformation	 law continues	 to	hold. Conversely,
every	topological	Hamiltonian	or	contact	isotopy possesses a unique topological
Hamiltonian	function.

Moreover, the topological	automorphism	groups of	a	contact	structure	and	a
contact	form	exhibit	surprising	rigidity	properties	analogous	to	the	well-known
Eliashberg-Gromov	rigidity	in	the	case	of	a	symplectic	structure. In	a	similar	vain,
suppose	 a	 sequence	of	Hamiltonian	or	 contact	 isotopies	 (and	 their	 conformal
factors)	are C0-Cauchy, and	the	generating	Hamiltonian	functions converge (with
respect	to	the	Hofer	or	contact	metric)	to	another	Hamiltonian	function	that	is	at
least	continuously	differentiable	with	uniquely	integrable	Hamiltonian	or	contact
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vector	field. Then	the limit of	the	Hamiltonian	or	contact	isotopies	coincides	with
the	Hamiltonian	or	contact	isotopy generated by	the	limit	Hamiltonian	function
(and	likewise	for	the	conformal	factors). A converse rigidity	result	also	holds	for
Cauchy	sequences	of	Hamiltonian	functions.

In	addition, topological	Hamiltonian	and	contact	dynamics	have applications
to topological	dynamics, by	extending	a	priori	smooth	invariants	to	topological
Hamiltonian	and	contact	dynamical	systems	or	their	time-one	maps	(notably	in
dimensions	two	and	three), and	via	construction	of	special	homeomorphisms	that
are	not C1 but	otherwise	behave	like	Hamiltonian	and	contact	diffeomorphisms.
For	example, on	every	symplectic	or	contact	manifold	there	exist	pairs	of	smooth
Hamiltonian	or	contact	vector	fields	that	are	topologically	conjugate	but	are	not
conjugate	by	symplectic	or	contact C1-diffeomorphisms. Explicitly, topological
Hamiltonian	and	contact	dynamics	can	be	used	in	the	study	of area	preserving
homeomorphism	groups of	surfaces, and	one	can	answer	important	questions	of
Arnold	in	dimension	three, regarding continuity and	behavior	under conjugation
by	volume	preserving homeomorphisms of	 the helicity of	a volume	preserving
isotopy, provided	 the	 isotopy	 and	 the	 transformation	 can	be	described	 as lifts
from	a	surface. Applications	are	also	expected	to	billiard	dynamics.

The	relation	between	topological	Hamiltonian	and	contact	dynamics	 is	 the
same	as	in	the	smooth	case. In	particular, topological	Hamiltonian	dynamics	of
an	integral	symplectic	manifold	is	intimately	related	to topological	strictly	contact
dynamics (introduced	by	Banyaga	and	Spaeth)	of	the	total	space	of	the	associated
Boothby-Wang prequantization bundle. In	turn, topological	contact	dynamics	of
a	contact	manifold	corresponds	to	(admissible)	topological	Hamiltonian	dynamics
of	its symplectizations. More	generally, topological	Hamiltonian	dynamics	can
be	defined	on	other	types	of	non-compact	symplectic	manifolds	that	appear	for
example	in	the	context	of	symplectic	field	theories	(e.g.	symplectic	manifolds	with
cylindrical	ends).

In	another	direction, one	can	replace	the	Hofer	metric	in	the	constructions
outlined	above	by	other	suitable	metrics, for	example	Viterbo-type	distances, or
study	(abstract)	completions	with	respect	to	the	Hofer	or	Viterbo	metric	alone.

Research	plan

I am	most	 interested	 in	exploring	other applications to	symplectic	and	contact
geometry	and	topology, Hamiltonian	and	contact	dynamics, and	other	areas	of
mathematics. To	this	end, I am	interested	in	expanding	results	on	non-compactly
supported	Hamiltonians	 to	 for	 instance quadratic	 forms on cotangent	bundles,
such	as magnetic	Hamiltonians in	Riemannian	and	sub-Riemannian	geometry. In
a	related	direction, I intend	to	adapt	the	present	theory	to generating	functions,
which	play	an	important	role	in	symplectic	topology.

Another	important	goal	is	to	develop generalizations of	other	key	objects	of
symplectic	and	contact	geometry	and	topology, such	as	topological	versions	of
symplectic	and	contact	structures. Several	particularly	promising	directions	to	be
explored	further	can	be	described	as	follows.

By	Darboux's	theorem, a	symplectic	structure	is	equivalent	to	an atlas whose
transition	charts	are	symplectic	diffeomorphisms	of	subsets	of	standard	Euclidean
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space. By	Banyaga's	contributions	to	Klein's	Erlanger	program, its	automorphism
group	determines	a	symplectic	structure	up	to	rescaling	by	a	non-zero	constant.
More	generally, one	can	consider	manifolds	that	admit	an	atlas	whose	transition
charts	are	symplectic homeomorphisms of	subsets	of	Euclidean	space, and	using
the	 transformation	 law, define	 topological	Hamiltonian	dynamics. Symplectic
manifolds	in	the	usual	sense	clearly	define	such	objects. A crucial	question	is
if	this	gives	rise	to	a	genuine	extension	of	the	notion	of	symplectic	manifold, or
more	specifically, if	it	is	possible	to	define	such	an	atlas	on	an even-dimensional
sphere. On	the	other	hand, there	are topological	obstructions that	prohibit	the
existence	of	actual	symplectic	structures	on	spheres	in	dimension	at	least	four.

A symplectic	structure	is	also	determined	by	the	one-to-one	correspondence
between	Hamiltonian	isotopies	and	smooth	functions	on	the	manifold, together
with	the	induced	Poisson	bracket	on	the	latter. Therefore	one	can	use	the	ideas
of	topological	Hamiltonian	dynamics	to	define	generalized	symplectic	structures
that	again	extend	the	usual	definition.

In	another	direction, it	is	feasible	to	define	a	topological	symplectic	structure
as	a	limit	of	smooth	symplectic	structures	in	a	sense	still	to	be	made	precise. Such
an	approach	will	most	 likely	 lead	 into	 the	 realm	of	deRahm	currents. In	 fact,
it	 is	worthwhile	 to	 further	 investigate	 the	 ideas	 in	Sullivan's	 Inventiones	paper
involving compact	convex	cones	of	currents with	compact	convex	sub-cones	of
cycles	(closed	currents). Notably, there	exists	a	theory	of	approximation	by	closed
differential	forms. Such	cycles	have	already	proved	useful	in	the	study	of foliations,
and	are	related	to	other	geometric	structures	such	as	complex, symplectic, and
contact	structures.

I am	looking	forward	to	completing	a	pending	joint	project	with	Peter	Spaeth
concerning	 the continuity of	action	selectors	 in	Hamiltonian	Floer	 theory	with
respect	to deformations of	the symplectic	structure. We	have	already	solved	the
problem	of exact	deformations of	the	symplectic	structure. Following	arguments
of	Lê-Ono, it	is	possible	to	reduce	the	general	problem	to	situations	in	which	the
set	of generators of	the	Floer	complex	is fixed throughout	the	deformation	of	the
symplectic	structure. Moreover, the	relevant energy	estimates for J-holomorphic
cylinders with	appropriate	prescribed	asymptotic	conditions	that	allow	to	define
chain	homomorphisms between	different	Floer	complexes	have	been	established.

Appendix: background	and	motivation

Symplectic	geometry has	its	origins	in	the	study	of classical	mechanical	systems
such	as	the	planetary	system	or	the	harmonic	oscillator. The	geodesic	flow	on
a	Riemannian	manifold	provides	another	example. The	discovery	of	symplectic
structures	allows	the	study	of	suchHamiltonian	dynamical	systems in	a	coordinate-
free	way, and	thus	on manifolds (of even	dimensions)	other	than	classical	phase
space. By	Darboux's	theorem, symplectic	structures	have	no local	invariants, and
the	study	of	the global	features of	symplectic	geometry	is	known	as symplectic
topology.

Contact	geometry is	an odd-dimensional analog	to	symplectic	geometry, and
also	has	 its	origins	 in	classical	mechanics, such	as	 time-dependent	mechanics
and	Huygens'	work	on	geometric	optics. Again	Darboux's	theorem	dictates	that
contact	structures	and	forms	have no	local	invariants. Modern contact	topology
is	concerned	with global and topological	features of	contact	geometry.
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The	two	theories	are linked in	many	ways, either	via	prequantization	bundles
over	integral	symplectic	manifolds, with	total	space	a regular contact	manifold
(such	circle	bundles	are	of	great	interest	in	mechanics), or	by contactization of	an
exact	symplectic	manifold, and	conversely, and	perhaps	more	prominently, via
symplectization	or symplectic	filling of	a	contact	manifold.

A symplectic	structure is	a closed and non-degenerate	two-form, and	therefore
provides	a	means	of	identifying	smooth	vector	fields	with	differential	one-forms.
As	a	consequence, every	 smooth	 (time-dependent)	 function	on	 the	underlying
manifold	gives	rises	to	a unique	smooth isotopy	of diffeomorphisms that preserve
the	 symplectic	 structure, and	 conversely, the Hamiltonian	 function	 generating
such	a Hamiltonian	isotopy is	unique	(up	to	normalization). Thus	invariants	of
Hamiltonian	isotopies	(and	sometimes	their	time-one	maps)	can	be	defined	via
(invariants	of)	their	generating	Hamiltonian	functions. The	automorphisms	of	a
symplectic	structure	are symplectic	diffeomorphisms (diffeomorphism	preserving
the	symplectic	structure). AHamiltonian	dynamical	system	transforms under	such
a	symplectic	change	of	coordinates	in	the	expected	manner.

A contact	structure is	a	coorientable	nowhere	integrable	field	of	hyperplanes
in	 the	 tangent	bundle	of	 the	contact	manifold; it	can	be	described	globally	as
the	kernel	of	a contact	form, that	is, a	one-form α such	that	the	top-dimensional
differential	 form α ∧ (dα)n never	 vanishes. Again	 a	 smooth	 function	defines
(together	with	a	contact	form)	a unique	smooth isotopy	of diffeomorphisms that
preserve the	contact	structure	(not	necessarily	the	contact	form), and	vice	versa.
Invariants	of	contact	isotopies	again	coincide	with	invariants	of	their	generating
Hamiltonian	functions, and	a transformation	law for contact	dynamical	systems
and contact	diffeomorphisms (diffeomorphisms	preserving	the	contact	structure,
or	conformally	rescaling	the	contact	 form)	holds. The	contact	structure	is	also
determined	completely by	its	automorphism	group.

It	is	natural	from	a	physics	point	of	view	to	consider	dynamical	systems	(and
transformations)	with low	order	of	regularity. But a	priori, both	symplectic	and
contact	geometry	are smooth theories. For	example, when	 the	 regularity	of	a
Hamiltonian	function	is	less	than	differentiable	with	locally	Lipschitz	derivative,
methods	of ordinary	differential	equations are	no	longer	available. In	this	situation
topological	Hamiltonian	and	contact	dynamics	come	into	play.

Striking	phenomena	in	symplectic	topology	and	Hamiltonian	dynamics	that
are topological	in	nature include	the non-degeneracy of Hofer's	metric, and	the
(existence	and)	behavior	of symplectic	capacities. The	important action	selectors
(or spectral	invariants)	in Hamiltonian	Floer	theory depend continuously on	the
generating	Hamiltonian. Yet	another	fascinating	example	is	that	the	property	of
being	a Hamiltonian	loop (up	to	homotopy	in	the	group	of	all	diffeomorphisms)	is
preserved	under small	perturbations of	the	symplectic	structure, or	the	fact	that	the
corresponding	Seidel	element	depends	only	on	the	homotopy	class	(again	in	the
group	of	all	diffeomorphisms)	of	a	Hamiltonian	loop. Moreover, if	a	symplectic
homeomorphism	is	smooth, it	is	a	symplectic	diffeomorphism	in	the	usual	sense.
Due	to	the	very	close	relationship	between	the	symplectic	and	contact	worlds,
the	above	 remarks	apply	almost	verbatim	 to	contact	 structures	as	well. These
phenomena	indicate	toward	the topological	features underlying	Hamiltonian	and
contact	dynamics. The	study	of	various C0-phenomena	in	symplectic	topology,
such	as	the C0-robustness of	the Poisson	bracket induced	by	a	symplectic	form,
has	attracted	much	recent	attention	by	many	mathematicians.


