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Helicity	of	vector	fields	preserving	a	regular	contact	form
and	topologically	conjugate	smooth	dynamical	systems

With	Peter	Spaeth, to	appear	in Ergod.	Th.	&	Dynam.	Sys., 35	pages, preprint	at
arXiv:1106.1968v2	[math.SG].

Suppose ρ(X) is	an	invariant	of	a	smooth	vector	field X that	depends	smoothly
on X, and	satisfies ρ(ϕ∗X) = ρ(X) for	all	diffeomorphisms ϕ. The	invariant ρ can
be	considered	as	an	invariant	of	the	smooth	isotopy	corresponding	to X, and ρ is
invariant	under	conjugation	by	diffeomorphisms. A natural	question	is	whether ρ
can	be extended to	an	invariant	of	an	isotopy	of homeomorphisms, and	whether ρ
is	also	invariant	under conjugation by homeomorphisms, at	least	in	the	presence
of	an	additional	geometric	structure	(for	example	a	volume, symplectic, or	contact
form)	that	is	preserved	by	all	vector	fields, isotopies, and	diffeomorphisms	and
homeomorphisms. These	questions	were	asked	by	V. I. Arnold	in	the	context	of
the helicity of	a divergence-free	vector	field on	the	three-sphere	with	its	standard
volume	form.

In	this	paper, we	study	Arnold's	questions	for	closed	three-manifolds	equipped
with	a regular	contact	 form; the	 isotopies	and	diffeomorphisms	preserving	 this
contact	form	are	those	that	commute	with	the	Reeb	flow, and	are	precisely	the lifts
of Hamiltonian	isotopies and diffeomorphisms of	the	quotient	of	the	underlying
contact	manifold	by	the	Reeb	flow. Similarly, we	consider suspensions	of	surface
isotopies previously	 studied	by	G. G. Gambaudo	and	 É. Ghys. In	 contrast	 to
the	 case	of	 a	 volume	 form	considered	by	Arnold, it	 is a	priori not	 clear	what
the	correct generalization is	 to	 continuous	Hamiltonian	and	contact	 isotopies,
and	homeomorphisms	preserving	a	symplectic	or	contact	form. Another	natural
question	is	whether	there	actually	exist	smooth	vector	fields	that	are	topologically
conjugate	but	not	smoothly	conjugate.

In	both	cases, we	compute explicit	 formulas for	 the	helicity	 in	 terms	of	 the
generating	Hamiltonian	 function of	 the	contact	or	Hamiltonian	 isotopy. It	was
previously	shown	by	myself	and	Y.-G. Oh, and	by	A. Banyaga	and	P. Spaeth, re-
spectively, that	the	concepts	of	Hamiltonian	isotopies	and	isotopies	preserving	a
contact	form, admit natural and nontrivial	generalizations to	topological	dynami-
cal	systems, and	to homeomorphisms as transformations	preserving	the	underlying
geometric	structure. Based	on	these	results, we	answer	Arnold's	questions	in	the
affirmative in	the	present	situations.
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In	the	last	part	of	the	paper, we	prove	the existence of	smooth	(Hamiltonian
and	strictly	contact)	dynamical	systems	that	are topologically	conjugate but not
smoothly	conjugate. The	proofs	use	the	transformation	laws	and	the	uniqueness
theorems	of	topological	Hamiltonian	and	topological	(strictly)	contact	dynamics.
We	also	briefly	discuss higher-dimensional	helicities.

One	of	the	key	ingredients	of	the	proofs	is	that	our	explicit	formulas	for	the
helicity	are invariant	under	conjugation, and	are continuous with	respect	to	an
appropriate	choice	of	metric. Thus	the	ideas	we	present	apply	conceptually	to
other	invariants ρ as	well.

On	properly	essential	classical	conformal	diffeomorphism	groups

With	Peter	Spaeth, to	appear	in Ann.	of	Global	Anal.	and	Geom., 11	pages, online
first	DOI 10.1007/s10455-011-9304-y, November	2011.

In	this	paper, we	consider	geometrical	structures	that	are	defined	as	conformal
classes σ of	a	tensor	field τ on	a	smooth	manifold. For	example, the	conformal
structure σ = [τ] is	an	orientation	if τ is	a	volume	form, a	conformal	symplectic
structure	if τ is	a	symplectic	form, and	a	contact	structure	if τ is	a	contact	form;
these	three	structures	are	the classical	conformal	structures.

The conformal	diffeomorphism	group of	a	conformal	structure σ is	by	defini-
tion properly	essential if	there	exists	a	conformal	diffeomorphism	of σ that	does
not	preserve	any of	the	tensor	fields	in	the	class σ. We	prove	this	to	be	the	case
for contact	manifolds, for symplectic	manifolds	that	are	Liouville, and	for oriented
manifolds. Our	arguments	are local-to-global, and	rely	on	an	obstruction	in	the
form	of	a cohomological	equation.

Moreover, we	study	the orbit of	a	given	tensor	field	under	the	action	of	the
conformal	diffeomorphism	group; the	orbit	of τ in	the	class σ can	be	identified
with	the	quotient	of	the	groups	of	diffeomorphisms	that	preserve σ by	those	that
preserve τ. Among	other	results, we	show	that	the	orbit	of	a	contact	form α on
a	closed	manifold	is not	maximal. That	means	there	exists	another	contact	form,
defining	the	same	contact	structure, but	not	diffeomorphic	to α. The	method	of
proof	 is	 to	 show	 the	Reeb	flows	of	 the	 two	contact	 forms	are	not	conjugated.
Along	 the	way, we	demonstrate	 that	 every	contact	 structure	 (not	necessarily	a
given	contact	form)	on	a	closed	manifold	admits	a closed	Reeb	orbit.

We	also	relate	our	work	to	a conformal	invariant defined	by	A. Banyaga	and
a	 theorem	of	W. H. Gottschalk	and	G. A. Hedlund, and	define	a new	contact
invariant (the conformal	length)	of	a	contact	diffeomorphism.

The	group	of	Hamiltonian	homeomorphisms	in	the L∞-norm

J.	Korean	Math.	Soc. 45	(2008), no.	6, 1769-1784.
The	notion	of	theHamiltonian	metric plays	a	central	role	in topological	Hamil-

tonian	dynamics. In	this	article, I reprove	the	results	of	my	JSG paper	with	Y.-G. Oh
in	the	case	of	the L∞-Hofer	norm in	place	of	the L(1,∞)-Hofer	norm, and	com-
pare	the	two	choices	of	norm	giving	rise	to	different	definitions	of	the	Hamiltonian
metric. See	the	description	of	the	JSG paper	below	for	details.

In	 the	 second	 part	 of	 the	 paper, I demonstrate	 the	 following	 result: every
topological	Hamiltonian	dynamical	system is arbitrarily	close (with	respect	to	the
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L(1,∞)-Hamiltonian	metric)	to	a continuous	Hamiltonian	dynamical	system (i.e.,
one	that	is	defined	with	respect	to	the	stronger L∞-Hamiltonian	metric)	with	the
same	end	point; moreover, the	latter	is	smooth	everywhere	except	possibly	at	time
one. In	particular, the	two	groups	ofHamiltonian	homeomorphisms (by	definition
the time-one	maps of topological and continuous	Hamiltonian	isotopies)	arising
from	the	different	choices	of	Hofer	norm coincide.

The	proof	 involves	 the	observation	by	L. Polterovich	 that	a	generic	smooth
Hamiltonian	isotopy	is regular (in	the	sense	that	its	tangent	vector	never	vanishes),
and	an	adaptation	of	a	reparameterization	procedure	also	due	to	Polterovich. A
combination	with	further approximation and reparameterization	techniques then
completes	the	proof. Finally	it	is	shown	that	the	two	a	priori	differentHofer	norms
on	the	group	of	Hamiltonian homeomorphisms are	equal.

The	group	of	Hamiltonian	homeomorphisms
and C0-symplectic	topology

With	Yong-Geun	Oh, J.	Symplectic	Geom. 5	(2007), no.	2, 167-219.
A topological	Hamiltonian	dynamical	system is	a	tuple	that	consists	of	a topo-

logical	Hamiltonian	isotopy (a continuous isotopy	of homeomorphisms), together
with	a	possibly non-smooth	 topological	Hamiltonian	 function on	a	 symplectic
manifold. By	 definition, this	Hamiltonian	 function	 is	 the limit of	 a	 sequence
of	 (normalized	 time-dependent)	 smooth	Hamiltonian	 functions	with	 respect	 to
the	usual Hofer	metric; the	corresponding	sequence	of	smooth	Hamiltonian	iso-
topies converges	uniformly to	the	above	continuous	isotopy. The	key	notion	is	the
Hamiltonian	metric, which	is	precisely	the	above	combination	of	the topological
C0-metric with	the dynamical	Hofer	metric.

A topological	Hamiltonian	isotopy	is determined	uniquely by	its	correspond-
ing	 topological	Hamiltonian	 function. In	 other	words, given	 two	 topological
Hamiltonian	dynamical	systems	with	the	same	topological	Hamiltonian	function,
their	topological	Hamiltonian	isotopies	must	coincide	as	well. This	follows	from
the	important energy-capacity	inequality of	F. Lalonde	and	D. McDuff, and	can
be	formulated	in	three	equivalent	ways	(cf.	my	joint	papers	on	topological	con-
tact	dynamics	with	P. Spaeth). The	proof	is	thus	already	contained	in	the	present
paper	(although	somewhat	in	disguise); an	earlier	version	for	standard	Euclidean
space	can	be	found	in	the	monograph	by	H. Hofer	and	E. Zehnder.

As	 a	 consequence	 of	 the	 above	 uniqueness	 theorem, composition and in-
version of	topological	Hamiltonian	dynamical	systems, topological	Hamiltonian
functions, and	topological	Hamiltonian	isotopies	and	their	time-one	maps, can	be
defined	as	in	the	smooth	case. Thus	topological	Hamiltonian	dynamics	is	a nat-
ural	extension of	the	smooth	dynamics	of	a	Hamiltonian	vector	field	(or	function)
to	topological	dynamics. We	show	by	example	that	a	topological	Hamiltonian
isotopy	need not even	be	Lipschitz continuous (in	the	space	or	time	variable). In
other	words, the	extension	to	topological	dynamics	is	a genuine	extension (on any
symplectic	manifold).

A Hamiltonian	homeomorphism is	by	definition	the time-one	map of	a	topo-
logical	Hamiltonian	isotopy. Much	attention	in	this	article	is	focused	on	this	group
of	Hamiltonian	homeomorphisms	and	its	topological	properties. By	continuity	of
the	mass	flow	homomorphism	(the	topological	dual	to	the	volume	flux	homomor-
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phism, which	in	turn	is	related	to	the	symplectic	flux	homomorphism	by	multi-
plication	in	deRham	cohomology), the mass	flow of	a	topological	Hamiltonian
isotopy vanishes. This	fact	is	related	to	the	question	of (non-)simpleness of	the
(kernel	of	the	mass	flow	in	the) group	of	area-preserving	homeomorphisms of	a
surface, and	thus	yields	an	instance	where	symplectic	methods	enter	topological
dynamics.

A symplectic	homeomorphism is	by	definition	the C0-limit of	a	sequence	of
symplectic	diffeomorphisms. In	other	words, the	group	of	symplectic	homeomor-
phisms	of	a	symplectic	structure	is	the	uniform	closure	of	the	group	of	symplectic
diffeomorphisms	in	the	group	of	homeomorphisms. This	definition	is	motivated
by	Eliashberg-Gromov's	celebrated C0-symplectic	rigidity theorem; a	symplectic
homeomorphism	that	 is	 in	addition	smooth	preserves	 the	symplectic	structure,
and	is	thus	a	symplectic	diffeomorphism	in	the	usual	sense. Moreover, the	well
known transformation	law extends	to	topological	Hamiltonian	dynamical	systems
and	 symplectic	 homeomorphisms. Thus	 symplectic	 homeomorphisms	 can	 be
considered	as	the topological	automorphisms of	the	symplectic	structure, and	the
group	of	Hamiltonian	homeomorphisms	forms	a	normal	subgroup	of	the	group	of
symplectic	homeomorphisms. A symplectic	homeomorphism	preserves	the	mea-
sure	obtained	by	integrating	the	canonical	volume	form	induced	by	the	symplectic
form. As	in	the	smooth	case, the	inclusion	of	symplectic	homeomorphisms	as	a
closed	subgroup	of	the	group	of	measure-preserving	homeomorphisms	is	proper
if	and	only	if	the	dimension	of	the	underlying	manifold	is	greater	than	two. The
properness	can	be	deduced	from	Gromov's	seminal	non-squeezing	theorem.

We	repeatedly	demonstrate	that	our	choice	of	Hamiltonian	metric	gives	the
objects	of	topological	Hamiltonian	dynamics	the	correct dynamical, topological,
and algebraic properties. For	example, the	set	of	topological	Hamiltonian	dynam-
ical	systems	forms	a topological	group with	respect	to	the Hamiltonian	topology
(the	topology	induced	by	the	Hamiltonian	metric), and	smooth	Hamiltonian	dy-
namical	systems	form	a	topological	subgroup. This	article	marks	the	beginning	of
the	study	of topological	Hamiltonian	dynamics in	the	sense	explained	here. The
notation	and	language	used	to	describe	it	have	(in	my	opinion)	improved	signif-
icantly	over	the	past	few	years. The	present	vocabulary	is	taken	from	my	joint
papers	with	P. Spaeth	on	topological	contact	dynamics.

Ph.d.	thesis

The	group	of	Hamiltonian	homeomorphisms
and C0-symplectic	topology

Ph.D.	thesis, the	University	of	Wisconsin	-	Madison, 2008, 104+v	pages.
My	thesis	contains	an	improved	presentation	and	elaborate	development	of

topological	Hamiltonian	dynamics. Among	other	things, the	results	of	my	joint
JSG paper	with	Y.-G. Oh	and	my	JKMS paper	are	explained	in	greater	detail. In
particular, the	case	of	open	manifolds	is	developed	rigorously, and	the	various
choices	in	the	definitions	are	discussed	and	justified	at	great	length.
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ArXiv	preprints

Topological	contact	dynamics	II:	topological	automorphisms,
contact	homeomorphisms, and	non-smooth	contact	dynamical
systems

With	Peter	Spaeth, 39	pages, arXiv:1203.4655v1	[math.SG].
This sequel to	our	previous	paper	continues	the	study	of topological	contact

dynamics and	applications	to	contact	dynamics	and	topological	dynamics. We
provide	further	evidence	that	the topological	automorphism	groups of	a contact
structure and	a contact	form are	the	appropriate	transformation	groups	of	contact
dynamical	systems, and	study	the topological	properties of	the	groups	of contact
and strictly	contact	homeomorphisms. On	the	latter	we	construct	a bi-invariant
metric that	resembles	the	bi-invariant	metric	on	the	group	of	strictly	contact diffeo-
morphisms studied	in	part	I.	Among	other	things, we	show	that	a	generic	smooth
contact	isotopy	is regular (in	the	sense	that	its	tangent	vector	is	never	stationary).
The	proof	is	similar	to	the	one	given	by	L. Polterovich	for	smooth	Hamiltonian	iso-
topies. Generalizing	the approximation and reparameterization	techniques from
my	JKMS paper, we	prove	the	following	main	lemma	of	part	II:	every topological
contact	dynamical	system is arbitrarily	close (with	respect	to	the L(1,∞)-contact
metric)	to	a continuous	contact	dynamical	system (i.e., one	defined	with	respect
to	the	stronger L∞-contact	metric)	with	the	same	end	point; moreover, the	latter
is	smooth	everywhere	except	possibly	at	time	one. In	particular, the	two	groups
of contact	homeomorphisms (by	definition, the time-one	maps of topological and
continuous	contact	 isotopies)	arising	 from	 the	different	choices	of	a	Hofer-like
norm	(on	the	space	of	Hamiltonian	functions) coincide. The	same	holds	for	the
two	groups	of strictly	contact	homeomorphisms (by	definition, the time-one	maps
of topological and continuous	strictly	contact	isotopies). Finally	on	every	contact
manifold	we	construct	topological	contact	dynamical	systems	with	time-one	maps
that fail to	be Lipschitz	continuous, and	smooth	contact	vector	fields	whose	flows
are topologically	conjugate but not	conjugate by	a	contact C1-diffeomorphism.

Topological	contact	dynamics	I:	symplectization	and	applications
of	the	energy-capacity	inequality

With	Peter	Spaeth, 44	pages, arXiv:1110.6705v2	[math.SG].
Some	of	the	most	prominent	early	results	in	symplectic	topology	include	a	pro-

found energy-capacity	inequality in	Hamiltonian	dynamics, the non-degeneracy
of	 the	remarkable Hofer	metric on	the	group	of	Hamiltonian	diffeomorphisms,
and	Eliashberg-Gromov's	fundamentalC0-rigidity of	symplectic	diffeomorphisms.
This	article	is	 the	first	part	of	a	series	of	papers	on topological	contact	dynam-
ics. We	derive	an energy-capacity	inequality for contact	diffeomorphisms, which
proves	to	be	an	equally	powerful	tool	in	contact	dynamics. As	an	immediate	con-
sequence, we	establish	the non-degeneracy of	a	bi-invariant Hofer-like	metric on
the group	of	diffeomorphisms	preserving	a	contact	form.

A topological	contact	dynamical	system consists	of	a topological	contact	iso-
topy (a continuous isotopy	of homeomorphisms), together	with	a	possibly non-
smooth	topological	Hamiltonian	function on	the	underlying	contact	manifold, and
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a topological	conformal	factor (a continuous function). By	definition, this	Hamil-
tonian	function	is	the limit of	a	sequence	of	smooth	(time-dependent)	Hamiltonian
functions	with	respect	 to	a Hofer-like	metric. Moreover, the	corresponding	se-
quence	of	smooth	contact	isotopies converges	uniformly to	the	above	continuous
isotopy, and	their	smooth	conformal	factors converge	uniformly to	the	continuous
function	associated	to	the	limit	isotopy. This	definition	is	explained	and	justified
in	detail	in	this	paper.

A topological	 contact	 isotopy	 is not generated	 by	 a	 vector	 field, and	may
not even	be	Lipschitz continuous; nonetheless, as	a consequence of	the contact
energy-capacity	inequality, it	is uniquely	determined by	its	associated	topological
Hamiltonian	function. Composition and inversion of	topological	contact	dynami-
cal	systems, topological	Hamiltonian	functions, and	topological	contact	isotopies
and	their	time-one	maps, can	therefore	be	defined	as	in	the	smooth	case, and	the
usual transformation	law continues	to	hold.

We	show	that	the topological	automorphism	groups of	a	contact	structure	and
a	contact	form	exhibit	surprising	rigidity	properties, including uniqueness of	the
topological	conformal	factor, and C0-rigidity of contact and strictly	contact	dif-
feomorphisms, analogous	to	the	above	Eliashberg-Gromov	rigidity	in	the	case	of
a	symplectic	structure.

The	upshot	is	a natural and genuine	extension of	the	smooth	dynamics	of	a
contact	vector	field	to	topological	dynamics. Consequences	and applications to
both	contact	dynamics	and topological	dynamics, such	as	the	fact	that	a topologi-
cal	automorphism of	a	contact	structure conjugates the	corresponding Reeb	flows,
are	discussed	throughout	the	paper. The uniqueness	theorems applied	to smooth
contact	dynamical	systems	prove rigidity of	contact	isotopies	and	their	conformal
factors	in	the	following	sense: if	a	sequence	of	contact	isotopies	and	their	con-
formal	factors	are uniformly	Cauchy, and	the	generating	Hamiltonian	functions
converge (with	respect	to	the	Hofer-like	metric)	to	another	(continuously	differen-
tiable)	Hamiltonian	function	(with	uniquely	integrable	contact	vector	field), then
the limit of	the	contact	isotopies	coincides	with	the	contact	isotopy generated by
the	limit	Hamiltonian	function, and	likewise	for	the	conformal	factors.

Our	general	approach	to	relating	topological	contact	dynamics	to	topological
Hamiltonian	dynamics	is	via symplectization of	a	contact	manifold.

A note	on	the	volume	flux	of	smooth
and	continuous	strictly	contact	isotopies

8	pages, arXiv:1107.4869v1	[math.SG].
This	short	note	on	the flux	homomorphism for strictly	contact	isotopies com-

plements	my	paper	on	the	helicity	written	jointly	with	P. Spaeth. I compute	the
volume	flux	homomorphism	restricted	to	symplectic	and	volume	preserving	con-
tact	 isotopies	 and	 their C0-limits for	 certain	 classes	 of	 symplectic	 and	 contact
manifolds. A copious	number	of	examples	is	given.

The	above	restrictions	of	the	flux	homomorphism	may fail to	be surjective. The
flux	homomorphism vanishes for	an	isotopy	preserving	a regular contact	form, but
can	be non-trivial for non-regular contact	forms. Applications	are	discussed	in	the
article	mentioned	above. I also	find	an obstruction to regularizing a	strictly	contact
isotopy	that	is not present	for	Hamiltonian	isotopies	or	contact	isotopies. This	is
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related	 to	 the	 fact	 that	 (for	non-regular	contact	 forms)	a locally	defined strictly
contact	vector	field	may not extend	to	a globally	defined strictly	contact	vector
field. Conversely, if	the	flux	of	a	given	isotopy	is non-trivial, its	generating	strictly
contact	vector	field cannot be fragmented into	a	sum	of	strictly	contact	vector
fields	that	are	supported	in	Darboux	charts.

Approximation	of	volume	preserving	homeomorphisms
by	volume	preserving	diffeomorphisms

8	pages, arXiv:0901.1002v3	[math.DS].
In	the	late	'50s	and	early	'60s, J. R. Munkres	and	M. W. Hirsch	independently

developed obstruction	theories for	when	a	given	homeomorphism	of	a	smooth
manifold	can	be approximated	uniformly by	diffeomorphisms. In	the	past	decade,
Y.-G. Oh	and	 J. C. Sikorav	 independently	 showed	 that	 if	 a volume	preserving
homeomorphism can	be approximated	uniformly by diffeomorphisms, it	can	also
be approximated	uniformly by volume	preserving	diffeomorphisms.

This	note	is	an	attempt	to	give	a necessary and sufficient	condition for	when	a
volume	preserving	homeomorphism can	be approximated	uniformly by (volume
preserving)	diffeomorphisms. An	update	should	appear	shortly.

In	preparation

Topological	contact	dynamics	III

With	Peter	Spaeth.
The	principal	result	of	this	third	part	of	the	series	of	papers	on topological	con-

tact	dynamics is	the converse to	the	main	uniqueness	theorem(s)	of	part	I:	every
topological	contact	isotopy possesses a unique	topological	Hamiltonian	function.
Applications are	discussed	as	well.


