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A finite-size-scaling (FSS) theory is proposed for various models in complex networks. In particular, we
focus on the FSS exponent, which plays a crucial role in analyzing numerical data for finite-size systems.
Based on the droplet-excitation (hyperscaling) argument, we conjecture the values of the FSS exponents
for the Ising model, the susceptible-infected-susceptible model, and the contact process, all of which are
confirmed reasonably well in numerical simulations.
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Critical phenomena in complex networks have attracted
much attention recently and traditional models in statistical
physics have been examined on diverse networks [1–7].
Interesting questions in such probes would be the existence
of phase transitions and the network-dependent critical
behavior near the transition. Until now, various equilibrium
systems such as Ising, Potts, and XY models [1–4], as well
as nonequilibrium systems such as percolation [5], directed
percolation [6], and synchronization models [7], have been
studied by means of the mean-field (MF) approach [2], the
replica method [3], and the thermodynamic potential hy-
pothesis [1]. It is predicted that phase transitions in com-
plex networks exhibit mostly the standard MF critical
behavior except in highly heterogeneous scale-free (SF)
networks where the interesting heterogeneity-dependent
(but still MF-type) critical behavior appears [1–3].

The MF prediction has been brought to the test by
extensive numerical simulations and passed it reasonably
well in cases of less heterogeneous networks like random,
small-world, and even some SF networks [4–7]. However,
for the highly heterogeneous networks (like most of the SF
networks found in nature), the asymptotic scaling regime
could not be reached easily in numerical tests due to huge
finite-size effects and consequently there is no reasonably
solid numerical analysis reported as of yet. Therefore, it is
essential to understand the finite-size-scaling (FSS) behav-
ior analytically in networks, not only to analyze numerical
data for finite-size networks, but also to explore the physics
of correlated size scales in networks.

In the present Letter, we propose a FSS theory for
various models in complex networks, based on a droplet-
excitation (hyperscaling) argument. Our conjecture for the
FSS exponent values is confirmed via numerical simula-
tions for the Ising model and the contact process [8].

We first start with the standard FSS theory in low
dimensional systems. As a typical example, consider the
ferromagnetic Ising model. Its critical behavior near the
transition is characterized by the singular behavior in the
magnetization m� ��, the susceptibility �� j�j��, and
the correlation length �� j�j��, where � is the reduced
temperature defined by � � �Tc � T�=Tc.

The standard FSS theory for the singular part of the free
energy f reads [9]

 f��; h; L�1� � b�df�byT�; byHh; bL�1�; (1)

where b is the scale factor, d the spatial dimension, L the
system linear size, and h the external field. The two scaling
dimensions, yT and yH, determine all thermodynamic ex-
ponents such as � � �d� yH�=yT and � � �2yH � d�=yT .
The FSS behavior of the spontaneous magnetization is
derived from Eq. (1) as

 m � L��yTg�LyT��; (2)

where g is the scaling function and d=yT � 2�� �. If the
correlation length scales as ���; h� � b��byT�; byHh�, the
hyperscaling relation appears as yT � 1=� [9]. In this case,
the FSS variable LyT� can be expressed as �L=��yT , imply-
ing that the correlation length competes with the system
size. In low dimensions where the hyperscaling holds, the
above FSS theory works perfectly well for most equilib-
rium models and even for nonequilibrium ones (like di-
rected percolation models) with appropriate modifications
[10].

In high dimensions where the MF theory becomes valid,
the FSS becomes a little bit tricky. It has been argued that a
‘‘dangerous irrelevant variable’’ comes into play in high
dimensions which breaks the hyperscaling (yT � 1=�) and
modifies the FSS [11]. Nevertheless, for block-shape
samples with periodic boundary conditions, Eqs. (1) and
(2) are still valid with the trivial MF values of yT � d=2
and yH � 3d=4, which correspond to the MF bulk expo-
nents such as � � 1=2 and � � 1. The broken hyperscal-
ing implies that there must be another length scale
competing with the system size, rather than the usual
Gaussian correlation length.

Consider the Landau free energy of the order parameter
m near the transition in the MF regime as

 f�m� � ��m2 � um4 �O�m6�; (3)

where the Gaussian spatial fluctuation term �rm�2 is
ignored. In the ordered phase (� > 0), the free energy has
a minimum at m � m� � �1=2 with f���2. One may ask
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a typical size �T of a disordered droplet excitation out of
the uniformly ordered environment. As the free energy cost
by the droplet excitation is compensated by the thermal
energy, ��f��dT � kBT, we find �T � ���T with �T �
2=d � 1=yT . The Gaussian length scale diverges as �G �
���G with �G � 1=2.

For d > du � 4 (the upper critical dimension), �G domi-
nates over �T , which leads to the correlation length ex-
ponent � � �G and the MF theory is valid. However, the
FSS variable LyT� becomes �L=�T�yT , implying that the
competing length scale is not the dominant correlation
length but the droplet size. Substituting the linear size L
by the volume N � Ld, Eq. (2) reads

 m � N��= �� �N1= ����; (4)

where the FSS (droplet volume) exponent �� � d�T � 2 in
the MF regime. For the general �q MF theory (f �
��m2 � umq), we find that �� � du�G with du � 2q=�q�
2�, which is consistent with the earlier result by Botet et al.
for models with infinite-range interactions [12].

We are now ready to explore the FSS in networks.
Networks have no space dimensionality and may be con-
sidered as a limiting case of d! 1. So we expect that any
model in networks displays a MF-type critical behavior. In
particular, the MF FSS exponent �� is independent of d,
which leads to the natural conjecture that Eq. (4) also
applies in networks. These predictions have been con-
firmed by numerical simulations for various models in
random networks, small-world networks, and complete
graphs. Moreover, the relation of �� � du�G has been ex-
ploited to calculate the value of du via simulations in
networks for complex nonequilibrium models [13].

In SF networks with the degree distribution P�k� � k��,
there appears a nontrivial �-dependent MF critical scaling
for � < �u (highly heterogeneous networks) while the
standard MF theory applies for � > �u [1]. Naturally, we
expect a nontrivial FSS theory associated with the non-
trivial MF scaling for � < �u. Previous studies pay atten-
tion to the MF analysis in the thermodynamic limit and
hardly discuss the FSS in the general context. Recently, a
few numerical efforts have been attempted to confirm the
MF predictions, but huge finite-size effects and the lack of
the FSS theory disallowed any decisive conclusion for
highly heterogeneous networks [4,7]. Most recently, even
a non-MF scaling has been claimed for the contact process
[14,15] and the question arises as to whether the cutoff in
degree k influences the FSS.

We start with the phenomenological MF free energy for
the SF networks proposed in [1,2]

 f�m� � ��m2 � um4 � vjmj��1 �O�m6�; (5)

where the �-dependent term originates from the singular
behavior of the higher moments of degree in SF networks.
For � > �u � 5, the �-dependent term is irrelevant and we
recover the usual �4 MF theory, yielding � � 1=2 and

�� � 2. For 3< �< 5, the �-dependent term becomes
relevant and we find the �q MF theory with q � �� 1.
A simple algebra leads to � � 1=��� 3� and the free
energy density in the ordered phase is f���1�2�. One
can estimate the typical droplet volume NT � ��f��1,
yielding NT � �� �� with �� � 1� 2� � ��� 1�=��� 3�.
By including the external field term hm in Eq. (5), one can
show � � 1 for all � > 3.

The results for �, �, and the FSS exponent �� for the
Ising model in SF networks are then summarized as

 ��;�; ��� �

(
1

��3 ; 1;
��1
��3 for 3< �< 5

1
2 ; 1; 2 for � > 5:

(6)

For � < 3, no phase transitions occur at finite temperatures
and, at � � 5, a multiplicative logarithmic correction is
expected [1]. It is interesting to notice that a naive power
counting for the �q local theory with the Gaussian spatial
fluctuation term �rm�2 yields the same result for �� by
using the relation of �� � du�G [16]. Our conjecture for ��
bears no reference to the degree cutoff kc caused by the
finite system size N. We will argue later that the cutoff is
irrelevant if it is not too strong: kc > N1=� [15].

We check our conjecture via numerical simulations. Two
typical SF networks are considered, namely, the static
model [17] and the uncorrelated configuration model
(UCM) [18]. As these networks have different degree cut-
offs (natural cutoff kc � N1=���1� versus forced sharp cut-
off kc � N1=2) in finite systems, one may look for a
possibility of the cutoff-dependent FSS behavior if any. It
turns out that both cutoffs are not strong enough to influ-
ence the FSS for � > 2.

We performed Monte Carlo simulations at various val-
ues of � up to N � 107. We measure the magnetization m,
the fluctuation �0 � N��m�2, and the Binder cumulant B
and average over�103 network realizations. The transition
temperature Tc is estimated by the asymptotic limit of the
crossing points of B for successive system sizes as well as
of the peak points of �0. At criticality, Eq. (4) leads to m�
N��= �� and similarly �0 � N�0= �� with �0 � j�j��

0
in the

thermodynamic limit. This power-law behavior in N pro-
vides an alternative check for the criticality as well as the
estimates for the exponent ratios. In equilibrium systems,
the fluctuation-dissipation theorem guarantees �0 � �. By
collapsing the data over the range of temperatures, we
estimate the value of the FSS exponent ��. Our numerical
data for m and �0 collapse very well for all values of � in
both static and UCM networks. In Fig. 1, the data collapse
is shown for � � 3:87 in static networks. We summarize in
Table I the numerical estimates for �= ��, ��, and �0= �� at
various values of � in static and UCM networks. All data
agree reasonably well with our predictions.

We also measure the degree-dependent quantities like
the magnetization on vertices of degree k, mk, and its
fluctuation ��mk�

2. These quantities are found to satisfy
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a scaling relation with the scale variable kN�1=� (not
shown here) [16]. For k > N1=�, the distribution P�k�
becomes almost flat for each realization of networks and
the degree exponent � loses its identity. Therefore, vertices
of such a high degree contribute in a trivial way and the
cutoff beyond this range (kc > N1=�) should not be distin-
guishable [15]. This argument is supported by our numeri-
cal results which cannot differentiate the FSS scaling in the
static and UCM networks.

Now we move to a typical model exhibiting a nonequi-
librium phase transition, namely, the directed percolation
(DP) system [19]. It is well known that most of the non-
equilibrium models showing an absorbing-type phase tran-

sition belong to the DP universality class. Among such
models, we here consider the contact process (CP) and the
susceptible-infected-susceptible (SIS) model [6].

The CP is an interacting particle model on a lattice. A
particle creates another particle in one of its neighboring
sites with rate p and a particle annihilates with rate 1. In the
SIS model, the particle creation is attempted in all neigh-
boring sites. A particle-particle interaction comes in
through disallowance of multiple occupancy at a site. As
p increases, the system undergoes a phase transition at pc
from a quiescent vacuum (absorbing) phase to a noisy
many-particle (active) phase in the steady state. Near the
absorbing phase transition, the order parameter (particle
density) 	� ��, the fluctuations �0 � N��	�2 � ���

0
, the

susceptibility �� j�j��, the correlation length �� j�j��,
the relaxation time 
� j�j��t , and the survival probability
Ps � �

�0 with the reduced coupling constant � �
�p� pc�=pc. It is known that � � �0 due to the time-
reversal symmetry in the DP systems [19] and �0 � � in
general nonequilibrium systems.

Consider the droplet (cluster) excitation starting from a
localized seed in the absorbing phase. The average space-
time size S of a cluster is estimated as

 S� 
‘�dc � j�j��; (7)

where 
‘ and �c are the average lifetime and typical size of
a droplet, respectively. Usually 
‘ diverges near the tran-
sition as 
‘ � j�j��t��

0
for �t > �0 [19], but 
‘ is a O�1�

constant otherwise. In the MF regime, it is shown later that
the latter always applies. The droplet size diverges as �c �
j�j��T , which leads to � � d�T �maxf�t � �

0; 0g. It is
well known that the susceptibility is proportional to the
cluster mass, which yields � � �� � [19]. Finally, we
arrive at the generalized exponent relation as

 � � d�T � ��maxf�t � �
0; 0g: (8)

The fluctuation exponent �0 satisfies the standard hyper-
scaling relation as �0 � d�T � 2�.

In SF networks, we propose a phenomenological modi-
fication of the MF Langevin equation describing the DP
models, similar to the free energy modification of the Ising
model in Eq. (5):

 

d
dt
	�t� � �	� b	2 � d	��1 �

����
	
p


�t�; (9)

where 	�t� is the particle density at time t and 
�t� is a
Gaussian noise. Our modification to the standard MF the-
ory comes in by the third 	��1 term and it is straightfor-
ward to show that the exponent � � � for the CP and
� � �� 1 for the SIS.

By dropping the noise term, one may easily get the MF
steady-state solution for 	. We find that � � 1 for � > 3
and � � 1=��� 2� for 2< �< 3. For � < 2, there is no
phase transition at finite p. The same result may be ob-
tained from the well-established k-dependent noiseless MF

TABLE I. Critical exponents of the Ising model on the static
and the UCM networks, and the CP on the UCM networks,
compared with our MF predictions.

Ising
Network � �= �� �� �0= ��
MF � > 5 1=4 2 1=2

3< �< 5 1
��1

��1
��3

��3
��1

Static 7.08 0.26(4) 2.0(2) 0.45(5)
4.45 0.28(2) 2.4(2) 0.45(3)
3.87 0.37(5) 3.5(3) 0.26(4)

UCM 6.50 0.24(4) 2.0(2) 0.51(5)
4.25 0.31(1) 2.5(1) 0.39(1)
3.75 0.38(6) 3.9(2) 0.24(3)

CP
Network � �= �� �� �0= ��
MF � > 3 1=2 2 0

2< �< 3 1
��1

��1
��2

��3
��1

UCM 4.0 0.49(1) 2.1(1) 0.00(5)
2.75 0.58(1) 2.4(1) �0:16�2�
2.25 0.78(1) 4.0(5) �0:55�5�
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FIG. 1 (color online). Data collapse of m for the static network
with � � 3:87, using �= �� � 0:37 and �� � 3:5. Insets: Double
logarithmic plots of the critical decay ofm and �0 against N with
slopes �= �� � 0:37�5� and �0= �� � 0:26�4�.
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theory [6]. Moreover, the time-dependent solution leads to
�t � 1, and the inclusion of a weak external field leads to
� � 1 for all � > 2. Notice that �t 	 � � �0.

Utilizing the exponent relation of Eq. (8), we summarize
the results for �, �, and the FSS exponent �� � d�T �
1� � as

 ��;�; ��� �
� 1
��2 ; 1;

��1
��2 for 2< �< 3

1; 1; 2 for � > 3;
(10)

where � � � for the CP and � � �� 1 for the SIS. For
both cases, �t � 1,� � ��, and �0 � 1� �. As in the Ising
model, a naive power counting for the local Langevin
equation with the spatial fluctuation term r2	 yields the
same result for �� by using �� � du�G [16].

We performed numerical simulations for the CP on the
UCM networks at various values of � up to N � 107. We
measure 	 and �0 � N��	�2. The transition point pc is
estimated by the power-law temporal dependence of 	 and
also by the power-law size dependency of 	 in the steady
state. At criticality, the temporal dependence is given as
	� t��=�t and, in the steady state, 	� N��= �� and �0 �
N�0= ��. By collapsing the off critical data in the steady state,
we can estimate the value of ��.

In Fig. 2, the data collapse is shown for � � 2:75 in the
UCM networks. Our estimates for the exponents sum-
marized in Table I agree well with our predictions, in
general. Our data become a little bit weaker close to � �
2 where high heterogeneity in networks yields big cor-
rections to scaling. We also confirmed the relation of
� � �� by investigating the external field effect at critical-
ity. Simulations were also performed on the static net-
works, where no cutoff dependence is found. The SIS
model shows bigger finite-size corrections, which hinder
us from estimating the transition point accurately. Never-

theless, our estimates for the steady-state exponent ratios
are consistent with our predictions within errors [16].

In summary, we have explored the finite-size scaling
behavior in complex networks. Based on the droplet-
excitation argument, we conjectured the FSS exponent
values, which have been confirmed by extensive numerical
simulations on the static and UCM networks. Real net-
works found in many biological, economical, and social
systems are highly heterogeneous and also quite small in
size. Our results provide essential information on analyz-
ing the data on these networks.
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Mod. Phys. 76, 663 (2004); S. Lübeck and H.-K. Janssen,
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FIG. 2 (color online). Data collapse of 	 for the UCM network
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