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We provide a comprehensive view of the role of Abelian symmetry and stochasticity in the universality

class of directed sandpile models, in the context of the underlying spatial correlations of metastable

patterns and scars. It is argued that the relevance of Abelian symmetry may depend on whether the

dynamic rule is stochastic or deterministic, by means of the interaction of metastable patterns and

avalanche flow. Based on the new scaling relations, we conjecture critical exponents for an avalanche,

which is confirmed reasonably well in large-scale numerical simulations.
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Since a prototype of sandpile models was first intro-
duced by Bak, Tang, and Wiesenfeld, over the last two
decades a lot of variants have been tested and become
successful in figuring out the common underlying mecha-
nism of ubiquitous scale invariance in nature [1]. In such
models, grains are slowly added, redistributed (toppled)
instantly whenever the instability threshold is overcome,
and finally dissipated at boundaries. The most interesting
issue under debate is whether the universality class of
critical avalanche dynamics can be changed by the modi-
fication of local toppling rules, such as the breaking of
Abelian symmetry [2] and the consideration of stochastic-
ity [3], with still conflicting numerical results [4]. Abelian
symmetry here means that the order of toppling the un-
stable sites does not affect the final state. Contrary to
undirected models, directed sandpile models (DSMs)
with a preferred direction of toppling turn out to be more
tractable analytically as long as they have Abelian sym-
metry [5–7]. It is because metastable patterns in the
Abelian DSMs are fully uncorrelated.

Once the Abelian symmetry is broken in DSMs by some
specific way, long-range spatial correlations emerge in
their metastable patterns. Such correlations are often ob-
served in nature, like a fractal structure in the crust of the
earth formed by seismic events. Two non-Abelian DSMs
with spatially correlated metastable patterns were intro-
duced by Hughes and Paczuski [8] for a stochastic version
and by Pan et al. [9] for a deterministic version. In the
stochastic version it is claimed that Abelian symmetry is
not relevant to avalanche dynamics, while in the determi-
nistic version it is. Although this difference might be
attributed to the existence of stochasticity, it is not clear
enough to say which factor governs the scaling property of
metastable patterns. Therefore, it is quite crucial to clarify
the role of spatially correlated metastable patterns in the
universality class of DSMs, which has been hardly dis-
cussed up to now.

In this Letter, we discuss how the critical avalanche
dynamics of non-Abelian models are entangled with spa-
tially correlated metastable patterns. Based on the forma-

tion of metastable patterns and scars (trace of avalanche
boundary sites) with the mapping onto particle dynamics,
we give intuitive arguments about the scaling relations in
terms of scar exponent, and conjecture a possible scenario
for the universality class in DSMs. Finally, we reinterpret
the earlier known results for the Abelian case by our
conjecture, and confirm those for non-Abelian case by
large-scale numerical simulations with various data analy-
sis techniques developed so far.
Consider DSMs defined on a (1þ 1)-dimensional tilted

square lattice of size (L, T). The preferred direction of
avalanche propagation is denoted by the ‘‘layer’’ t ¼
0; . . . ; T � 1 with open boundary conditions, and the trans-
verse direction by i ¼ 0; . . . ; L� 1with periodic boundary
conditions. Initially, to each site of the lattice an integer
value (the number of grains), ziðtÞ 2 ½0; zcÞ, is assigned,
where we set the instability threshold zc ¼ 2. Given a
stable configuration where all sites are stable, new grains
are added one by one at a randomly chosen site on the top
layer, zið0Þ ! zið0Þ þ 1, until one of them becomes un-
stable. For any unstable site with ziðtÞ � 2, grains at that
site topple down to its left and right nearest-neighboring
sites on the next layer, tþ 1:

ziðtÞ! ziðtÞ��ii; zi�1ðtþ1Þ! zi�1ðtþ1Þþ�i;i�1;

(1)

where �ii ¼ �i;i�1 þ�i;iþ1 (the local conservation of

grains). Toppled grains at the unstable sites on the bottom
layer t ¼ T � 1 are dissipated out of the system. Only after
another stable configuration is recovered by a series of
toppling events, denoting an avalanche, a new grain is
added to keep generating another avalanche. By setting
f�ijg one may consider several variants of DSMs. In con-

trast to Abelian DSMs where �ii is constant (used to be set
as zc), we set �ii ¼ ziðtÞ as non-Abelian DSMs. All grains
at the unstable site topple to the next layer and the toppled
site becomes completely empty. For any given �ii, the
values of �i;i�1 can be determined in either stochastic or

deterministic way. Besides the well-known Abelian deter-
ministic or stochastic DSMs [5,6] (AD/AS in short) and the
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non-Abelian stochastic DSM [8] (NS in short), we explore
the following three versions as the non-Abelian determi-
nistic DSM (ND in short):

ðiÞ �i;i�1 ¼
� k if ziðtÞ ¼ 2k

kþ �i�1;aiðtÞ if ziðtÞ ¼ 2kþ 1;

ðiiÞ �i;i�1 ¼
� k if ziðtÞ ¼ 2k

kþ �i�1;iþ1 if ziðtÞ ¼ 2kþ 1;

ðiiiÞ �i;i�1 ¼ ziðtÞ=2;

where k is a positive integer and �ij denotes the Kronecker

delta-function. We call (i) the alternatively biased version
(aND) [9], (ii) the fully biased version (bND), and (iii) the
continuous version without bias (cND), respectively. For
the aND, an ‘‘arrow’’ aiðtÞ of each site initially points to
one of its neighbors, say i� 1 in Fig. 1(a). Whenever each
grain is toppled at that site, the direction of the arrow flips
to the other neighbor, see Fig. 1, which shows the case of
ziðtÞ ¼ 3.

Each avalanche can be characterized by the following
quantities: mass s (the number of toppled grains), duration
t (the number of affected layers), area a (the number of
distinct toppled sites), width w (the mean distance between
left and right boundaries of avalanche), and height h (the
mean number of toppled grains per toppled site). The
avalanche distribution functions in DSMs show no charac-
teristic scale except for T as long as L is sufficiently larger
than the maximum width. They follow the simple scaling
form as PðxÞ � x��xfðx=TDxÞ for x 2 fs; t; a; w; hg.
Moreover, two quantities x and y scale as hyi � x�yx with

�yx ¼ �x�1
�y�1 ¼ Dy

Dx
from PðxÞdx ¼ PðyÞdy. Taking full ad-

vantage of the relations,Dt ¼ 1 and hsi � T in DSMs, with
the reasonable assumption of compactness of avalanche,
i.e., a� wt and s� ah, we obtain the following scaling
relations: �xt ¼ Dx for any x, Dsð2� �sÞ ¼ 1, Da ¼
Dw þ 1, and Ds ¼ Da þDh. As a result, there are only
two independent exponents left. Concerning the metastable
state, we define two scaling exponents more. Along the
propagation direction, one can measure grain density as
�ðtÞ � h1L

P
iziðtÞi � t�� with the grain density exponent �

for large t. The scar density �scðtÞ and the scar exponent

�sc are defined by the same definition of grain density only
with ziðtÞ replaced by biðtÞ, which takes a value of 1 for
trace or 0 otherwise. The scar exponent is immediately
related to the avalanche width exponent as �sc ¼ Dw

because the density of avalanche boundary sites is in-
versely proportional to the typical avalanche width, i.e.,
�scðtÞ ’ wðtÞ�1. Since grains can remain only at the ava-
lanche boundary sites for the non-Abelian DSMs, it is
found that � ¼ �sc.
We give intuitive arguments on the interplay between

avalanche flow and metastable patterns or scars in DSMs.
Let us define NðtÞ as the number of grains transferred from
the layer t to the next layer tþ 1 within an avalanche,
scaling as NðtÞ � wðtÞhðtÞ � tDwþDh . The evolution of
NðtÞ, avalanche flow, can be written as

dNðtÞ
dt

� NðtÞ � Nðt� 1Þ ¼ X
i2wðtÞ

niðtÞ; (2)

where niðtÞ denotes the amount of the avalanche flow at
each site (i, t), and the summation is over the sites between
avalanche boundaries belonging to w.
We begin with the Abelian case, for which the meta-

stable patterns are fully uncorrelated. In the AD, it is
well known that Dh ¼ 0 by definition and Dw ¼ 1

2 by

mapping avalanche boundaries onto the random walks
[5]. The avalanche flow of the AD can be written as dN

dt �
�. An uncorrelated noise � of zero mean and unit variance
denotes the fluctuation of grain density. In the AS with the
same �, the bulk contribution to avalanche flow plays a
crucial role, so that we get dN

dt �
ffiffiffiffi
w

p
� [6,7]. Here

ffiffiffiffi
w

p
represents the fluctuation of the number of toppled sites
in w when the topplings are uncorrelated. The lack of
correlation in metastable patterns again leads to Dw ¼ 1

2 ,

so Dh ¼ 1�Dw

2 ¼ 1
4 . In relation to the scar density, we get

�sc ¼ Dw ¼ 1
2 but � ¼ 0 for the Abelian case. It is found

that the measurement of �sc is more efficient than that of
Dw. From now on, we suggest to measure �sc as one
independent exponent in DSMs.
For the non-Abelian case with the spatial correlation of

metastable patterns or scars, the fluctuation of grain density
is numerically found to scale as �ðtÞ. Furthermore, �sc

plays the same role as �, i.e., �sc ¼ �. In the NS [8],
keeping

ffiffiffiffi
w

p
due to the stochastic nature of toppling just

as in the AS, we can write dN
dt �

ffiffiffiffi
w

p
� and get the new

scaling relation,Dh ¼ 1� 3
2�. In contrast to the NS, in the

ND, all sites of w contribute to avalanche flow so that dNdt �
w�. We get the different relation Dh ¼ 1� �. Therefore,
all avalanche exponents in the non-Abelian DSMs can be
obtained from the grain density exponent � (or �sc) as
shown in Table I.
The new scaling relations with � enable us to clarify the

effect of metastable pattern with � � 0:45 in the NS on its
avalanche dynamics. Interestingly, if � ¼ 1

2 is assumed

with systemic errors and/or possible logarithmic correc-
tions, the NS has exactly the same avalanche exponents as

t

i(a) (b) (c)

FIG. 1. Toppling rules of non-Abelian deterministic DSMs on
a (1þ 1)-dimensional tilted lattice: (a) aND, (b) bND, and
(c) cND. The gray colored grains and arrow represent the state
before toppling and the black colored ones represent the state
after toppling, respectively.
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those of AS: �s ¼ 2ð3��Þ
ð4��Þ ¼ 10

7 and �t ¼ 2� �
2 ¼ 7

4 .

Another scenario for � ¼ 1
2 can be found by mapping

metastable patterns onto the space-time configuration of
2A ! A coagulation-diffusion model defined in d ¼ 1,
where the particle density decays as t�1=2 [11]. One can
say that the NS belongs to the same universality class as the
AS in the following sense: For Abelian cases the flowing
avalanche can sweep and lose many grains at the same time
due to the uniform grain density. On the other hand, for
non-Abelian case the flowing avalanche can sweep only a
few grains due to the power-law decaying grain density and
leave few grains behind by taking all grains at the toppling
sites. In other words, the scaling property of NðtÞ is appar-
ently unaffected by the grain density as long as the toppling
rule is stochastic.

FromDh ¼ 1� � in the ND, we find that the avalanche
exponents for mass and duration have the mean-field (MF)
values, independent of �, i.e., �s ¼ 3

2 and �t ¼ 2, whereas

other exponents depend on �. We point out that one should
consider other avalanche exponents as well as those of
mass and duration in order to discuss the universality class
of the ND. If � ¼ Dw ¼ 1 is assumed from the linear
behavior of avalanche boundaries (scars) as shown in
Fig. 2, all avalanche exponents turn to the MF values,
except for the case of width [12]. This may also correspond
to the MF behavior of coagulation-diffusion model, where

the particle density decays as t�1 in d � du ¼ 2 [11]. This
peculiar ‘‘MF’’ behavior of three ND versions appeared in
the low dimensional system can be understood by consid-
ering the shape of NðtÞ with its width and height. We now
focus on how avalanche boundaries behave linearly, which
implies Dw ¼ 1. The ND toppling rules we considered
suppress the fluctuations of height profile of the flowing
avalanche more than the stochastic one does, which leads
to spreading grains wider and making the avalanche
boundaries grow faster, almost ballistically. This positive
feedback enables Dw ¼ 1 to be larger than 1

2 for all other

DSMs. Moreover, we like to note that the resultantDh ¼ 0
indicates the MF behavior for the non-Abelian case,
whereas Dh ¼ 0 for any dimension in the AD.
We performed extensive numerical simulations for all

DSMs to confirm our conjecture about the avalanche ex-
ponents in terms of the scar exponent, �sc ¼ �, up to T ¼
213 and L ¼ T=2 (T ¼ 215 or L ¼ T in some cases). We
measure the avalanche exponent set f�x;Dxg of all x,�, and
�sc using the moment analysis and the conventional suc-
cessive slope techniques of avalanche distributions, for
about 109 avalanches at the steady state after the transient
period. The spatially correlated scars are observed in all
DSMs with the nonzero values of �sc, while the spatial
correlations of metastable patterns are only observed in
non-Abelian DSMs with the nonzero values of �. To

(c) (d)(a) (b)

FIG. 2 (color online). Typical meta-
stable patterns for non-Abelian case:
The occupied sites are shown as black
dots and the typical shapes of dissipative
avalanches consisting of the toppled sites
as blue (or gray)-shaded areas on a lat-
tice with L ¼ 150 and T ¼ 250. Here
(a) aND, (b) bND, (c) cND, and
(d) NS, respectively.

TABLE I. Avalanche exponents f�x;Dxg, grain density exponent �, and scar exponent �sc in (1þ 1)-dimensional DSMs with our
conjecture. Note that �sc ¼ � for the non-Abelian case. We check the value of Kx � Dxð�x � 1Þ, which is a universal constant for any
x [10], and show its averaged value over x excluding Kw and Kh due to their poor statistics.

Model �s, Ds �t, Dt �a, Da �w, Dw �h, Dh hKxi �, �sc

Mean field (du ¼ 2) 3
2 , 2 2, 1 3

2 , 2 3, 1
2 1, 0 1

Abelian

Deterministic 4
3 ,

3
2

3
2 , 1

4
3 ,

3
2 2, 1

2 1, 0 1
2 0, 1

2

Stochastic 10
7 ,

7
4

7
4 , 1

3
2 ,

3
2

5
2 ,

1
2 4, 1

4
3
4 0, 1

2

Non-Abelian

Stochastic 2ð3��Þ
4�� , 2� �

2 2� �
2 , 1

4þ�
2ð1þ�Þ , 1þ � 2þ�

2� , � 4ð1��Þ
2�3� , 1� 3�

2 1� �
2 �

-numerics 1.43(1), 1.77(2) 1.78(1), 1.00(1) 1.53(1), 1.46(2) 2.74(2), 0.44(1) 3.18(2), 0.31(3) 0.77(1) 0.45(3)

Deterministic 3
2 , 2 2, 1 2þ�

1þ� , 1þ � 1þ�
� , � 2��

1�� , 1� � 1 �

-aND 1.49(1), 1.97(3) 1.94(1), 1.00(1) 1.52(1), 1.88(2) 2.10(1), 0.87(1) 6.64(3), 0.07(1) 0.96(1) 0.86(3)

-bND 1.43(1), 1.82(4) 1.79(1), 1.00(1) 1.48(1), 1.76(7) 2.10(1), 0.76(6) 5.90(9), 0.06(1) 0.81(2) 0.69(5)

-cND 1.52(3), 1.99(4) 2.04(3), 1.00(1) 1.51(1), 1.95(3) 2.03(1), 0.86(2) 9.26(7), 0.06(4) 0.99(2) 0.91(11)
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validate the stability of the scar exponent, we plotted the
effective scar exponent ½�sc�eff as a function of 1

t for all

DSMs. As shown in Fig. 3(a), there seems to be two
asymptotic values, 1

2 and 1 in the large t limit, with quite

long or unusual initial transient behaviors and finite-size
corrections. For the non-Abelian case, we also checked the
possibility of logarithmic corrections to scaling in �sc and
�, both of which behave qualitatively the same. Thus, we
only show � in Fig. 3(b) as �ðtÞ � t��ðlntÞ�, where the
existence of linear parts in curves represents logarithmic
corrections.

We finally discuss the relevance of Abelian symmetry in
DSMs. Based on our results, Abelian symmetry turns out to
be irrelevant to the stochastic version only when � ¼ 1

2 in

the NS. The breaking of Abelian symmetry in the deter-
ministic version yields the MF behavior of avalanche
dynamics even in a (1þ 1)-dimensional setup. In all
NDs, we also confirm that the values of Dh are quite close
to 0, which can be the sign of the MF behavior as we
argued. Furthermore, it turns out the NDs do not show any
criticality in a (0þ 1)-dimensional setup. All numerical
results are listed in Table I with our conjecture. Only the

results of the bND seem to be inconsistent with the values
we conjectured. Such discrepancy may be attributed to the
relevant effect of bias in toppling rule or relatively large
logarithmic corrections. The validity of our conjecture for
other possible values of � or �sc is under investigation,
with the role of toppling bias in DSMs [13,14].
In summary, we have explored the role of Abelian

symmetry and stochasticity in directed sandpiles, and con-
jectured the new scaling relations for critical avalanche
dynamics entangled with the underlying structure of meta-
stable patterns and scars. Our conjecture provides clear
guidelines on discussing the universality class in directed
sandpile models. Moreover, our results provide essential
information on analyzing the self-organized criticality in
real systems as well as answering how ubiquitous long-
range spatial correlations in nature can be developed and
affect real avalanche dynamics.
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FIG. 3 (color online). (a) The effective scar exponent ½�sc�eff
as a function of 1

t , and (b) double-logarithmic plots of �ðtÞt�
versus lnt for logarithmic correction checks, where � ¼ 1 unless
noted. For the bND, we cannot exclude the possibility of � ¼ 2

3

either. Here the data of each model were obtained from 108 or
more avalanches on a lattice of L ¼ 214 and T ¼ L, except for
the cND where T ¼ 213.
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