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We revisit the slow-bond (SB) problem of the one-dimensional (1D) totally asymmetric simple exclusion
process (TASEP) with modified hopping rates. In the original SB problem, it turns out that a local defect is always
relevant to the system as jamming, so that phase separation occurs in the 1D TASEP. However, crossover scaling
behaviors are also observed as finite-size effects. In order to check if the SB can be irrelevant to the system
with particle interaction, we employ the condensation concept in the zero-range process. The hopping rate in the
modified TASEP depends on the interaction parameter and the distance up to the nearest particle in the moving
direction, besides the SB factor. In particular, we focus on the interplay of jamming and condensation in the
current-density relation of 1D driven flow. Based on mean-field calculations, we present the fundamental diagram
and the phase diagram of the modified SB problem, which are numerically checked. Finally, we discuss how the
condensation of holes suppresses the jamming of particles and vice versa, where the partially condensed phase
is the most interesting, compared to that in the original SB problem.
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I. INTRODUCTION

Driven diffusive systems are ubiquitous in real-world phe-
nomena with various scales, from active transport in cell
proteins [1–3] to large traffic networks [4–7]. As the simplest
modeling of such system, the stochastic (noisy) Burger’s
equation [8] is often employed, which is also known as the
Kardar-Parisi-Zhang (KPZ) equation [9]. Most recently, the
detailed statistical properties of the one-dimensional (1D) KPZ
equation has been exactly solved by mathematicians, in terms
of the random matrix formalism [10,11]. The simplest one of
the models that belong to the 1D KPZ university class is the
totally asymmetric simple exclusion process (TASEP) [12]. It
is well established that the TASEP is a prototype model of
nonequilibrium driven flow, and its stationary solutions with
various boundary conditions are presented by a matrix-product
ansatz [12,13].

In the ordinary TASEP, the current-density relation is
symmetric with a single maximum in the 1D TASEP, which
is due to the particle-hole symmetry. When the hopping
rate is modified with particle interaction, the symmetry is
broken in the fundamental diagram of flow (the current-
density relation). Similarly, a local defect indeed also changes
the shape of the fundamental diagram. Such an example
is the slow-bond (SB) problem [14–17]. In the SB problem,
the driven flow in the middle of the system becomes slow as
the hopping rate at the SB is reduced, compared to that at
normal bonds. The most interesting question of the SB problem
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is “whether the SB effect is always relevant to the system so
that the fundamental diagram is changed.” This has also been
speculated in various studies, such as slow combustion of paper
with a local columnar defect [18], the modified KPZ growth
models in random media [19,20], directed polymer in random
media [21], last passage percolation [22], and junctional defect
of networks with TASEP links [23,24].

The possibility of the SB-irrelevant phase was proposed in
the ordinary TASEP by numerical simulations [14] and experi-
ments [18], but it was hardly proven since nontrivial crossover
scaling behaviors exist as well as boundary effects. As the SB
strength gets close to 1, the localization of the queue occurs in
finite systems. However, it turns out that such a phenomenon is
attributed to the finite-size effect [17], consistent with analytic
arguments proposed by Costin and coworkers [15].

In this paper, we employ the hopping rate of the zero-
range process (ZRP) [25–27] as particle interaction in the
TASEP with a SB at the middle of the system [28]. In the
context of the ZRP dealing with mass transport, the hopping
rate depends only on the mass at the chosen site. The most
interesting phenomenon in the ZRP is the condensation of
mass at a single site, which occurs when the interaction
parameter gets positively larger than the certain value under
the circumstances. In the TASEP language, the condensation
of holes is the particle-hole segregation. The SB induces the
queue of particles so that the bulk density is not single-valued
anymore even far from the SB.

In particular, we investigate the interplay of the SB effect
and particle interaction in the current-density relation, in terms
of the modified TASEP with periodic boundary conditions.
Considering modified ZRP-type hopping rates at all bonds, in
the modified SB problem, we pose the question: Is it possible
that the condensation can suppress the queue by the SB effect
and/or vice versa? To answer this question, we focus on the
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FIG. 1. The modified TASEP is schematically illustrated, where
the numbers above the arrows indicate hopping rates, and the site
indices are shown at the bottom. The hopping is forbidden due to
hard-core repulsion, which is shown as a red cross, and the hopping
at the SB is highlighted as the different color (red) arrow.

fundamental diagram of current-density relations as well as
the phase diagram. Based on the mean-field (MF) calculations
of the current-density relation, we suggest a possible “bulk”
density and propose the phase diagram in the modified SB
problem, which is compared to numerics. In the regime
where the correlation length does not globally diverge, our
numerical results also show that the system separates into two
homogeneous subsystems with the same current but different
bulk densities.

However, due to the particle conservation of the periodic
TASEP, the system may not be well separated when all of
the allowed densities are even lower (higher) than the total
density of the system. Applying MF approximations, we seek
the marginal phase boundaries as the function of the SB factor
and the interaction parameter, which are numerically checked.
Moreover, we discuss the partially condensed phase in the
strong SB regime with possible physical arguments.

The rest of the paper is organized as follows: In Sec. II we
describe the modified SB problem, in terms of the TASEP
with ZRP-type modified hopping rates as well as the SB,
where physically relevant quantities are denoted as two control
parameters vary. In Sec. III we present the MF approximations
of the phase diagram and its marginal phase boundaries, in
the context of the fundamental diagram of the modified SB
problem, where we present four different phases. Extensive
Monte Carlo (MC) numerical simulation results are provided
for the comparison with MF results in Sec. IV, where finite-size
effects are also carefully tested. Finally, in Sec. V we conclude
this paper with the summary of our findings and some remarks.
For more additional information with additional figures, we
provide Appendices A–C.

II. MODEL

We consider the modified TASEP in a 1D lattice of even L

sites as shown in Fig. 1, where each site is either occupied
by at most one particle or vacant only at time t , nx(t) =
{0,1}(1 � x � L). The hopping rate depends on the distance
from the chosen particle up to the nearest particle in the hopping
direction. Employing periodic boundary conditions, n

L+1 = n1

and the total number of particles, N = ρ0L, where ρ0 is fixed
as the total density of the system. Finally, we place the SB
to be between x = L/2 and x = L/2 + 1, where the hopping
probability is suppressed as a factor r ∈ [0,1). Without loss of
generality, the case of ρ0 =1/2 is chosen and compared with
the original one [17] as the modified SB problem.

By definition, the average occupancy and the average
interparticle distance has the following relation if the system

is homogeneous:

[nx] ≡
L∑

x=1

nx

L
, [�y]

N
≡

N∑
y=1

�y

N
; [nx] = 1

1 + [�y]
N

. (1)

At each time step, particle configurations in the modified
TASEP are updated as follows [see Fig. 1 (TASEP-type) and
its possible mapping in Fig. 8. (ZRP-type) in Appendix A]:

(1) Choose one among N particles at random, e.g., the ith
particle at site xi .

(2) The ith particle hops to the next site, xi + 1, with
probability q(�i), where �i = xi+1 − xi − 1 (the distance up
to the site of the nearest particle in the target direction):

q(�i) =
{

0 (�i = 0)
u(�i)/umax (�i � 1) , (2)

where u(�i) = (1 + b
�i

), b is an interaction parameter, and umax

is the maximum hopping rate.
(3) If xi = L/2, the particle has to get through the SB, so

that the hopping is suppressed by a factor r(<1), namely, the
SB factor.

For the modified TASEP with the hopping rates of Eq. (2),
umax rescales hopping rates into probabilities by the maximum
rate to 1, which depends on the sign of b:

umax =
{

1 + b for b > 0 (attractive)
1 + b/L(1 − ρ0 ) for b < 0 (repulsive) . (3)

Note that the case of b = 0 corresponds the ordinary TASEP,
and q(�i = 0) = 0 implies hard-core repulsion (exclusion).
When b < 0, particles prefer to be equally spaced, which drives
the system to have almost the same value of �i , irrespective of
i. In the periodic system with the fixed density, this force acts
particles effectively to repel each other. On the other hand,
when b > 0, particles prefer to be close each other. When this
attractive force is greater than the critical strength, b > bc,
the system segregates particles and holes (vacancies) to form
macroscopic condensate of holes.

The most relevant physical quantities of driven flow are the
bulk density ρ and the current of the system J , because the
current-density relation is the fundamental diagram of driven
flow J (ρ; b) that determines the detailed phase structure of the
model-dependent phase diagram. The local current at the bond
(x,x + 1) due to the movement of the yth particle located at
site x, Jx,x+1, is denoted as

Jx,x+1 = 〈nxu(�y)〉, (4)

where u(�y) = (1 + b/�y) is the hopping rate of the yth particle
with �y . In the stationary state of the homogeneous system
(Jx,x+1 ≈ J,〈nx〉 ≈ ρ,�y ≈ �), the current J of the modified
TASEP can decouple with the bulk density and the average
hopping rate as JMF = ρ〈u(�)〉, where the mean-field (MF)
approximations are valid as described in Appendix B. It
is worthwhile to mention that J is distinguished from the
conventional TASEP current J̃MF = JMF/umax = ρ〈q(�)〉.

However, the SB leads to jamming, so that the system
becomes inhomogeneous. The case of b = 0 is the well-known
SB problem [14–17,22,29], where the main issue was the
possibility of the homogeneity if the SB effect is weak enough
to be irrelevant in the fundamental diagram. Although it looks
possible in finite systems due to crossover scaling caused by
finite-size effects, the SB effect is always relevant [17].
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FIG. 2. (a) In the b-r plane, the phase diagram of the modified SB problem is drawn as a heat map, in terms of the density difference
� = ρ+ − ρ− . MF phase boundaries are drawn for the NS-S from Eq. (12) (red, solid line) up to 0 < b < 3, and the C-PC from Eq. (13) (red,
solid line) for b > 3, and the S-PC from Eq. (15) (dashed line). The NS-C boundary is obtained from Eq. (16) (dashed line). Around b = 0, the
NS-S-NS boundaries are drawn from Eq. (18) (green, solid and dotted lines). The shaded region presents with J/ρ− > 0.999, which denotes
condensation of holes in numerical measurement. For examples, we show the NS phase at (b) (b = 2.75,r = 0.5) with � = 0 and the PC
phase at (c) (2.75,0.2) with � > 0. Numerical data are obtained for L = 216 at T � 2L3/2, averaging over 108 samples with 104 different
configurations and 104 different times.

In this paper, we pose the following question: Can particle
interactions suppress the SB effect, so that the queue by the SB
can be localized in the thermodynamic limit, unlike the original
SB problem?

III. PHASE DIAGRAM

We present a phase diagram in the modified TASEP with a
SB, where we categorize four phases, namely, separated (S),
nonseparated (NS), condensed (C), and partially condensed
(PC). The definition of each phase can be identified by density
profiles and interparticle distance distribution functions. While
both the NS and C phases are described by a bulk density,
the S and PC phases are categorized by two bulk densities.
Despite this simple concept, density separation is identified
with some caution. Unlike previous studies [14,17] that used
density profile 〈nx〉 directly, we cannot use it since the broken
particle-hole symmetry is not guaranteed for the functional
shape of density profile and the location of bulk boundaries.

A suitable indicator of density separation, the density dif-
ference, denotes � = ρ+ − ρ− . Thus, the S/PC phase (� > 0)
can be distinguished from the NS/C phase (� = 0), without
loss of generality. Figure 2 represents (a) the detailed phase
diagram of the modified SB problem in the space of the
interaction parameter b and the SB factor r , and density
profiles and the local-density distributions are also presented
in (b) (b = 2.75,r = 0.5) in the NS phase and (c) (2.75,0.2)
in the PC phase. For the C phase, the SB is irrelevant as
shown at the rightmost plot of the middle panel in Fig. 3
(b = 4.00,r = 0.50), while, for the PC phase, holes in the
low-density region form multiple macroscopic condensates as
shown at two rightmost plots of the bottom panel in Fig. 3
(b = 4.00,r = 0.20).

In order to measure �, we suggest the local density distribu-
tion function P (〈nx〉) for density profiles in the thermodynamic
limit: The contribution by bulk boundaries vanish and local
densities fluctuate around the high-density (HD) value ρ+(>
1/2) and the low-density (LD) one ρ− (<1/2) [see Figs. 2(b)

r=
1

b= −0.75 b= 0.00 b= 2.75 b= 4.00

r=
0.
5

r=
0.
2

x

t

FIG. 3. Snapshots of spatiotemporal patterns of L = 210 (horizontal length of each box) and T = 768 (vertical length of each box) are
plotted at every consecutive �t = 4MC time step in the steady states (t � 2L3/2) for various cases. Dots represent particles, and the SB is
highlighted for the case of r < 1 as the vertical line in the middle of the pattern with a different color (red). In each pattern, time elapses from
top to bottom, and the direction of particle hopping is to the right. Each column represents the different type of particle interaction: repulsive
(b = −0.75), neutral (b = 0), attractive (b = 2.75), and strongly attractive (b = 4.00), respectively. Each row is classified by the different SB
factor: r = 1.0, 0.5, and 0.2, respectively. For the PC phase, a typical configuration is presented as the two rightmost in the bottom panel.
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and 2(c)]. As a result,

P (〈nx〉) = c+δρ+ (〈nx〉) + c−δρ− (〈nx〉), (5)

where δρ(x) is a delta function centered at x = ρ. Furthermore,
vacancies (holes) can form one or more macroscopic conden-
sates. If the size of the condensate scales with the system size
as Lα , the value of the exponent α ∈ (0,1] determines C and
PC phases.

In the TASEP language, condensation of holes occurs when
the average hopping rate becomes 1, which is restricted by
the front particle in the queue of particles. We denote the NS
phase with condensation and α = 1 as the C phase, and the S
phase with partial condensate and 0 < α < 1 as the PC phase.
For both S and PC phases with � > 0, the SB still allows
the system to have only two bulk densities at most, because
the current-density relation still is a single-peaked function at
arbitrary b.

Accordingly, in the thermodynamic limit, the system with
density-separated phases has a finite correlation length, and it
can be simplified as two homogeneous subsystems in contact.
This is quite different from the maximal-current phase in the
open TASEP, where the divergent correlation length disturbs
the system to have a homogeneous bulk density. As long as
the correlation length is finite, density-separated phases are
composed of homogeneous subsystems with the equal current.
On the other hand, the total density conservation restricts the
system not to be split into subsystems with both greater or
lesser than the total density, e.g., ρ0 = 1/2 in this paper.

When the total density ρ0 is given, the marginal high- or
low-density ρ∗

± should suffice the following relation:

J (ρ0 ) = J (ρ∗
± ). (6)

Note that there is the “forbidden” density region caused by the
conservation of both the total density and the current, where
some HD or LD counterpart is not allowed.

Once the SB is considered in the system, the critical SB
factor r∗(b) can determine the boundary between S and NS
phases as a function of the interaction parameter b. At the
S-NS phase boundary, we can discuss the queuing transition
in the modified SB problem with particle interaction, similar
to the original SB problem. The transition between S and NS
phases is not simply characterized. As described in the two-
bulk picture, particle correlations near the SB competing with
density separation leads to the essential singularity-like density
jump at r∗(b), which is numerically verified in ordinary TASEP
[17] [r∗(0) = 1 at b = 0].

Approaching the maximal current by r → r∗(b), the corre-
lation length grows, and the system deviates from the two-bulk
picture, smoothly transiting into the NS phase (see Fig. 2).
However, it is not clear if the system has an essential singularity
because the density profile decays algebraically at only one side
of the SB.

In Fig. 3 we show spatiotemporal patterns as snap-
shots, where 12 different settings of (b,r) are chosen for
b ∈ {−0.75,0.00,2,75,4.00} (from left to right) and r ∈
{1,0.5,0.2} (from top to bottom). The ordinary TASEP cor-
responds the case of (b = 0,r = 1), where the condensation
of holes occurs as b → 3 at ρ0 = 1/2; thus, the pattern of
(b = 4.00,r = 1) represents the C phase. However, the C phase
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〈n
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(b) b=-0.75
0.00
2.75
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FIG. 4. Density profiles are shown as b varies from repulsive to
attractive interactions, b ∈ {−0.75,0.00,2.75,4.00}, where we set r =
0.2 in (a) and r = 0.5 in (b). Numerical data are obtained in the
system of L = 212 with the SB that is located at the bond of ( L

2 , L

2 + 1)
(the middle of the system) and averaging over 108 samples with 104

configurations and 104 different times, in the steady-state limit (t �
2L3/2).

is shrunk by the PC phase that appears as r gets smaller.
Condensation suppressed by jamming of particles behind the
SB as long as b is large enough to make a partial condensate
of holes.

In Fig. 4 we present density-profile patterns for various
phases, where (a) r = 0.2 (NS/PC) and (b) r = 0.5 (S/C). As
b varies from negative to positive, the phase of the system
is changed from the NS/S to the PC/C, respectively. This
corresponds to four cases in the middle and bottom panels
of Fig. 3.

Based on the analytic results of the SB-free ZRP and the
original SB problem with physical arguments, we develop MF
approximations for the modified SB problem in the following
subsection. Such approximations are valid if the interaction
range is short enough to ignore correlations of the system. As
long as a two-bulk picture is valid in the strong SB regime
(r 
 1), two-particle correlations can be ignored.

Mean-field (MF) approach

In this subsection, we focus on MF approximations to find
the guidelines of phase boundaries in Fig. 2(a). They are
based on physical arguments for current-density relations and
density-profile patterns.

For the original SB problem, such MF treatments can be
exact in the system of a single site with two particle reservoirs
of ρ+ (left) and ρ− (right), respectively, where the hopping
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FIG. 5. For various b ∈ {−0.75, −0.5, −0.25, 0, 0.25, 0.5, 1,
2, 3, 4} (from blue to red) that are drawn as different colors, (a)
the fundamental diagram by MF approximations is presented with
numerical results. Numerically obtained high or low-density ρ± (or
ρ = 1/2 in the NS phase) is plotted with different symbols (+/◦) for
various r . Solid lines are drawn by Eq. (8) as b varies, and the dashed
line represents the ordinary TASEP (b = 0). The forbidden-density
regions (see the text for detailed discussion) are shown with shaded
patterns. (b) Possible high and low densities are plotted as r varies: the
case of b = −0.75 and the case of b = 2.00. The dashed guidelines
are shown: (b = −0.75,r = 0.25) with J = J1 and (b = 2.00,r =
0.40) with J = J2, respectively. It is noted that numerical data are
overlapped as r gets larger.

rate between two is controlled by the SB factor r . Based on
the current conservation, the local current has to satisfy the
following relation:

JMF = ρ+ (1 − ρ+ ) = ρ− (1 − ρ− ) = rρ+(1 − ρ− ), (7)

so that ρ− = rρ+ . When the higher-order correlations are re-
garded in the system with more sites, ρ−/ρ+ = r∗ < r because
higher-order terms decrease density separation to maximize the
global current of the system. Therefore, r∗ acts as the upper
limit of the density ratios. We use this relation, together with
Eq. (6) and the current-density relation, to find a functional
form of r∗(b) for the S-NS phase boundary. However, there
are no closed-form expressions of the current-density relation
for arbitrary values of b, and MF approximations of J (ρ,b) are
used just as the guideline of the phase boundaries. We compare
them with numerical results (see Figs. 5 and 6).

The current of the system under the influence of the
small SB factor increases linearly with b. This is due to the
current of high-density parts that is usually influenced by
a single-site hopping rate, and leads to that the current is
linearly proportional to b; see Fig. 6(a). Based on numerical

observations and physical arguments, we estimate the current
J (b; r) around the limit of |b| → 0. Using the MF equation of
the original SB problem, the current and the high (low) bulk
density can be expressed by the expansion up to the first order
of b:

J (b; r) = r

(1 + r)2
+ bg(r),

ρ+ = 1

1 + r
+ bf+ (r), ρ− = r

1 + r
+ bf− (r).

The MF current of the modified TASEP is simply

JMF = ρφ(ρ), (8)

where φ(ρ) = 〈u(�x)〉 (see Appendix B for details). The
average hopping rate (the phase velocity) φ± = J/ρ± also has
asymmetry in the presence of b. The current-density relation
up to the first order of b is [see Eq. (B18) in Appendix B],

JNS (b; r = 1) = ρ(1 − ρ)

1 − bρ
,

which is drawn in Fig. 5(a). Applying the steady-state current
conservation across the SB,

ρ+φ+ = ρ−φ− = rρ+φ− .

As a result, we estimate the results of Figs. 5 and 6(a) as
follows:

JS (b; r) = r

(1 + r)2
+ b

2r2

(1 + r)4
(9)

and

ρ+ = 1

1 + r

{
1 + b

r

(1 + r)2

}
, (10)

ρ− = r

1 + r

{
1 + b

r

(1 + r)2

}
. (11)

Using the conservation of the current, we estimate the
boundary between density-separated phases (both S and PC)
and the uniform density phases (both NS and C). As b gets
larger, the SB effect becomes weaker and weaker, so that the
difference between the current without the SB and that with
the SB gets smaller and smaller. Eventually, the SB effect is
completely suppressed as if r = 1 due to the role of b. The
criterion leads r∗(b) far from b = 0:

JS (b; r∗(b)) = JNS (b; 1), (12)

where J (b; 1) is the current of the modified TASEP without the
SB. Since the closed-form expression of Eq. (12) doesn’t exist,
we draw its numerical solutions as different colored (red) lines
for 0 < b < 3 in Fig. 2(a). Similarly, when J (b > 3; 1) = Jmax

and Jmax = ρ0 = 1/2, together with Eq. (9), the C-PC phase
boundary is shaped as

b(r) = (1 + r)2(1 + r2)

4r2
. (13)

Moreover, the PC phase can be distinguished from the S phase.
Since we observe the partial condensate of holes only in the
low-density part of the PC phase, so φ− = 1. As a result,

JPC = ρ− = b − 2

b − 1
, (14)
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FIG. 6. The average current J (b; r) and related quantities are shown as a function of b. Each line represents the different values of r . The
color scale from bright to dark is from r = 1 to r = 0.1: (a) the ZRP-type current J with Jmax = ρ0 = 1/2, (b) the conventional TASEP current
J̃ (≡J/umax ) with the maximal current J̃mc = 1/4, and (c) the relative-current difference between the current without the SB and that with
the SB. Symbols represent different system sizes: L = 210(�), 212(×), 214(�), 216(+). In (c), the splitting lines in the small value of current
difference are caused by finite size effects at the NS-S boundary (see Sec. IV for detailed discussion).

which can be obtained from the special case of Eq. (B12) in
Appendix B. Therefore, at the S-PC phase boundary, Eq. (14)
is equal to Eq. (9), which is implicitly expressed as

bS/PC − 2

bS/PC − 1
= r

(1 + r)2
+ bS/PC

2r2

(1 + r)4
. (15)

As b is larger than the critical value bC for a given value of r ,
vacancies (holes) are condensed and formed as a macroscopic
cluster, namely, the full condensation. The critical value bc

depends on the density of the system when the number of
particles is conserved, which was calculated in the ZRP study
by Grosskinsky et al. [30] (see Appendix B for details):

1

bC − 2
= 〈�〉 = 1 − ρ0

ρ0

. (16)

It implies that the ordinary ZRP condensates at bC = 3 for
ρC = ρ0 = 1/2. Using this criterion of Eq. (16), we find the
NS-C phase boundary at bC = 3, which works well as long as
the SB effect is weak enough to be ignored. As r gets smaller,
it should be compared to the criterion of the PC phase, where
φ− = 1 and ρPC = ρ−(r) < ρ0 , so that we get the C-PC phase
boundary as

1

bPC/C − 2
= 1 − ρ−

ρ−
, (17)

where ρ− is obtained from Eq. (11).
When r → 0, ρ− → 0 leads to bPC → 2, denoting the left

endpoint of the S-PC phase boundary at r = 0 and b = 2. On
the other hand, the right endpoint of the S-PC phase boundary is
obtained when the JPC = ρPC = ρ− and ρ− = ρ0 = 1/2, which
coincides with the PC-C phase boundary at b = 3. Moreover,
the location of rS/PC/C is the specific value from the solution of
J (r,3) = 1/2, so that it ends at rS/PC/C ≈ 0.475 and b = 3.

In the neutral (|b| → 0) regime, we are able to use the
marginal density relation Eq. (6) and the current-density
relation up to the first order b [see Eq. (B18)]. From Eq. (10)
and Eq. (11), we observe ρ− = rρ+ . This is the limit when all
correlations other than sites next to the SB are neglected. The
resulting MF approximations around r = 1 and b = 0 provide
both NS-S and S-NS phase boundaries as

b± (r) = 2(r∓1 − 1), (18)

where the sign corresponds to the sign of b, so b− is the NS-S
phase boundary for b < 0, and b+ is the S-NS phase boundary
for b > 0. We draw these NS-S-NS boundaries as different
colored (green, solid and dotted) lines up to |b| < 1 in Fig. 2(a).

In the next section, we present extensive Monte Carlo (MC)
simulation results, compared with MF predictions that have
been discussed so far, where we explain all the figures and some
interesting features as well as some discrepancies between
numerical results and MF ones.

IV. NUMERICAL RESULTS

Our numerical data are taken from the modified TASEP with
a SB for various system sizes of L ∈ {210,212,214,216}. The SB
is located in the middle of the system at the bond ( L

2 ,L
2 + 1)

with the SB factor r . Initially, the system is prepared with
the alternative particle-hole configuration for ρ0 = 1/2. The
system is relaxed to reach the stationary state after t = 2L3/2

MC steps from the initial condition.
Figure 4 shows typical patterns of density profiles. The

fundamental diagram where numerical data are shown as
symbols is given in Fig. 5 and MF predictions as lines. To
distinguish four phases accurately, we measure both the ZRP-
type current J and the conventional TASEP current J̃ as a
function of b for various r in Fig. 6.

The jamming of particles caused by the SB can be directly
observed from density profiles. In the strong SB regime, the
density behind the SB contains the nonvanishing extra density
rather than the average global density as the macroscopic queue
(S phase), while in the relatively weak SB regime, there is no
extra density (NS phase).

However, it is a difficult task to precisely measure the
bulk density from density profiles [31]. Using the distribution
of the average occupation per site, P (〈nx〉), we measure the
density difference � = ρ+ − ρ− . We assume P (〈nx〉) to be a
Gaussian as follows: In general, the functional form of P (〈nx〉)
is not rigorously proven as a Gaussian, but it is a reasonable
assumption to find the location of the peak without loss of
generality:

P (〈nx〉) =
{
Nρ,σ (〈nx〉) (NS)
c+Nρ+,σ+ (〈nx〉) + c−Nρ−,σ− (〈nx〉) (S),

032120-6
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FIG. 7. The distribution of interparticle distance P (�; L) is plotted for L = 210(�), 212(×), 214(�), 216(+) at three different phases: (a) The
NS phase at (b = 0.75,r = 0.80) shows P (�; L) ∼ exp(−�/�NS ), where �NS is independent of L; (b) the S phase at (1.5, 0.15) shows P (�; L) ∼
L−1/2 exp(−�/L1/4); (c) the PC phase at (6.00, 0.10) shows P (�; L)L ∼ fPC (x1,x2), where fPC,1 (x1) = x−4

1 for x1 < 1, fpc,1−2 (x) = constant for
x1 < x < x2, and fpc,2(x2) ∼ exp(−x2) for x2 > 1 with x1 ≡ �/L1/4 and x2 ≡ �/L1/2. In particular, scaling collapses are tested in the inset of
(b) and (c).

where Nμ,σ is the normal distribution with the average μ and
the standard deviation σ .

In Fig. 2 we also numerically provide a phase diagram.
In Fig. 3 snapshots of typical spatiotemporal patterns are
presented for various phases. In Fig. 4 at (a) r = 0.2 and (b)
r = 0.5, we show typical patterns of density profiles, which
are analyzed as P (〈nx〉). Unlike the ordinary TASEP (b = 0)
where the excess bulk density is symmetric, the modified
TASEP (b �= 0) exhibits particle-hole asymmetry, because
exchanging a particle as a hole ρ → (1 − ρ) and the hopping
direction x → −x does not reproduce the same result. In the
separate phase, two bulks are separated by the SB and have
different densities, while, in the NS phase, the SB effect is
localized and the bulk is uniform: 〈nx〉 ≈ 1/2.

Using the results of P (〈nx〉), we can identify the bulk
density ρ. In Fig. 5(a) we plot the current J as a
function of ρ, where both J and ρ are measured from
MC simulations as well as the current-density relation by
MF approximations for the homogeneous system with b ∈
{−0.75,−0.5,−0.25,0,0.25,0.5,1,2,3,4} from bottom to top.
At the same b, the system may be in the NS phase if ρ− = ρ+ =
1/2. As the SB effect becomes strong, the system is split into
two subsystems with nonzero density separation. This process
is shown for b < 0 in (b) and b > 0 in (c). Due to the total-
density conservation, the high (low) density jumps suddenly
when the density separation happens in b > 0 (b < 0), with
the inaccessible gap between them. This gap is numerically
obtained by using Eq. (6). For a detailed description of the
current-density relation, see Appendix B. In the presence of
the SB from r = 0.1 to r = 1, we provide a specific example of
b = 2.50 in Fig. 9. Two bulks lie on the homogeneous current-
density relation since separated bulks behave as independent
homogeneous systems with the same current. When 2 < b <

3, ρ(φ = 1) = (b − 2)/(b − 1). When the ρ− < (b − 2)/(b −
1), the ρ− lies on the φ = 1 line, which denotes the partial
condensation of holes in the low-density part.

In Fig. 6 we redraw the current as a function of b for various
r: (a) The ZRP-type current is maximized up to ρ0 = 1/2
and b(r) can be found as the NS-C boundary if r is large
enough to see the flat region; (b) the conventional TASEP
current is maximized up to J̃mc = ρ0 (1 − ρ0 ) = 1/4 and the
peak is located at b = 0. Whether the SB is localized or not can
be measured, in the context of the relative-current difference

between the system without and with the SB, J (b; r = 1) −
J (b; r). When the jamming of particles is globally expanded,
the current difference is finite. In the other limit, the relative-
current difference is strictly nonzero but inversely proportional
to the system size as the SB effect is localized. The detailed
values are shown in (c), where the relative-current difference
converges to zero rapidly as b → −1 and b � 0. It is noted that
as in the smaller difference, the system size dependence comes
in and the relative-current difference is shown by splitting lines
by different symbols. This is analogous to the crossover scaling
found in the ordinary SB problem [17].

Finally, we discuss the interesting scaling features of inter-
particle distance distributions P (�; L) shown in Fig. 7, where
three different phases are compared with the characteristic
length ξ for various system sizes: (a) the NS phase at (b =
−0.75,r = 0.8), (b) the S phase at (1.50, 0.15), and (c) the PC
phase at (6.00, 0.10). As b increases but still for b < bS/PC/C ,
ξ gets longer but is independent of L. However, passing the
NS-S phase boundary, it becomes a power law as a function
of L, e.g., ξ ∼ L1/4. Even further, another length scale comes
in as the size of the partial condensate in the low-density part,
�PC ∼ L1/2.

Scaling collapses are also tested in Fig. 7 as the inset of
panels (b) and (c). In the NS phase,

P (�; L)L1/2 = fNS (�/ξNS ), (19)

where ξNS ∼ constant, depending on b and r only, and fNS (x) ∼
exp(−x/ξNS). In the S phase,

P (�; L)L1/2 = fS (�/L1/4), (20)

where ξS ∼ L1/4, depending on b and r as well, and fS (x) ∼
exp(−x/ξS). In the PC phase,

P (�; L)L =
{
fPC,1 (�/L1/4) (normal)
fPC,2 (�/L1/2) (PC)

. (21)

Approaching from the NS phase to the S phase, the
characteristic interparticle distance becomes longer but still
finite as a constant independent of L. Passing the NS-S phase
boundary, it eventually depends on L and follows specific
power-law scaling in the S phase. Moreover, in the PC phase,
the condensate of holes develops, which scales as � ∼ L1/4 up
to � ∼ L1/2 in the low-density part. Up to � < L1/4, P (�; L) ∼
�−4, independent of b as long as the system in the PC phase. The
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origin of scaling in the large � regime mostly depends on the
low-density part, as in the high-density part mostly contributes
to the small � regime.

For the low-density part in the PC phase, particles randomly
inject and have the geometric distribution of �, very near the
SB. Then, as particles travel forward, vacancies (holes) form
a cluster from the random initial cluster. Even this process
is in the stationary state, the condensation process along the
spatial axis is equivalent to the dynamic cluster formation of the
ordinary ZRP. Therefore, in the condensate region, the phase
velocity is equal to unity; the spatial position x is equivalent
to the coarsening time t from the random initial condition (see
Fig. 3 at b = 4.00 and r = 0.2). As a result, the interparticle
distance distribution in the low-density part is the same as
the integrated cluster-size distribution from t = 0 to t = cL,
where c is the fraction of the low-density bulk (1/2 < c < 1).
Therefore, that average cluster size for the totally asymmetric
ZRP scales as 〈�〉t ∼ t1/2 ∼ L1/2 [30], where the number of
the condensed cluster is the order of unity, and the time scales
as L, leading to �PC,C ∼ L1/2. The additional information is
available in Appendix C for the comparison of the ZRP-type
condensation in the C phase with other phases.

V. SUMMARY AND DISCUSSION

We have studied the interplay of particle interaction and
local defect in the current-density relation under the conser-
vation of particles and the global current through the entire
system. In our study, we considered the modified slow-bond
(SB) problem with two well-known nonequilibrium models,
the totally asymmetric simple exclusion process (TASEP)
and the zero-range process (ZRP). In the modified SB problem,
the interaction parameter b and the SB factor r are two main
control parameters.

As b ∈ (0,∞) and r ∈ (0,1] vary, the phase diagram was
suggested with marginal phase boundaries that are obtained
from mean-field (MF) approximations for the SB problem,
which were also numerically checked. In particular, we found
that the particle-hole asymmetry due to the ZRP-type hopping
rates allows the system to have the nonseparated (NS) density
profiles, which is called the NS phase, i.e., the SB-free phase.
As a result, in the modified SB problem, jamming caused by
the SB can be localized in the thermodynamic limit, which is
different from the original SB problem. However, in this paper,
finding exact boundaries of the SB-free phase and the scaling
relations near transitions is out of our scope, which will be
discussed elsewhere as one of our future studies.

On the other hand, the modified SB problem would shed
light on similar issues in real-world traffic and transport prob-
lems, such as a localized blockage in highways and metabolic
systems. The correlated dynamics in driven flow is closely
related to the interparticle distance-dependent hopping rate.
Real-world traffic and transport problems are often treated as
cellular automata and biased random-walk type models with
correlated physical quantities. This is quite similar to b � 0,
where our results imply that particle interaction can suppress
the jamming of particles. Moreover, it would be interesting
to test the rich and robust scaling behaviors of the partially
condensed phase, obtained from the interparticle distance
distribution function in the open system as well, which would

be another challenging task, in the context of the ensemble
equivalence.
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APPENDIX A: MAPPING OF MODIFIED TASEP
ONTO ZRP

The standard mapping of the TASEP onto the ZRP is
exact only if there is no defect and the system is periodic.
The mapping is a unique one-to-one correspondence between
particles (empty sites in front of the chosen particle) in the
TASEP and sites (particles at the mapped site) in the ZRP. In
the modified TASEP, such mappings are no longer exact due
to the presence of the SB.

However, there is one possible remedy as shown in Fig. 8 :
Particles in the modified TASEP still are mapped to sites in the
ZRP-type dynamics, while particles in the ZRP-type dynamics
are not the number of empty sites between two consecutive
particles in the modified TASEP but the number of links
between them. The SB can be treated as a slow particle in the
ZRP-type dynamics. To map the modified TASEP dynamics
onto in the ZRP-type one, the first arrival particle among at
least two particles at the chosen site can move only to the
neighboring site.

APPENDIX B: CURRENT-DENSITY RELATION FOR
HOMOGENEOUS CASE

In the TASEP, the system with N particles and (N + L)
sites corresponds to the ZRP with L particles and N sites. This
can be described as the stationary process of {�x}:

P N,L{�x} = 1

Z(N,L)

N∏
x=1

W (�x)δ

(
N,

∑
L

{�x}
)

, (B1)

where the weight W is given by

W (�) =
�∏

i=1

1

u(i)
, (B2)

1 2 3 4 5 6 7

FIG. 8. The ZRP-type mapping of Fig. 1 is illustrated, where the
site index with a number represents the particle index in the modified
TASEP, and particles at each site represent links between consecutive
particles in the modified TASEP. The slow bond becomes a slow
particle as drawn in the different colored (red) circle.
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and the normalizing partition function Z is given by

Z(N,L) =
∑
{�i }

L∏
x=1

W {�x}δ
(

N,
∑

L

{�x}
)

. (B3)

The equivalence of canonical and grand-canonical ensembles
[30] defines the grand-canonical measure as

P L
φ {�i} =

L∏
x=1

Pφ(�x), (B4)

with the single-site measure and its normalization:

Pφ(�x) = 1

ZW (�x)φ�x , (B5)

Z(φ) =
∞∑

�x=0

W (�x)φ�x . (B6)

In the grand canonical ensemble, the average particle density
〈�〉(φ) as a function of φ is given by

〈�〉(φ) =
∞∑

nx=0

�xPφ(�x) = φ
∂

∂φ
lnZ. (B7)

The average velocity (jump rate) is the expectation value of
hopping rates:

〈u(�x)〉 =
∞∑

�x=0

u(�x)Pφ(�x) = φ. (B8)

As a result, for u(�x) studied in Ref. [32], the stationary weight
for the process with b is given by

W (k) =
k∏

i=1

1

1 + b/i
= �(k + 1)�(1 + b)

�(1 + b + k)
. (B9)

The grand-canonical partition function can be written in terms
of the hypergeometric function [33],

Z = 2F1(1,1; 1 + b; φ) =
∞∑

k=0

�(k + 1)�(1 + b)

�(1 + b + k)
φk, (B10)

as well as the average particle distance,

〈�〉(φ) = φ

(1 + b)
2F1(2,2; 2 + b; φ)

2F1(1,1; 1 + b; φ)
, (B11)

which leads to ρ as

ρ = 1

1 + 〈�〉 = 2F1(1,1; 1 + b; φ)

2F1(1,2; 1 + b; φ)
, (B12)

where the latter relation is from the hypergeometric identity.
The value of the hypergeometric function for φ = 1 when c −
a − b > 0 is

2F1(a,b; c; 1) = �(c)�(c − a − b)

�(c − a)�(c − b)
. (B13)

This gives us ρ at given b with φ = 1 as

ρ(1) = b − 2

b − 1
. (B14)

FIG. 9. An example of the current-density relation.

1. Neutral limit: |b| → 0

In the case of small b, the current-density relation can be
obtained from the perturbation of the partition function. Using
the Euler hypergeometric transformation, the partition function
Z is expanded in terms of b,

Z = 2F1(1,1; 1 + b; φ) = 2F1
(
1,b; 1 + b; φ

φ−1

)
1 − φ

,

=
1 − ∑∞

k=1(−b)kLik
(

φ

φ−1

)
1 − φ

, (B15)

where Lik(z) is the polylogarithmic function. Using the poly-
logarithmic identity, ρ is expressed in simple terms:

ρ(φ) = 1

1 + 〈�〉 = 1 − φ

1 + b
(

1
Z − 1

) . (B16)

By the series inversion, we get φ(ρ) up to the several orders of
b,

φ = (1 − ρ) + bρ(1 − ρ) + b2ρ2[(1 − ρ) + ln ρ]

+ b3ρ2
[
Li2(1−ρ)+(2ρ − 1) ln ρ− 1

2 ln2 ρ − (1 − ρ)2
]

+ O(b4), (B17)

as well as the current J = ρφ(ρ), and we retrieve the original
TASEP current ρ(1 − ρ) as b → 0. This expansion does not
have the closed form we approximate up to the first order of b

in Eq. (B15). As a result,

φ = 1 − ρ

1 − bρ
. (B18)

In Fig. 9, we present the fundamental diagram for J (ρ; b =
2.50) as well as ρ+ and ρ− for various r from r = 0.1 (violet)
to r = 1.0 (gray). The black solid line is drawn by Eq. (18) for
b = 2.50, where the left-side endpoint coincides with φ = 1 as
shown the different colored (red, dotted) line. As r decreases,
ρ = 1/2 (NS), ρ+ and ρ− are also marked.

APPENDIX C: CONDENSATION ANALYSIS

Figure 10 presents the additional information for the com-
parison of the ZRP-type condensation in the C phase with other
phases as P (�; L = 216): In the upper panel at r = 0.10 (left),
r = 0.40 (middle), and r = 0.95 (right) as b varies from b =
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FIG. 10. Interparticle distance distributions for L = 216.

−0.75 (black) to b = 6.00 (yellow), we find that PC (�) ∼ �−b

for b � 3 in the C phase, while, in the PC phase, PPC (�) ∼ �−4

for b � bPC (r). In the lower panel at b = 2.50 (left), b = 3.00
(middle), and b = 6.00 (right), as r varies from r = 0.10
(black) to r = 0.95 (yellow), we confirm that the functional

shape of P (�) corresponds to the phase identity. The guidelines
of slopes are provided: In the upper panel, the long-dashed lines
are −4.0 (black), −3.0 (green), and −6.0 (blue), respectively.
In the lower panel, the black long-dashed lines are −4.0, while
the red long-dashed lines correspond to −b.
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