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Dynamic topologies of activity-driven temporal networks with memory
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We propose dynamic scaling in temporal networks with heterogeneous activities and memory and provide
a comprehensive picture for the dynamic topologies of such networks, in terms of the modified activity-driven
network model [H. Kim et al., Eur. Phys. J. B 88, 315 (2015)]. Particularly, we focus on the interplay of the time
resolution and memory in dynamic topologies. Through the random-walk (RW) process, we investigate diffusion
properties and topological changes as the time resolution increases. Our results with memory are compared to
those of the memoryless case. Based on the temporal percolation concept, we derive scaling exponents in the
dynamics of the largest cluster and the coverage of the RW process in time-varying networks. We find that the
time resolution in the time-accumulated network determines the effective size of the network, while memory
affects relevant scaling properties at the crossover from the dynamic regime to the static one. The origin of
memory-dependent scaling behaviors is the dynamics of the largest cluster, which depends on temporal degree
distributions. Finally, we conjecture of the extended finite-size scaling ansatz for dynamic topologies and the
fundamental property of temporal networks, which are numerically confirmed.
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I. INTRODUCTION

Network model studies are useful for understanding com-
plex systems, consisting of interacting components. Most
studies have been done on static networks where the topology
is fixed in time. Such studies have provided a wealth of
information for time-invariant topological properties of the
systems [1]. However, complex systems often change in time.
As technology advances, it has become possible to collect
time-series data. Recent studies have started discussing on
the characteristics of time-varying (temporal) networks [2].
Temporal network studies have demonstrated both the impor-
tance of the temporal dimension and the necessity for studying
physically relevant properties [3] on demand.

Temporal networks are expressed as the time series of
network formations, where the embedded topological and tem-
poral information can be so different from one to another. Since
the topology is one of the important features to understand
network properties, it is very meaningful to study the dynamic
topologies of temporal networks as well as the time resolution
that plays a crucial role in analyzing dynamic topologies [4].

One way to study the interplay of the time resolution
and network topology is to set the size of time window tw,
within which the detailed temporal information is ignored
[5,6]. For an example, if tw is large enough to contain all the
interactions in a single snapshot, the temporal network can
be considered as a time-aggregated (static) network, where
network dynamics is neglected. If tw is small, networks change
in a short time and the dynamic properties of the networks
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depend on tw. To figure out the proper time resolution tw that
well describes the dynamic topologies of temporal networks,
it is often considered the random-walk (RW) process. It is
because the RW process is one of the fundamental tools to
analyze the diffusion property of underlying structures. Thus
the RW process has been widely discussed on static [7,8]
and temporal networks [6,9]. However, dynamic scaling for
diffusion properties in temporal networks is more complicated
than that in static ones, which is attributed to topological
changes. The path of the walk depends on network structures,
so that physically relevant quantities, such as the mean first
passage time and the coverage (the number of distinct visited
nodes by the walk), reveal the origin of dynamic scaling. Hence
it is an important task to speculate dynamic scaling in temporal
networks according to tw.

In many interacting systems, it has been reported that a
community structure can be developed according to individual
activities and accumulated experiences (kind of memory) [10].
To mimics the time evolution of such a structure, tempo-
ral network models have been suggested with and without
memory, distinct from static ones [11–15]. Among them, the
activity-driven network (ADN) model [11] is first introduced
as the simplified version that generates the structural het-
erogeneity of highly dynamical networks by characterizing
interaction patterns of nodes. Later, it has been modified
with the consideration of various memory-type parameters to
explain the detailed parts in non-Markovian empirical data of
real networks [13–15].

In this paper, we revisit the modified ADN model (see
Fig. 1) to discuss the origin of scaling properties in temporal
networks with memory. The modified ADN model in our early
study [15] is generated by linking memory as well as nodal
activities. The main result of the model was compared to
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the detailed structural properties of empirical data. Moreover,
it was reported that there are scaling properties as the time
resolution varies. However, our previous finding was more
or less preliminary since one specific case (relatively weak
memory) was tested without the finite-size effect. Hence the
validity check is necessary as well as either the analytic
conjecture or the physical argument of scaling properties
according to different memory exponents.

Particularly, we here focus on the interplay of the time
resolution and memory in dynamic scaling. It is found that the
time resolution determines the crossover of relevant scaling
properties, while memory directly affects the growth of the
largest cluster due to network structural changes. The shorter
the time resolution is, the more dynamic the topological change
occurs, in the context of the effective size of the network. As
memory gets stronger, the growth of the largest cluster gets
slower because the largest cluster is affected by the structural
change of temporal degree distributions.

Our results are compared with those in temporal percolation
[16], where the percolation properties were studied in the
ADN model with heterogeneous nodal activities as well as
the relevance of degree correlations. Based on the expression
of percolation time marking the onset of the giant connected
component (GCC), we also discuss the temporal percolation
threshold and degree correlations. In the vicinity of the rescaled
percolation threshold, the finite-size scaling (FSS) of the GCC
is governed by the FSS exponent of the critical shift from the
thermodynamic threshold. As a result, we are able to conjecture
the values of scaling exponents by the power-counting analysis
from the complete form of FSS and propose the fundamental
property of dynamic scaling, which are numerically confirmed.

The rest of this paper is organized as follows. In Sec. II,
we describe the modified ADN model and discuss the role
of memory in network structural properties. In Sec. III, we
show how to define subnetworks according to tw, consider
the RW process and temporal percolation on such networks,
and conjecture dynamic scaling for them. In Sec. IV, we
present numerical results. In Sec. V, the fundamental property
is proposed to provide a comprehensive picture for dynamic
topologies of temporal networks. Finally, we conclude this
paper with summary and some remarks in Sec. VI. Appendix
provides mathematical derivations of network properties with
extra plots for the time-aggregated version of the modified
ADN model.

II. TEMPORAL NETWORK MODEL

Consider the modified ADN model with the power-law
distributions of nodal activities, which presents the emergence
of weighted scale-free networks in the time-aggregated picture
[15]. A temporal network of N disconnected nodes is generated
with the following dynamics: Each node i(i ∈ {1, . . . ,N}) is
assigned to its own activity with an active rate, a, which
follows an activity distribution, F (a) ∼ a−γ with γ > 2. In
addition, the node is described by its degree k, strength s, and
link-weight w. At each step, each node i activates with the
probability pi = ai/aM , where aM = maxN

j=1{aj }. Once the
node i becomes active, it creates a link with other nodes except
itself. If the node i activates for the first time, it connects to an

i , ( ) = ( ) ii , ( ) = 1 , ( )

FIG. 1. The modified ADN model is schematically illustrated. If
the node i becomes active with si(t) that is the accumulated strength
of the node i up to time t in the upper panel, it can choose one of
two possible ways to make a link with the following probability:
(i) Pnew(t) = Asi(t)−β and (ii) Pold(t) = 1 − Pnew(t), where A is the
model coefficient and β is the memory exponent. The active node
is highlighted as a different colored (red) symbol. While the new
(green) link is created at random, the old (blue) link is created with
the preferential probability. Dashed lines represent old links created
before time t .

arbitrary node at random. Otherwise, it creates a link by either
(i) or (ii) (see Fig. 1):

(i) New link—With probability Pnew,i(t), the active node i

connects to a node at random among the nodes that have never
connected to the node i in the past time up to time t .

(ii) Old link—With probability Pold,i(t) = 1 − Pnew,i(t),
the active node i connects to one of ever connected nodes,
say, the node j , with probability �ij that is proportional to the
frequency of the links between the node i and the node j up to
time t .

After this step, the connected nodes and links are formed as
a network at time t . If two nodes i and j are connected at time
t , Aij (t) = 1, otherwise Aij (t) = 0. The nodal memory, the
information of the generated links, Aij (t), is updated. Once all
information for N nodes is recorded, the generated links are
deleted and time is updated as t + 1. The above procedure is
repeated until t = T .

Based on the empirical data-set analysis [15], we set

Pnew,i(t) = Asi(t)
−β, (1)

where A is the model coefficient (in this work, A = 1 from now
on without loss of generality), si(t) is the accumulated strength
of the node i up to time t , i.e., si(t) = ∑t

t ′=0

∑N
j=1 Aij (t ′), and

β is the memory exponent with 0 � β � 1. The preferential
probability, �i,j (t), is defined as follows:

�ij (t) = wij (t)∑
l∈Ni (t) wil(t)

, (2)

whereNi(t) is a set for the nodes that have ever been connected
to the node i up to time t and wij (t) is the accumulated
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link-weight between the node i and j up to time t , i.e.,
wij (t) = ∑t

t ′=0 Aij (t ′).
Equation (1) represents how much the node i prefers to make

a new friend at time t . If β = 0, then Pnew,i(t) becomes a time-
independent constant, so that one can be called the memoryless
case. On the other hand, for β �= 0, the node i prefers to meet
old friends, rather than a new one, and Eq. (2) indicates that the
node i has a different preference among its friends. To sum up,
there are two main control parameters, γ and β, associated with
the static and dynamic characteristics of temporal networks.
The activity exponent γ is related to the heterogeneity of nodal
activities, and the memory exponent β controls the strength of
interpersonal social ties in communities.

The generated temporal network can yield the power-law
distributions of strength (s), degree (k), and link-weight (w)
in the time-aggregated picture with decay exponents γs , γk ,
and γw, respectively: P (s) ∼ s−γs with γs = γ , P (k) ∼ k−γk

with γk = (γ−β)
(1−β) and P (w) ∼ w−γw with γw = γ as β → 1 (see

detailed mathematical derivations in Appendix).
Network structures change in time and the amount of such

structural changes depends on the time resolution. To under-
stand the impact of the time resolution on dynamic topologies,
we control it as the time-window size tw in temporal networks
and perform the RW process that is one of the useful tools to
capture the structural and temporal properties in networks. In
addition, we consider two types of networks without and with
memory to speculate the role of memory in dynamic scaling.
The range of the memory exponent is 0 � β � 1, but we only
consider up to β = 0.5 for the memory case. It is because
the case of β = 1 yields the exponential degree distribution
rather than the power-law one, which is out of our interest.
Moreover, we are interested in 2 � γ � 3, which is the most
heterogeneous case with the finite average of activities in the
thermodynamic limit. Without loss of generality, we choose
(γ,β) as (2.5, 0) for the network without memory and (2.5, 0.5)
for the case of the strongest memory that yields the power-law
degree distribution P (k) ∼ k−γk : P (k) ∼ k−2.5 for β = 0 and
P (k) ∼ k−4.0 for β = 0.5.

III. DIFFUSION AND SCALING PROPERTIES

A temporal network is the combination of time-ordered
subnetworks which are determined by tw. As tw increases, the
temporal information of the network disappears. If tw is large
enough to capture all the interactions into a single subnetwork,
then the temporal network can be treated as a static network.
So by adjusting tw, we can reconstruct the temporal network
from highly dynamic network to static one.

In Fig. 2, we schematically illustrate coarse-grained tem-
poral networks for various tw. Once tw is set, the temporal
network is represented as a series of the subnetwork Gn(n =
1,2, . . . ,�T/tw�), which is the accumulated network during the
interval [(n − 1)tw,ntw). Here the strength and the degree of
the node i in Gn are denoted by si(Gn) and ki(Gn), respectively,
and wij (Gn) represents the link-weight between node i and j

in Gn.
For coarse-grained networks, we study the effect of the

time resolution on dynamic processes. Particulary, we are
interested in the influence of memory according to the time
resolution. Hence we define the number of events (links) as
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FIG. 2. The schematic illustrations of temporal networks are
shown for various tw (1 � tw � T ). The time resolution tw controls
the dynamic level of the networks. As tw increases, the topological
information is developed as a static property and the temporal
information is negligible. When tw is large enough to contain all the
interactions in a single snapshot, say, tw = T , it corresponds a static
network, where the detailed temporal information can be ignored. The
thickness of the link represents the link-weight value. At tw = T , the
topology of the modified ADN model is illustrated for N = 100 and
T = 3000 with γ = 2.5 and β = 0.5.

time t to facilitate the comparison of the results of the network
without memory to those with memory. It allows that all the
subnetworks for the same tw have the same number of links,
and we can directly compare their interaction patterns.

A. Random-walk process

To speculate diffusion in temporal networks as tw varies, we
perform the RW process on coarse-grained temporal networks
within tw. A walker initially starts at a randomly selected node
and moves on subnetworks of the temporal network determined
by tw. The walker moves tw steps on each subnetwork, Gn. The
transition probability from the current node to the target node is
proportional to the link-weight in Gn. We measure the number
of distinct visited nodes (the coverage) by the walker, V (t,N )
at time t for the network of N nodes.

The dynamics of the walker is as follows: Consider a
subnetwork, Gn, that is an accumulated network during the
time interval [(n − 1)tw,ntw), and assume that the walker is
located the node i. If the node i has links in Gn, i.e., si(Gn) �= 0,
then the walker moves from the node i to one of its neighboring
nodes, say, j , with probability pij (Gn) = wij (Gn)/si(Gn).
Otherwise, it remains on the node i until its link is created.
After tw steps, the subnetwork Gn is switched to the next
subnetwork Gn+1 and the position of walker is updated by
the same procedure. We repeat the dynamics until the last
subnetwork, G�T/tw�. Here the total number of links is T (the
maximal time, sufficiently large).

The coverage V of the walker is accumulated as counting
the distinct nodes that the walk has ever visited as time elapses,
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which follows the extended FSS ansatz:

V (t,N ) = Nαf (τ ), (3)

where τ ≡ t/N .
Assuming that there is the crossover time of dynamic

topologies from the dynamic regime to the static regime at t×,
one can easily categorize temporal regimes: In the static regime
(tw 
 t×) with α = 1, f (τ ) ∼ τ for τ � 1 and f (τ ) = const
for τ 
 1, whereas in the dynamic regime (tw � t×) with
0 � α < 1, f (τ ) ∼ τ ζ with 0 � ζ < 1 for t < tw, and ζ = 1
for t > tw. The values of ζ and α depend on tw and β. This
conjecture is based on the preliminary test with weak memory
(β = 0.12) [15] and the typical scaling of static networks [7],
where V ∼ Nτ for τ � 1, the finite-size effect comes around
τ ≈ 1, and, finally, V → N for τ 
 1. To understand the
anomalous scaling behaviors of V in the intermediate time
regime (t < tw < t×), we analyze dynamic topologies as tw
varies, in the context of network and temporal percolation
properties.

B. Network structural properties

To analyze the interplay of the time resolution and memory
in the RW process, it is necessary to discuss the structural
change of the accumulated network up to tw, in terms of
the temporal degree distribution, the average degree, and
the number of distinct nodes, denoted as Pw(k),〈k(tw)〉, and
Nd (tw), respectively.

1. Temporal degree distribution

The dynamic topologies of temporal networks can be
described as temporal degree distributions, which satisfy the
following scaling forms:

Pw(k; N ) =
{
t−1
w φ−(k/kc) for tw � t×,

t−θ
w φ+(k/kp) for tw 
 t×,

(4)

where t× is the crossover time of the network growth (t× ∼
Nz), kc is the strong cutoff of degrees (kc ∼ t

1/γk
w ), and kp

is the most probable degree (kp ∼ t θw). The scaling functions
should satisfy φ∓(κ) ∼ κ−γk with γk = γ−β

1−β
from mathemati-

cal derivations in Eq. (A6), while θ = 1 − β from our previous
conjecture [15].

2. Average degree

From temporal degree distributions, the average degree
〈k(tw; N )〉 can be estimated. However, it would be better to
consider the proper average that is rescaled by the number of
distinct nodes appeared up to tw, Nd (tw; N ), instead of N :

Nd (tw; N ) �
{
tw for tw � t×,

N for tw 
 t×.
(5)

Therefore,

〈k(tw)〉d ∼
{

constant for tw � t×,

tθw for tw 
 t×.
(6)

Here the rescaled average degree is defined as

〈k(tw)〉d ≡ 〈k(tw)〉N/Nd (tw; N )

with

〈k〉 ≡ 1

N

∑
k

kP (k,tw; N ).

Equation (6) indicates that the memory effect on the average
degree is negligible for tw � t× if it is properly rescaled by the
effective network size. However, the heterogeneity of degree
distributions is governed by the memory exponent, which is
shown in Eq. (4). It means that even if the same number of
links is added, the network growth is affected by the memory
exponent.

To reveal the underlying relevant scaling of dynamic topolo-
gies and explain the diffusion properties of the RW process,
we take the temporal percolation concept [16] and estimate the
growth pattern of the largest cluster size in the modified ADN
model for three temporal regimes and two limiting cases of
memory (β = 0 and β = 0.5). Hence the diffusion properties
of the RW process rely on Nd , within which the walker can only
move onto another node with the connectivity in the cluster.

C. The largest cluster: Giant connected component

The largest cluster size of the accumulated network up
to tw, namely the size of the GCC, is denoted as M(tw,N ).
The dynamics of M is categorized as follows: In highly
dynamic regime, M is proportional to the natural cutoff of the
effective size of the network (tw), irrespectively of N . Then
we conjecture that M � knat(tw) ∼ t

1/ωnat
w with ωnat = γk − 1

in the dynamic regime, while in the static regime, it scales as
M = Nμ(τw) with τw ≡ tw/N ; μ(τw) = const for τw 
 τ×.
The scaling function μ is only valid for τw � τ× (before the
rescaled crossover time, τ×, from the dynamic regime to the
static one). In the intermediate time regime (1 � τw � τ×),
the fraction of the GCC, m ≡ M/N , satisfies dynamic scaling
as follows:

m(tw,N ) ∼ N−yg(τwNx), (7)

where g(X) ∼ Xη with η = ω−1
nat for X � 1, provided that

τ× ∼ N−x , i.e., t× ∼ N1−x , in the dynamic regime.
Since the dynamic and static exponents x and y can

be predicted by the temporal percolation concept, we get
memory dependent in dynamic scaling: x = 1/ν̄p and y =
βp/ν̄p, where we use the critical exponents (ν̄p,βp) of the
percolation universality class in scale-free networks [17]:
ν̄p = | ω

3−γk
|,βp = | 1

3−γk
| for 2 < γk < 5, where ω is the cutoff

exponent of the upper degree.
Using the power-counting analysis with x and η, we derive

the value of y separately:

M

N
∼ N−y

(
tw

N
Nx

)η

→ M ∼ tηwN1−y+(x−1)η ∼ tηw, (8)

with y = 1 + (x − 1)η in the dynamic regime. For the network
with γ = 2.5 and β = 0(0.5), γk = 2.5(4) and ω = 2(4).
Hence η = 2/3, x = 1/41 and y = 1/2 for the memoryless

1The results of the original ADN model [16] are different from those
in the modified ADN model with memory due model details, e.g., such
as degree correlations and memory.
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FIG. 3. The FSS forms are tested in the diffusion property of the RW process on the modified ADN model for γ = 2.5, in terms of the
coverage, V, and the rescaled time τ ≡ t/N for N = {5000,10 000,20 000,40 000}, as tw increases up to T = 10N . For β = 0 (memoryless),
(a) tw = 1, (b) tw = N/1000, (c) tw = N/100, and (d) tw = 10N . For β = 0.5 (strong memory), (e) tw = 1, (f) tw = N/100, (g) tw = N/10, and
(h) tw = 10N . It is noted that both cases exhibit the same behaviors of V for tw = 1 (highly dynamic) and tw 
 N (static). In the intermediate
regime of tw , V yields crossover behaviors around t = tw . Moreover, the memoryless case (β = 0) shows finite-size effects with a nontrivial
exponent α, varying from (b) α = 0.2 to (c) α = 0.4. Numerical data are averaged over 100 network configurations and 2 × 103 runs with
different initial nodes per network.

case (β = 0), while for strong memory (β = 0.5), η = 1/3,
x = 1/4,2 and y = 3/4.

IV. NUMERICAL RESULTS

In this section, our conjectures for the extended FSS of
physical quantities in Sec. III are numerically confirmed in
terms of the modified ADN model. Moreover, we reveal
dynamic scaling in temporal networks and address how the
diffusion properties of the RW process is explained by the
growth of the GCC according to the time resolution and
memory. We finally present temporal percolation for three
different time regimes and two limiting cases of memory.

A. Dynamic scaling of coverage

In Fig. 3, the FSS form of the coverage V (t,N ) of the RW
process against the rescaled time τ (≡ t/N), by Eq. (3), is
tested for N ∈ {5000,10 000,20 000,40 000} for four different
setting of tw

3: For (a)–(d), β = 0 at tw = 1,N/1000,N/100,

and 10N (from left to right), and for (e)–(h), β = 0.5 at
tw = 1,N/100,N/10, and 10N (from left to right). In the
highly dynamic regime (tw = 1), (a) and (e), V exhibits trivial
temporal scaling, irrespective of N , while in the static regime
(tw 
 N ), (d) and (h), tw is large enough to approximate a
temporal network as a static network, and V shows typical
static scaling as reported in the early studies [7]: It is known that
V ∼ t is crossover to V → N . However, in the intermediate
regime (1 � tw � N ), V has a nontrivial FSS form that
depends on β and tw.

2For the case of γk = 4 (integer), the scaling might contain some
logarithmic corrections.

3The time resolution tw is a controllable parameter, and t is the
accumulated number of trials in the RW process.

In Figs. 3(b), 3(c) 3(f), and 3(g), we find 0 � α < 1,
the value of which depends on tw and β. For the case of
memoryless (β = 0), we observe that α gradually increases
as the window of the time resolution gets wider. Numerical
data collapse well with α = 0.0, 0.2, 0.4, and 1 as shown
in Figs. 3(a)–3(d), respectively. However, in the case of
the network with strong memory (β = 0.5), V is almost
unchanged up to tw = N/10 with α = 0 and rapidly increases
later, as shown in Figs. 3(e)–3(h). The β-dependent anomalous
scaling behaviors seem to be due to the difference in topo-
logical properties within the time resolution tw of temporal
networks.

To understand such anomalous behaviors of V, it would
be better to check the detailed network properties as tw
varies with and without memory. According to tw and β,
we measure the scaling properties of temporal degree dis-
tributions and other related quantities, based on the effec-
tive size of networks and the scaling form suggested in
Sec. III.

B. Scaling behaviors of network properties

In Figs. 4(a) and 4(b), we show the scaling collapse of
temporal degree distributions Pw for two different time regimes
by Eq. (4): The main plots in the dynamic regime and the
insets in the static regime. Numerical data are measured in
the modified ADN model of N = 40 000 with γ = 2.5 for (a)
β = 0 (memoryless) and (b) β = 0.5 (strong memory). Here
the time resolution tw plays a crucial role in determining the
effective size of the accumulated network up to tw, which is
so-called the number of distinct nodes, Nd (tw; N ), defined in
Eq. (5).

Our numerical results show that in the dynamic regime
(tw � t×), Pw = t−1

w φ−(k/kc) with the strong cutoff kc =
t

1/γk
w , while in the static regime (tw 
 t×), Pw = t−θ

w φ+(k/kp)
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FIG. 4. The scaling properties of temporal degree distributions Pw are tested for the wide range of tw in the modified ADN model with
γ = 2.5 for (a) β = 0 (memoryless) and (b) β = 0.5 (strong memory). In (a) and (b), the main plots represent the dynamic regime (tw � t×), and
the insets represent the static regime (tw 
 t×), respectively. Dynamic scaling is based on Eq. (4) with (γk = γ−β

1−β
,θ = 1 − β): (a) (2.5, 1) and

(b) (4, 0.5), respectively. The slopes of dashed lines correspond the values of γk for γ with and without memory. In the main plots of (a) and (b),
kc = t1/γk

w (strong cutoff degree), and in the insets, kp = t θ
w (most probable degree). (c) The average degree 〈k〉 and the total number of distinct

active nodes Nd are plotted as tw varies in the main plot, and the inset shows the properly rescaled average degree 〈k〉d = 〈k〉N/Nd (∼ kp = t θ
w)

in the static regime, where the slopes of dashed lines correspond the values of θ : 1 for β = 0 and 0.5 for β = 0.5, respectively. Numerical data
are obtained for N = 40 000 with 500 samples.

with the most probable degree kp = t θw.4 In Figs. 4(a) and 4(b),
it is also found that φ±(κ±) ∼ κ

−γk

± with the relative degree κ±.
In order to discuss the detailed statistical properties of Pw,

we measure the average degree 〈k〉 and the number of distinct
nodes Nd as the function of tw, which are main plots in Fig. 4(c).
The scaling relation of two quantities is provided by 〈k〉d in
the inset. For tw � t×, 〈k〉d ≈ 1, while tw 
 t×, 〈k〉d ∼ t θ .

The topological change in the network growth can be also
described by the formation of the largest cluster in percolation,
namely the GCC of the network. Based on the GCC analy-
sis, we measure temporal percolation in the modified ADN
model [15].

C. Dynamic scaling of percolation

In the time-accumulated network up to t = tw, the size
of GCC is denoted by M(tw). The dynamics of M can be
categorized as three different regimes, where numerical data
differently collapse in each regime: In the highly dynamic
regime, M only depends on tw, irrespective of N (the total
number of nodes). In the late static regime, m = μ(τw) where
τw(≡ tw/N ). In the intermediate time regime, m =
N−yg(τwNx) by Eq. (7).

We present the scaling behaviors of M,m(≡ M/N ), and
md (≡ M/Nd ) in Fig. 5: In the dynamic regime, M ∼ tηw as
tw increases, where the growing exponent η depends on β:
η � 2/3 for β = 0 and η � 1/3 for β = 0.5, which means
that active nodes form memory-dependent clusters. As tw
increases, the finite-size effect comes in the dynamics of M .
Several clusters begin to merge together as the GCC due
to the finite-size effect, which can be treated as temporal
percolation. Hence the values of the scaling exponents x and
y are conjectured in Sec. III: x = 1/ν̄p and y = βp/ν̄p, where
the critical exponents (ν̄p,βp) of the percolation universality
class in scale-free networks [17] and the extended FSS ansatz
with the cutoff exponent ω.

4In general, the upper cutoff of degrees is denoted as kc ∼ t1/ω
w with

1 � ω � γk , when the network size is tw .

Applying the percolation concept to the dynamics of M , we
have to look at our numerical data carefully. Assuming τ× ∼
N−x with x = |(3 − γk)/ω| and M ∼ tηw with η = 1/(γk − 1),
the power-counting analysis of y in Eq. (8) is as follows: y =
1/2 for β = 0 and y = 3/4 for β = 0.5, which are numerically
confirmed in Fig. 5(b). Here we note two things: (i) The
value of x is different from that in Ref. [16], due to some
modifications of the ADN model. (ii) While for β = 0, the
power-counting value of y is exactly same as that of the
percolation universality class, for β = 0.5, they are different
and numerical data collapse well with the power-counting
value. It implies that memory affects dynamic scaling of the
GCC. In the static regime, m → 1, so that it is collapsed by
the simple scaling form as shown in Fig. 5(c).

To figure out the relative growth of M by the effective
size of networks (Nd ), we also measure md (≡ M/Nd ) in
the accumulated network up to t = tw. The dynamics of md

depends on the dynamic topologies of temporal networks.
In the highly dynamic regime, md decreases as md ∼ t−ηd

w

with ηd = 1 − η because Nd ∼ tw. As time elapses (the time
resolution gets wider), we define the extended FSS form of md

in the intermediate regime, which is similar to Eq. (7):

md (tw,N ) ∼ N−yd h(τNx), (9)

where h(X) ∼ X−ηd for X � 1, so that yd = (1 − x)ηd by the
power-counting analysis. The results are shown in Figs. 5(d)
and 5(e), where yd = 1/4 for β = 0 with ηd = 1/3 and yd =
1/2 for β = 0.5 with ηd = 2/3. In the static regime of Fig. 5(f),
md → 1 as well. It is noted that the crossover behavior is
clearly shown as the minimum in the dynamics of md . The
growth of the GCC is delayed in the presence of memory, which
also controls the dynamics of Nd . For β = 0, the links mostly
contribute to intergroup link formations, while for β = 0.5, the
links are used to strengthen the connections within intragroup
ones. Fig. 5(e) show that the relative time of the minimum point
gets slower and the finite-size effect comes in later as memory
gets stronger.

Using dynamic scaling of the GCC in the intermediate-
time regime, we revisit to explain the scaling behaviors
of V as shown in Figs. 3(c) and 3(g). To provide the
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FIG. 5. The growth patterns of the GCC, M , are measured for N ∈ {5000,10 000,20 000,40 000}, where m ≡ M/N and md ≡ M/Nd : For
(a)–(c), the dynamics of the GCC is plotted with conjectured FSS forms from the dynamic regime to the static regime, while for (d)–(f), the
rescaled fractions by the relevant network size are shown. In the intermediate regime, we find nontrivial scaling exponents (x,y) and (x,yd ),
respectively: (b) (1/4, 1/2) for the case of β = 0 and (1/4, 3/4) for the case of β = 0.5; (e) (1/4, 1/4) for β = 0 and (1/4, 1/2) for β = 0.5.
It is noted that for β = 0.5, we consider the logarithmic correction in x = 1/4 as well. In (a)–(b) and (d)–(e), the slopes of dashed lines are
correspond (2/3, 1/3) and (−1/3, −2/3) from top to bottom, respectively. Numerical data are averaged over 500 network samples.

direct relation between them, we perform the RW pro-
cess on the time-accumulated network G̃n = ∪i=n

i=1Gi ; n =
1,2, . . . ,�T/tw�. The walker moves in the same way as
described in Sec. III. Since Gn is changed to G̃n, V is also
changed to Vg .

Figure 6 represents the scaling behaviors of Vg as the func-
tion of τ and N . In Fig. 6(b), vg(≡ Vg/N) = N−yvfg(τNx)
with (x,yv) = (1/4,3/4) and (1/4, 1) for β = 0 and 0.5, respec-
tively, where x is the same value used in Figs. 5(b) and 5(e).
This corresponds the dynamics of vg in the intermediate-time
regime. The value ofyv can be estimated asyv = 1 + (x − 1)ηv

by the power-counting analysis, similar to Eq. (8). In Fig. 6(a),
we reconfirm the results of Figs. 3(c) and 3(g) in the dynamic
regime. In Fig. 6(c), we check the typical scaling in the static
regime.

Our numerical observation confirms that the temporal
percolation concept explains the scaling relation between the
dynamics of the GCC and the diffusion of the RW process
in temporal networks. So far, we observe that the scaling
behaviors depend on both the time resolution and memory,
in terms of three different scaling forms. It would be great if
there is a single scaling form without any extra tuning, except

for the crossover of physical properties. In the next section, we
infer the crossover of relevant scaling properties.

V. FUNDAMENTAL SCALING PROPERTIES

To address the unified scaling behaviors of dynamic topolo-
gies in temporal networks, we need to choose fundamental
properties, which controls both the effective size of networks
by memory and the time resolution. From the preliminary tests
for dynamic scaling of Nd in our early study [15], we find a hint
that Nd does depend on both memory and the time resolution.
The effective size of the accumulated network is important
in determining the crossover from the dynamic regime to the
static one. Hence Nd is proper to collapse numerical data in
the entire time regime with a minimum point, at which clusters
start merging into one big cluster.

In Fig. 7, we plot md as the function of τd (≡ τw/Nd ) without
any extra tuning and numerical data collapse well.5 It confirms

5For β = 0.5, some systematic deviation near and at the minimum
point is due to finite-size corrections to scaling caused by the memory
effect.

10-2
100
102
104

10-2 100

(a)
β  =  0 ; 0.5

V g
/N

α

τ

N = 5000
10000
20000
40000

10-2

100

102

104

10-2 100 102

(b)

v g
N

y v

τNx

10-4

10-2

100

10-2 100

(c)

v g

τ

FIG. 6. We measure the dynamics of Vg in the time-accumulated network, G̃n; n = 1,2, . . . ,�T/tw� at the same setting of Fig. 3(c) tw =
N/100 for β = 0 and (g) tw = N/10 for β = 0.5: (a) We plot Vg as the function of τ , in the context of the same scaling function that suggested
in Eq. (3), where the slopes of dashed lines represent ηv = 1/3 for β = 0 and ηv = 0 for β = 0.5, respectively. (b) The extended FSS of
vg(≡ Vg/N ) is tested to collapse numerical data near the crossover time, where yv = 3/4 for β = 0 and yv = 1 for β = 0.5, provided that
x = 1/4 from Figs. 5(b) and 5(e). Finally, (c) we observe the typical scaling of vg in the static regime, vg → 1.
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FIG. 7. The rescaled fraction of the GCC, md (≡ M/Nd ), is
plotted as the function of the rescaled time τd (≡ τw/Nd ). Without
any extra tuning, numerical data collapse well into one curve, which
implies that Nd plays a crucial role in the topological change of
temporal networks from the dynamic regime to the static regime:
(a) β = 0 and (b) β = 0.5. The minimum of the scaling function is
located at the β-dependent value, irrespective of N . After the rescaled
crossover time, md monotonically increases up to 1, similarly to
Figs. 5(d)–5(f).

that Nd contains the information of the topological change as
time increases and it eventually reaches to the static network
size.

Finally, we propose that one should consider both the size
of the GCC (M) and the number of distinct nodes (Nd ) to
discuss dynamic scaling in temporal networks. As the time
resolution varies, these two quantities reveal key ingredients
of dynamic topologies with and without memory as well as the
fundamental scaling properties.

VI. SUMMARY AND REMARKS

To summarize, dynamic scaling in temporal networks is
proposed with heterogeneous activities and memory, in terms

of the modified ADN model. In order to discuss the role of the
time resolution tw and the memory strength β in topological
changes, we considered the RW process and the percolation
picture on time-accumulated networks and conjectured the
extended FSS ansatz for dynamic topologies according to tw
and β. Moreover, we argued scaling exponents in the coverage
of the RW process and the dynamics of the largest cluster,
namely the GCC.

As a result, it is found that tw determines the effective size of
networks, while memory controls relevant scaling properties
in the vicinity of the crossover from the dynamic regime
to the static one. Memory-dependent scaling behaviors are
observed in the dynamics of the GCC, the same scaling of
which can be applicable to the coverage of the RW process in
time-accumulated networks. It is implied that the dynamics of
the GCC and the effective size of networks are fundamental
scaling properties in temporal networks, which play a crucial
role in determining dynamic scaling and dynamic topologies.

Our study is a prototype approach to explain scaling
properties in temporal networks. For the better understanding
the origin of dynamic scaling according to the time resolution
and memory, it is essential to take proper physical quantities
and apply the extended FSS theory to them, which allows
the systematic analysis. Hence our results would be helpful
to those who are interested in scaling properties of dynamic
topologies in time-varying systems, such as diffusion and
cluster formation. As a possible future study, it would be
interesting to speculate dynamic scaling of real-time network
data with the burstiness and the periodicity.
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APPENDIX: STRUCTURAL PROPERTIES OF MODIFIED
ACTIVITY-DRIVEN NETWORK MODEL

The generative process of the modified ADN model satisfy
the following rate equations:

dsi(t)

dt
= ai

aM

+
∑

j∈Ni (t)c

aj

aM

[
sj (t)−β 1

N − kj (t) − 1
+ δsj (t),0

1

N − 1

]
+

∑
j∈Ni (t)

aj

aM

(1 − sj (t)−β)
wji(t)∑
l wjl(t)

, (A1)

dki(t)

dt
= ai

aM

[
si(t)

−β + δsi (t),0)
] +

∑
j∈Ni (t)c

aj

aM

[
sj (t)−β 1

N − kj (t) − 1
+ δsj (t),0

1

N − 1

]
, (A2)

where ki(t) is the accumulated degree of the node i up to
time t :

ki(t) =
N∑

j=1

(1 − δwij (t),0),

where δp,q is the Kronecker δ: δp,q = 1 if p = q; otherwise,
δ = 0. On the right-hand side of Eqs. (A1) and (A2), the first
term is for the link generated by the active node i, and the rest
terms are for the links generated by the other active nodes.

In the asymptotic limit (1 � t and k � N ), the above
equations are considered as

dsi(t)

dt
≈ ai

aM

+ G
(s)
i (t);

G
(s)
i (t) ≡

∑
j∈Ni (t)c

aj

aM

sj (t)−β 1

N
+

∑
j∈Ni (t)

aj

aM

[1 − sj (t)−β]
wji(t)

sj (t)
,

(A3)
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FIG. 8. The CCDFs of strength, degree, and link-weight are presented in time-aggregated networks with the activity exponent γ = 2.5,
where the memory exponent β = 0 (�), 0.25 (�), 0.5 (©), 0.75 (�), and 1 ( ). (a) The strength CCDF scales as C(s) ∼ s−γs+1 with γs = 2.5.
As expected, they are irrespective of β. (b) The degree CCDF scale as C(k) ∼ k−γk+1. The slopes of dashed lines represent γk (From top to
bottom, γk = 2.5,3,4, and 7, respectively). For β = 1, C(k) exponentially decays. (c) The link-weight CCDF is presented as C(w), where
the slope of the dashed line is −1.5. As long as β is not so small, C(w) algebraically decays with the same exponent of C(s). However, for
β � 1, C(w) follows no longer a simple power law. Eventually, for β = 0, C(w) = δ(w − 1). Numerical data are averaged over 100 network
configurations for N = 40 000 and T = N .

dki(t)

dt
≈ ai

aM

si(t)
−β + G

(k)
i (t);

(A4)

G
(k)
i (t) ≡

∑
j∈Ni (t)c

aj

aM

sj (t)−β 1

N
,

For all i ∈ N = {1, . . . ,N}, si(t) is a monotonically increasing
function of t , and G

(s)
i (t) contains sj (t) that also has the same

equation form of si(t). Hence to consider the leading order
term for t , Eq. (A3) is expressed as dsi (t)

dt
≈ ai

aM
+ O(t−β/N).

For k � N limit, we assume G
(k)
i (t) ≈ ∑

j∈N
aj

aM
sj (t)−β 1

N
=

〈 a
aM

s(t)−β〉 in the Eq. (A4). Then we obtain the asymptotic
solutions:

si(t) ∼ ait
(A5)

ki(t) ∼ [
a

(1−β)
i + 〈a(1−β)〉]t (1−β),

where 0 � β < 1.

If the activity distribution is considered as
F (a) ∼ a−γ , we find that the distributions of strength
and degree in the accumulated network up to t ,
respectively:

P (s) ∼ s−γ and P (k) ∼ k
− γ−β

1−β . (A6)

As a result, γs = γ for P (s) ∼ s−γs and γk = γ−β

1−β
for P (k) ∼

k−γk , where 0 � β < 1. For β = 1: ki(t) ∼ ln(ait) and P (k) ∼
exp[−cγ (γ − 1)k], where cγ is a positive constant depending
on γ . For the information, it was also reported that the network
degree distributions of the ADN model can be changed by
memory [14].

Figure 8 represents numerical results for the complementary
cumulative distribution functions (CCDFs) of strength, degree,
and link-weight for γ = 2.5 and β ∈ {0,0.25,0.5,0.75,1},
where N = T = 40 000. As predicted, numerical data are in
good agreement with the scaling exponents predicted by the
asymptotic solutions.
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