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Macroscopic car condensation in a parking garage

Meesoon Ha and Marcel den Nijs
Department of Physics, University of Washington, Seattle, Washington 98195

~Received 22 May 2002; published 19 September 2002!

An asymmetric exclusion process type process, where cars move forward along a closed road that starts and
terminates at a parking garage, displays dynamic phase transitions into two types of condensate phases where
the garage becomes macroscopically occupied. The total car densityro and the exit probabilitya from the
garage are the two control parameters. At the transition, the number of parked carsNp diverges in both cases,
with the length of the roadNs , asNp;Ns

yp with yp51/2. Towards the transition, the number of parked cars
vanishes asNp;eb with b51, e5ua2a* u or e5uro* 2rou being the distance from the transition. The
transition into the normal phase represents also the onset of transmission of information through the garage.
This gives rise to unusual parked car autocorrelations and car density profiles near the garage, which depend
strongly on the group velocity of the fluctuations along the road.
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I. INTRODUCTION

The scaling properties of nonequilibrium-type phase tr
sitions are a topic of intensive current research@1–4#. From
the theoretical side, focus has been mostly on model ca
lations using stochastic dynamics with simple local rules a
local interactions. These models serve as prototypes for v
ous physical processes, such as surface catalysis@5#, popula-
tion growth @6#, surface growth@2,7#, electronic transport in
wires @8#, traffic flow @9#, and avalanches in granular mat
rials @10#. The simplicity of the models is justifiable when, a
we expect, the scale invariant collective fluctuations at la
length scales are universal and insensitive to most mi
scopic details.

Queuing phenomena, like traffic jams behind slow mo
ing trucks on single-lane highways, are common to ma
nonequilibrium processes. One of the interesting phenom
in such systems is the transition from a finite queue to
infinitely long one, i.e., the transition from a queue that do
not scale with the road lengthNs to one whose length is
proportional to Ns . Such transitions can be induced b
changing the total density of cars in the system or by vary
the probability rate at which cars pass the truck@11#.

A simplification of the above is first to replace the slo
moving truck by a stationary object, and then to ignore
excluded volume effects in the queue by allowing the c
behind this stationary impurity to pile on top of each oth
This bare-bone version of the phenomenon can then be
phrased in terms of the parking garage model introduce
this paper. An asymmetric exclusion process~AEP! on a road
starting and terminating at a garage with an infinite park
capacity. The control parameters are the total number of c
Nc , in the system~which compared to the road lengthNs ,
defines a total car densityro5Nc /Ns) and the probabilitya
with which cars exit the garage~compared to the hopping
probability along the road, set equal to one!. The infinitely
long queue is represented by a macroscopic occupatio
the garage. The density of parked cars,rp5Np /Ns , is non-
zero when the number of cars at the garageNp is propor-
tional to Ns .

The analogy with equilibrium Bose condensation is ob
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ous as well as the basic question, i.e., whether the sca
properties of such queuing transitions are universal. For
ample, how sensitive are the exponentsb andxp in

rp;ua2acub for a,ac ~1!

and

rp;Ns
2xr at ac ~2!

to the details of the queuing dynamics, particularly to t
simplifications we made. As a start, we need to establish
understand the scaling properties of the most simplest m
in as much detail as possible. The scaling properties of
parked car condensation transitions presented here are in
already surprisingly rich. After this, we will be well pos
tioned to restore the omitted queuing details one-by-one,
establish how robust those scaling properties are.

This paper is organized as follows. The parking gara
model is introduced in Sec. II, and the phase diagram
presented in Sec. III. In Sec. IV, we explore the relation
Kardar-Parisi-Zhang~KPZ! type surface growth. The grou
velocity is introduced in Sec. V, and its important role
setting the density profile in the various phases is review
in Sec. VI. In Sec. VII, we do the same for the densit
density correlations. Sections VIII and IX form the core
this paper. We present our numerical Monte Carlo analy
for the parked car density at the condensate-normal ph
transitions in Sec. VIII, together with explanations of the
results. Next, we do the same for the parked car fluctuati
in various phases and at the phase boundaries in Sec
Finally, in Sec. X, we summarize our results.

II. PARKING GARAGE MODEL

Consider a one-dimensional road ofNs sites with periodic
boundary conditions~PBC!. Each site on this road, 1<x
<Ns21, is either empty or occupied by only one car,nx
50,1. The parking garage at siteNs has no occupation uppe
limit, Np[nNs

50,1,2,3, . . . . Thetotal number of cars (Nc)
in the systems is conserved. From the perspective of o
©2002 The American Physical Society18-1
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physical processes, the cars can be reinterpreted just as
as, e.g., molecules~driven down a circular tube!, kinks in
steps on crystal surfaces, electrons driven around a wire
an electric field, or domain walls in magnetic spin chains

The stochastic update rule, from timet to t11 is sequen-
tial. One of the sites, 1<x<Ns , is selected at random with
uniform probability p(x)51/Ns . If that site is part of the
road, 1<x<Ns22, and occupied, the car moves forward
over one unit, presuming sitex11 is empty; otherwise noth
ing happens. If the selected site is the one just in front of
garage,Ns21, and is occupied, then that car moves w
certainty into the garage, irrespective of the occupation le
of the garage. If the chosen site is the garage,x5Ns , the
probability for a car to jump out of it onto sitex51 is equal
to a, independent of the number of cars at the garage,
vided that there is at least one available and sitex51 is
empty. This exit probability from the garage is smaller th
the hopping probability on the road, 0<a<1.

The above process has two control parameters: the
density of carsro and the probabilitya with which cars can
escape from the garage. We define the following quantit
the total car densityro5Nc /Ns , the parked car densityrp
5Np /Ns , and the on-the-road densityr r5ro2rp . Only rp
andr r fluctuate.

The parking garage is the new aspect to this otherw
well-studied AEP. The latter is exactly soluble by the Bet
ansatz for periodic boundary conditions~a closed loop road
without garage! @12#, and the stationary state properties a
exactly known for an open road with reservoirs on both si
@14#. We will use and comment on these different setups
exact results in the next following sections.

III. THE PHASE DIAGRAM

Figure 1 shows our phase diagram. It contains th
phases. In two of them the garage is macroscopically oc
pied: the condensate~C! phase~where the garage control
the density of cars on the road!, and the maximal curren
~MC! phase~where the road capacity controls the flow!. In
the normal~N! phase, the garage contains a finite numbe
parked cars~typically only a few!. This structure can be de

FIG. 1. Phase diagram with the total car densityro and the exit
probabilitya from the garage. At the phase transition lines into t
N phase, the parked car densityrp vanishes, and the garage ceas
to be macroscopically occupied~shown schematically in the insets!.
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duced almost completely from earlier results for AEPs wi
out the garage, such as the AEP with closed periodic bou
ary conditions~no garage!, i.e., KPZ growth@12,13# and the
AEP with open boundary conditions hooked-up to reservo
on both ends@14,15#.

In the two condensate phases,C and MC, the garage act
like a reservoir, and the model reduces to the open r
version studied by Derridaet al. @14# and others@15#. In their
version, the road is in contact with car reservoirs at b
ends,x51 andx5Ns21, such that a car jumps ontox51
with probabilitya ~if empty! and leaves fromx5Ns21 with
probability b ~if occupied!. In our modelb is always equal
to 1.

A dynamic second-order phase transition takes place
tween the MC phase~where the road density is at a consta
value, r r5

1
2 ) and theC phase~where the road densityr r

5a varies with the inlet probabilitya and this result is
already correct within mean field theory@14,15#!. The MC
phase appears because raising the density any further w
reduce the flow efficiency~due to overcrowding!. This phe-
nomenon has been canonized recently into a ‘‘maximal c
rent principle’’ @16#, which states that the bulk road densi
takes the value that maximizes the flow.

Reduce the total number of cars inside theC and MC
phases, i.e., walk in phase diagram towards theN phase
along a line of constanta. This has no effect on the cars o
the road and their fluctuations because all removed cars
taken from the parked ones residing inside the garage. Th
surplus cars are dynamically inert. This continues until
reservoir is depleted, the point at which the transition to
N phase takes place. The road density becomes equal to
total car densityr r5ro . From theC ~input-limited! phase
perspective, this happens atro5a, see Fig. 1, becauser r
5a inside theC phase@14–16#. From the MC~road-limited!
phase perspective, it occurs atro5 1

2 becauser r5
1
2 inside

MC. Therefore, the phase boundaries into theN phase are
located atro5a andro5 1

2 .
The next issue is how many types of normal phases e

in the lower right side of the phase diagram. In anN phase,
the garage acts like a localized impurity~a blocking-type
site!, and it contains typically only a few cars. Suppose
put a cap Nm on the occupation of the garage,Np
50,1, . . . ,Nm . This cannot affect the properties of th
model in theN phase, except very close to the transition in
the condensate phases~where the number of parked carsNp
and the fluctuations inNp diverge!. Janowsky and Lebowitz
@11# ~JL! studied such a capped version of the AEP mode
closed loop road with periodic boundary conditions, witho
a garage, but with one special bond where the hopping p
ability is reduced from 1 toa. This is equivalent to setting
the occupation limit of the garage toNm51. Their phase
diagram has the same control parameters as ours. It
particle-hole symmetry with respect toro5 1

2 , see Fig. 2.
The normal phase in the lower right hand corner is similar
our model. The second normal phase in the upper right
ner is equivalent to it by particle-hole symmetry, and t
intermediate area is a coexistence region, the jammed ph
In the low-densityN phase, the cars are uniformly distrib
uted, but atro5a/(11a) a traffic-jam-type shock wave de

s
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velops between low- and high-densityN-type phase regions
This jammed phase is reminiscent of the condensate p

~macroscopic occupation of the parking garage! in our
model. A shock wave does not appear in our model beca
the garage absorbs the queue. It is also clear that if we w
interpolate between the JL model and our model by slo
increasingNm51→`, the queuing transition would be de
layed and would be shifting smoothly, with ourN-C phase
boundary as the limiting case. JL focused on the finite-s
scaling~FSS! properties of the fluctuations in the position
the tail of the shock wave,D l;Lg, and foundg5 1

2 ~except
for ro5 1

2 where a cancellation of the leading time of fligh
type fluctuations gives rise tog5 1

3 ) @11#. Monitoring the
location of the shock wave is analogous to observing
parked car density fluctuations in our model inside theC and
MC phases. JL did not address the scaling properties a
queuing transition itself, but their transition is definitely se
ond order~the location of the shock wave moves contin
ously with the total density away from the blockage poin!.

IV. KPZ GROWTH

The AEP can be interpreted as a lattice representatio
the Burgers equation with a discretized velocity field, both
location and in its values,n(x)50,1. The latter is equivalen
to the so-called body-centered solid-on-solid growth mo
@7,17#, a lattice realization of KPZ-type surface growth. Ea
occupied site represents a down step along the o
dimensional~1D! surface and every empty site an up ste
The surface heightsh(x1 1

2 ) are limited to even/odd value
at even/odd lattice sites,h(x1 1

2 )2h(x2 1
2 )5122n(x).

The surface looks like the alternatively stacked bricks o
masonary wall, but rotated over 90 deg. Each car jump to
right represents the deposition of a new vertical 132 brick.
The average car density on the road represents the ave
slope of the surface. At half density the surface is not tilt

Periodic boundary conditions are the most common
theoretical studies of surface growth, and this brick depo
tion version of KPZ growth is exactly soluble by the Bet
ansatz@12#. It is a special line in the general phase diagra
of the one-dimensional well-knownXXZ spin-12 quantum
spin chain Hamiltonian, and also in the so-called six-ver
model of 2D equilibrium critical phenomena@18#.

FIG. 2. Phase diagram of the Janowsky-Lebowitz model:
AEP with periodic boundary conditions and a slow bond. The c
responding density profiles are schematically shown in the inse
03611
se

se
ld
y

-

e

he
-

of

l

e-
.

a
e

ge
.

n
i-

x

From the surface growth perspective, the open road se
with reservoirs represents an open ended 1D interface
modified particle deposition probabilitiesa andb at its end
points. In the MC phase, where the car density is locked
ro5 1

2 , the crystal surface maintains a net zero tilt. Fora
, 1

2 and/or b, 1
2 , the reduced growth probabilities at th

edge create a nonzero globally tilted surface. Moreov
along the linea5b, 1

2 , two tilts coexist. Crossing that line
amounts to undergoing a first-order phase transition with
ferent tilt angles. The lock-in transition from theC phase into
the MC phase represents a second-order dynamic face
transition.

Our parking garage setup translates into a surface gro
dynamics realization with periodic boundary conditions a
a localized defect. The garage could represent something
a stacking defect, where the step height is unlimited~and
somehow energetically cost free!. The cliff height at the
stacking fault can be microscopic~the N phase! or macro-
scopic~theC and MC phases!. This depends on the modifie
growth probabilitya near the defect~on top of the cliff,
somewhat similar to a Schwoebel energy barrier! and also
depends on the global net tilt angle~the total car density!. In
the MC ~C! phase, the average slope of the surface, exc
ing the cliff, is zero~nonzero!.

V. CORRELATIONS AND GROUP VELOCITY

It is well known and easy to show that the stationary st
of KPZ growth with PBC, the closed loop road without o
stacles wherea51 andn(Ns)50,1, is completely random
without any correlations whatsoever between finding a ca
sitesi and j for any iÞ j including nearest neighbor sites. I
the surface representation, this means that up and down s
are placed at random@17# and that the width of the interfac
W;Ns

x scales with the random walk exponentx5 1
2 .

The stationary state remains uncorrelated in our mode
well ~as shown below! except near the garage. Those cor
lations are governed by the dynamic scaling exponent
the group velocity with which fluctuations travel along th
road.

In 1D KPZ-type surface growth, all characteristic tim
scale ast;Ns

z with z53/2. In car language, this means th
local car density fluctuations with spatial widthl broaden in
time asl;t1/z. The value of the dynamic exponentz follows
from the identityz1x52 implied by Galilean invariance o
the Burgers equation@12,13#, together with the disordered
x5 1

2 nature of the stationary state. The exact~Bethe ansatz!
solution of this specific model confirms this general resu

Fluctuations travel with a group velocityvg5122r r to
the right~towards the garage! along the road. From the KPZ
surface growth perspective, the group velocity represents
average slope of the KPZ growing surface, and its fluct
tions grow perpendicular to the surface orientation. From
AEP formulation perspective, the value ofvg is set by the
average stationary state currentj 5r r(12r r) ~easy to derive
since the stationary state is Gaussian! and the definition of
the group velocity is

n
-
.
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vg5
]

]r r
j ~r r !5~122r r !. ~3!

This vg played an important role, e.g., in the AEP study
Majumdar and Barma@19# of tagged-particle diffusion, and
in describing phase transitions between steady states in
open road setup@20#.

VI. DENSITY PROFILES IN THE VARIOUS PHASES

The on-the-road car density profiles in theC and MC
phases are known exactly from the open boundary mo
studies, in particular the one by Derridaet al. @14#. These
profiles play an important role in our later discussions an
is useful to review how the group velocity enters in quali
tive explanations of these exact results.

In the road-limitedMC phase ata. 1
2 , the density tail

has a power-law shape,

r~x!.r r1Aex
2n, ~4!

at both edgese5L(left),R(right), with x the distance from
the edge of the road~garage entrance in our model! andr r
5 1

2 the on-the-road car density. In contrast, in the inp
limited C phase ata, 1

2 , the car density is constant,r(x)
5r r , at the beginning of the road~garage exit!, and has an
exponential tail at the end of road~garage entrance!,

r~Ns2x!.r r1Ax23/2e2x/j, ~5!

with the on-the-road car densityr r5a and the correlation
lengthj521/ln@4a(12a)#.

Power laws with exponentn5 1
2 arise naturally in this

problem because of its critical fluctuations. The bulk prop
ties of the KPZ stationary state are invariant under a res
ing of all lengths asx85bx, all times ast85bzt, and the
surface heights ash85bxh. The car density scales, therefor
naively asr5]h/]x;bx21. This means that power-law tail
in the density distribution near the edge of the road, w
exponentx2152 1

2 , like in Eq. ~4!, are to be expected.
On the other hand, the disordered nature of the station

state suggests exponential profiles, like in Eq.~5!. Indeed, in
the bulk, the stationary state density-density correlation fu
tion

g~r !5^r~x1r !r~x!&2^r~x1r !&^r~x!& ~6!

does not decay as anr 21 power law as may be suggested
the above scaling argument, but instead decays exponen
with a very short correlation length, that is zero in this sp
cific model since the cars on the road are totally uncorrela
in the stationary state.

To make sense of Eqs.~4! and~5!, it is important to real-
ize that the density profile near the edge of the road incor
rates temporal correlations, and also to appreciate the ro
the group velocity.

The power-law profile in the MC phase is the result
correlations with cars that reached the edge of the road
moved into the garage at earlier times. Such correlati
spread in time over a spatial distancel;t1/z. The group ve-
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locity is zero in the MC phase and therefore the cars a
distancel from the edge of the road are~power-law! corre-
lated with those that entered the garage at times earlier
Dt5 l z. They have no knowledge about cars arriving at t
garage more recently. This explains the power-law tail in
density distribution.

In theC phase, the same correlation spreading takes p
within a moving frame of reference with nonzero group v
locity. Information reaches the edge of the road~garage en-
trance! at a ratevg ~linear in time! faster than it can sprea
backwards asl;t1/z ~since 1/z52/3,1). Memory has no
opportunity to develop near the edge of the road, and
density profile adjusts itself at the road end as if the cars
the road are completely uncorrelated. The exponential
reflects a suction-type effect; the excluded volume limitat
on the car mobility does not act on the cars departing fr
the road.

Similarly, in the MC phase, power-law correlations wi
earlier cars that escaped from the garage and entered the
give rise to a power-law tail in the density profile at th
beginning of the road~near the exit of the garage!, while in
the C phase, this information travels faster away from t
road start than it can spread backwards. So, new cars e
ing the road do so completely uncorrelated, resulting in
road-start tail in the profile whatsoever. This confirms w
the MC phase is road limited and theC phase is input lim-
ited. In the latter, the car supply at the garage controls
density near the edge of the road and also everywhere els
the road.

In the N phase, we find numerically, from Monte Car
simulations, an exponential tail at the road end and anx
tail at the road start as shown in Fig. 3. The group velocity
also nonzero in theN phase, which explains the exponenti
exit tail as follows. Just like in theC phase, the garage i
invisible to the incoming of cars from the road; fluctuatio
arrive at the garage faster~at constant velocity! than they can
spread backwards~with D l;t1/z). The fact that in theN
phase only a few cars reside inside the garage is invisibl
the cars entering the garage.

FIG. 3. Double logarithmic plots of the density profiles in theN
phase (ro50.25 anda51), showing a 1/x tail at the beginning of
the road~garage exit!.
8-4
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A 1/x tail at the beginning of the road is what one expe
from the deterministic part of the Burgers equation. The
lution of the deterministic Burgers equation,

]v
]t

1lv
]v
]x

5n
]2v

]x2
, ~7!

with the velocityv pinned at a specific nonzero value at s
x50, is readily seen~e.g., in the Hopf transformed formu
lation! to be of the generic formv(x);1/(11ax), i.e., hav-
ing the 1/x power-law shape.

In the C phase the system selects the valuea50 for the
constant, and in theN phase,aÞ0. In both cases, the grou
velocity vg.0 carries away KPZ fluctuations faster tha
they can spread, such that the KPZ noise term can be ign
at the road start~stationary frame of reference!. The only
noise that remains is that from the random process by wh
cars are being taken out of the garage and put on the roa
the C phase, the supply of cars is bottomless (rp.0), such
that a50 ~the entire on the on-the-road bulk car density
ruled by the garage!, while, in theN phase, the supply of car
is limited and the garage does not overwhelm the road, s
that aÞ0.

VII. DENSITY-DENSITY CORRELATIONS

It is useful to discuss how the group velocity affects t
car-car correlation function,

g~r ,t!5^r~x1r ! t1tr~x! t&2^r~x1r ! t1t&^r~x! t&. ~8!

According to scaling theory, it obeys the form

g~r ,t!5b2(x21)g~b21r ,b2zt!5t2(x21)/zFS r

t1/zD . ~9!

In the limit f5r /t1/z→0, the scaling functionF(f) must
approach a constant since the autocorrelation decays
power law,

g~0,t!;t2(x21)/z;t22/3, ~10!

with x5 1
2 . In the opposite limit, of largef, the scaling

function must decay exponentially becauseg(r ,0)50 due to
the random nature of the stationary state~or, more generi-
cally, it decays exponentially with some correlation rangefo
of the same order as the interaction range between cars!. The
above scaling relation suggests the form

F~f!;f2(x21)e2f/fo ~11!

in the limit f5r /t1/z→`, such that

g~r ,t!;r 2(x21)e2r /fot(1/z)
;

1

r
e2r / l ~12!

with x51/2 andl 5fot1/z. The lengthl in the exponential
defines the ‘‘correlation cone’’ that we already mention
above. Within the cone the correlations decay as a po
law, and outside it the cars are uncorrelated~as in the sta-
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tionary state!. The above discussion ignores finite-size e
fects. For open road or garage type boundary conditions,
correlator explicitly depends on the initial positionx0 of the
car at timet0 and also on the road lengthNs ,

g~r ,t;x0 ,Ns!5b2(x21)g~b21r ,b2zt;b21x0 ,b21Ns!.
~13!

Finite-size effects set in at times when the correlat
cones hit the road edges,t;(x0)z or t;(Ns2x0)z. At times
longer thant0;Ns

z , we therefore expect that the car-car co
relator decays exponentially, e.g., as

gS 0,t;
1

2
Ns ,NsD;Ns

2(x21)e2a(t/Ns
1/z). ~14!

The above analysis applies to the MC phase, where the
~group! velocity is zero. In theC phase~and also theN
phase!, we need to switch to the moving frame of referen
by replacing r→r 1vgt. This has some peculiar conse
quences. For example, the autocorrelation functiong(0,t)
decays exponentially in time~even at short times!. The cor-
relation conel is slanted in the direction of the flow~the
correlations move with the flow! and l widens slower than
linear in time, such that ther 50 line in the world sheet lies
outside the correlation cone. The KPZ-type correlations
somewhat hidden. In order to expose them, one needs to
them in some special manner, e.g.,g(vgt,t) ~the autocorr-
elator in the moving frame of reference!, as illustrated in
Fig. 4.

VIII. SCALING AT AND NEAR THE CONDENSATION
TRANSITIONS

Let us turn now to the scaling properties of the two co
densate phase transitions from theC and MC phases into the
N phase. The stationary state value of the parked car den
rp5Np /Ns acts as the order parameter. We expect it to ob
the FSS relation

FIG. 4. Double logarithmic plots of the density-density corre
tion functiong(r ,t) in the moving frame of reference, i.e., withr
5vgt and vg5(122r r). The C phase data are obtained atro

50.75 anda50.25, theC-N point data atro5a50.25, and theN
phase data atro50.25 anda51.
8-5
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rp~e,Ns
21!5b2xprp~byee,bNs

21! ~15!

near the two condensation transition lines with a scaling f
tor b, and e5(a2a* ) or e5(ro* 2ro), a measure of the
distance from the transition.

In the N phase, the density of parked cars is zero,rp
50. When approached from theC and MC sides,rp goes to
zero asrp;ueub, where b5xp /ye . The removal of cars
from the road is accommodated by taking them from
passive inert ones residing inside the garage. This imp
that rp must vanishes linearly at the transition, and thatxp
5ye . Our numerical simulations confirm thatrp;ueu, as
b51 in Figs. 5 and 6.

The total number of parked cars (Np) scales as

Np~e,Ns
21!5bypNp~byee,bNs

21!, ~16!

with exponentyp512xp according to Eq.~16! and Np
5rpNs . In the N phase, the densityrp remains zero, while
the total number of parked cars (Np) diverges towards the
transition asNp;ueu(12xp)/ye. We find numerically that this
power law is linear as well,Np;ueu. Combined with the
linear scaling of the car density from theC or MC side~im-
plying yp5xp), this yieldsyp5ye5 1

2 . The exponentyp de-
termines the FSS behavior of the total number of parked
at the transition point itself,Np;Ns

yp ~and also that the den

sity of parked cars vanishes asrp;Ns
yp21).

FIG. 5. The parked car~order parameter! exponents~a! yp

50.505(5) and~b! b51.000(1), defined asNp;Ns
yp andrp;(a

2a* )b, at ro5a50.25 of theC-N phase boundary.

FIG. 6. The parked car~order parameter! exponents~a! yp

50.495(5) and~b! b50.997(3), at ro51/2 and a51 of the
N-MC phase boundary. For the other two curves in~a!, taken along
the MC-N phase boundary ata>1/2, the exponentyp retains the
same value, but is subject to large/small corrections to finite-
scaling originating from 2/3 power-law density profile at the beg
ning of the road~garage exit!.
03611
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Figure 5 shows the numerical results ofyp andb at point
a50.25 of theC-N phase boundary and Fig. 6 ata51 ~and
0.75! of the MC-N phase boundary. Notice that the FSS c
rections in the exponentyp are much stronger at the MC-N
transition than at theC-N transition.

The validity of the scaling relations is further illustrate
by plotting the scaling functionF(j) in the following form:

rp~e,Ns
21!5Ns

2xpF~Ns
yee !, ~17!

and the associated data collapse while moving through
transition points at constantro and constanta, respectively.
The curves in Fig. 7 collapse very well.

The fluctuations and the FSS corrections to the numbe
parked cars are a mirror of the density-density correlati
and the density profile of cars on the road. They also refl
how the latter builds up as a function of the length of t
road. At the transition points, the bulk value of the on-th
road densityr r5Nr /Ns is exactly equal to the total numbe
of cars in the system divided by the road length,r r
5Nc /Ns , such that there would be no need for any car
remain inside the garage.

We find numerically that at theC-N transition point, the
density profile retains the same structure as inside thC
phase; with no tail at the beginning of the road~garage exit!
and an exponential tail at the end of the road~garage en-
trance!. Such profiles cannot account for theyp5 1

2 FSS di-
vergence in the number of parked cars. The scaling beha
Np;Ns

yp must, therefore, reflect directly the corrections
FSS in the bulk density of cars on the road. The valuexp
5 1

2 naturally arises because at the transition point,rp;r r ,
andr r5]h/]x scales asLx21;L2xp, whereL corresponds
to a given length of the roadNs .

A more intuitive explanation follows again from the non
zero group velocity at theC-N phase boundary. As men
tioned above in the discussion of the density distribution
in theC phase, the events by which cars enter the road fr
the garage are completely uncorrelated due to the slantin
the correlation cones~the correlations move with the flow
towards the garage and spread slower than linearly, onl
l;t1/z, such that communications with later events at t
beginning of the road are impossible!. So the entry events to

e
-

FIG. 7. Scaling functionF(j) defined in Eq.~17! at the same
transition points as in the previous two figures:~a! ro5a
50.25 (C-N) and~b! ro51/2, a51 (MC-N). The numerical data
collapse very well forxp5ye51/2, as suggested in Eq.~17!. The
scaling functionF(j)→0 for j!0 andF(j)→j for j@0.
8-6
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MACROSCOPIC CAR CONDENSATION IN A PARKING GARAGE PHYSICAL REVIEW E66, 036118 ~2002!
the road from the garage behave like uncorrelated rand
noise, and the fluctuations in the number of cars scale, th
fore, as the square root of time. The time in question
proportional toNs because the fluctuations~created at the
garage exit! move along the road with velocityvg , and are
wiped out after they return to the garage. From this, it f
lows that the fluctuations in the number of parked cars sc
asANs . Moreover,Np cannot be negative, which means th
the fluctuations sample the bottom of the garage and tha
transition from theC to N phase, therefore, takes place wh
the garage containsNp;ANs cars.

In summary, the scaling at theC-N phase boundary is
governed by the bulk fluctuations in the-on-the-road dens
which is ruled by the nonzero group velocity of KPZ flu
tuations, and this leads directly to random noise, likeNp

;ANs , corrections to FSS.
The FSS corrections to scaling in exponentxp(yp) at the

MC-N phase boundary are much more complex. The~bulk!
group velocity is zero, and power-law density profiles a
realized at both edges of the road. At the end of the road,
density profile follows a critical exponentn5 1

2 , the same
power as that inside the MC phase discussed in Sec.
However, at the road start~the exit of the garage!, the power-
law exponent changes fromn5 1

2 inside the MC phase ton
5 2

3 at the MC-N transition. This is shown in Fig. 8 fora
51 andro5 1

2 , where the effect is the strongest.
The 2

3 power law does not change theNs
1/2 FSS behavior

of the number of parked cars. It is responsible, however,
strong corrections to FSS, as clearly visible in Fig. 6~a!. The
n5 2

3 power-law profile contributes only a subdominant te
to rp because it decays faster than the twon5 1

2 contribu-
tions~from the density profile at the end of the road and fro
the KPZ-like bulk road density fluctuations!. We have not
achieved yet a good understanding of this novel value,2

3 , for
the exponent of the density profile at the beginning of
road. It obviously lies correctly in between the MC andN
values,1

2 and 1, respectively. Moreover, its value,n5 2
3 , is

FIG. 8. Effective~finite-size-scaling type! value for the expo-
nent n of the density profiles at the beginning of the road:n
50.66(1) at ro51/2 and a51 ~or 0.75!. At the MC-N phase
boundary, the density profiles decay as a 2/3 power law, instea
the 1/2 power law found inside the MC phase.
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likely linked to the KPZ dynamic exponentz5 3
2 . But it re-

mains unclear how to glue the following pieces together.
At the MC-N transition, the group velocity of the fluctua

tions, vg5122r r , is still zero ~but only barely! since r r
5 1

2 . This means that time of flight aspects, which domin
the C andN phases, do not come into play. Near the gara
the tail in the density profile,r(x)5 1

2 1Dr(x), creates a
local nonzero group velocityvg(x)522Dr(x) pointing
back into the garage~instead of away from it as in theC and
N phases!.

Recall from Sec. VI that the density profile in the M
phase has the same type of power-law profileDr(x);x2n,
but with the ‘‘KPZ’’ ~power-counting! exponent valuen
5 1

2 . In that case, fluctuations at the road start do not re
the bulk of the road: the leading edge of the information co
is stationary because the backward movement of its cente
massxc;2t1/(11n) ~implied by dxc /dt;xc

2n) matches ex-
actly the rate of its spreading,x;t1/z. So then5 1

2 density
profile fully screens the garage from view in the bulk of t
road. Exactly the same screening of the information ta
place at the end of the road~garage entrance! since also there
the MC phase density profile has exponentn5 1

2 ~but in an
opposite forward movingvg sense and with a negative de
sity profile amplitude!.

The density profile exponentn5 2
3 at the MC-N transition

does not fully screen the garage any more from observ
located far away on the road. Total screening is not nee
because KPZ fluctuations start to tunnel through the gar
since it has only aANs occupation. It is yet unclear to us
however, how to deduce~in a convincing manner! the expo-
nentn5 2

3 from these considerations.

IX. PARKED CAR FLUCTUATIONS

In this section, we explore the fluctuations in the park
car density and also car-car correlations on the road. Of
ticular interest is the onset of transmission of informati
through the garage at the phase transitions. In the two c
densate phases, the garage acts as a car reservoir and
sink of fluctuations, while in the normal phase it contai
only a few cars and transmits fluctuations.

The temporal fluctuations in the total number of park
cars, G(Ns ,t), measures also the fluctuations in the to
number of cars on the road. It is therefore equal to the in
grated car-car correlator~defined in Sec. VII!,

G~Ns ,t!5 (
x1 ,x051

Ns21

@^r~x0 ,t0!r~x1 ,t1!&2 r̄~x0!r̄~x1!#

5 (
x051

Ns21

(
r 52x011

Ns2x021

g~r ,t;x0 ,Ns!, ~18!

with t5t12t0 andr 5x12x0. The summations run over a
road sitesx0 and distancesr that fit on the road. Direct inte-
gration of the scaling relation, Eq.~13!, yields that~in the
MC phase! G obeys the scaling form

G~Ns ,t!5b2x G~b21Ns ,b2zt!5Ns
2x F~t/Ns

z!.
~19!

of
8-7
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In the KPZ representation,G is the global slope-slope auto
correlator, and att50, reduces to the conventional defin
tion of interface width~second moment of the height distr
bution!. We will now discuss howG behaves in the variou
phases and at the phase transition points.

A. Inside the MC phase

The following intuitive discussion tells us how the scalin
function F behaves in the MC phase. Eachg(r ,t) has a
correlation cone of sizel;t1/z. The cars within this cone ar
correlated with the one at sitex0 at timet0 ast2(x21)/z. The
integration overx0 and r in Eq. ~18! yields

G;Ns3 l 3t2(x21)/z;Nst
(2x21)/z, ~20!

where the correlation conesl;t1/z are assumed to be sma
with respect to the road sizeNs . The exponent is equal to
x5 1

2 , such thatG;Ns , and thatF approaches a constant
the limit t/Ns

z→0.
This estimate fails to take into account finite-size effec

Correlations are truncated near the two road edges~all infor-
mation is entering the garage!. The loss term is of the orde

2E
0

l

dx0 ~ l 2x0!t2(x21)/z; l 2 l 2(x21);t2x/z. ~21!

This suggests thatG is of the form

G5NsS a2b
t1/z

Ns
1••• D , ~22!

with constantsa andb, and suggests that the scaling functi
F(f) is analytic at short times in the parameterf5t1/z/Ns

instead off85t/Ns
z . Our numerical results shown in Fig

9~a! are consistent with this.
In the opposite limit,f,f8→`, where time is large com

pared to the length of the road, all correlation cones
limited and equal tol .Ns , andG behaves as in Eq.~14!,
such that

G;Ns3 l 3gS 0,t;
1

2
Ns ,NsD;Nse

2a(t/Ns
z). ~23!

FIG. 9. The parked car correlatorG(Ns ,t) in the MC phase: for
smallt ~a! it decays linearly as a function oft1/z/Ns , and for large
t ~b! it exponentially as a function oft/Ns

z , wherez53/2. The data
are obtained atro50.75 anda51.
03611
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Our numerical results in Fig. 9~b! are consistent with this a
well.

B. Inside the C phase

In theC phase, the fluctuations scale with the same ex
nents as in the MC phase, but the nonzero group velo
vg5122r r changes completely the appearance of corre
tion functions, likeG(Ns ,t). The density-density correla
tions spread just like in the MC phase, but only with resp
to the moving frame of reference and withr replaced byr̃
5r 1vgt. The correlation functiong(r ,t) scales as a powe
law g;t2(x21)/z at r̃ 5vgt ~i.e., r 50) but exponentially at
nonzero r. The fluctuation cones,l;t1/z, are slanted and
move with the flow.

Figure 10 showsG(Ns ,t) inside theC phase as a func
tion of time t for various road sizesNs . It decays linearly
until hitting zero attflight5Ns /vg([T), and then it remains
at zero. All fluctuations move with the group velocityvg to
the right and reach the garage at a constant rate. After
time of flight,T, all correlations with the initial configuration
have disappeared. The rounding inG at T is of order Dt
;T1/z, and is due to the broadening of the remaining cor
lation cones just before they are absorbed by the garage

C. Inside the N phase

In theN phase, the fluctuations in the total number of ca
on the road,G(Ns,0), are not proportional toNs but are only
of order one. The garage is not macroscopically occup
any more and acts very much like an ordinary road s
Figure 11 shows the behavior ofG(Ns ,t) inside the N
phase. The total number of cars in the system is conser
such thatG reduces to

G~Ns ,t!5^Np~ t01t!Np~ t0!&2N̄p
2 , ~24!

FIG. 10. The parked car correlatorG(Ns ,t) in the C phase; it
decays linearly as a function oft and becomes zero after one tim
of flight T5Ns /vg(5tflight). Since it grows linearly with system
size Ns , we plot G/Ns . The data are obtained atro50.75 anda
50.25.
8-8
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MACROSCOPIC CAR CONDENSATION IN A PARKING GARAGE PHYSICAL REVIEW E66, 036118 ~2002!
and behaves similar to the autocorrelatorg(0,t). The group
velocity is nonzero, and thereforeG decays exponentially
fast. However, because of PBC,G comes back to live, like a
lighthouse light beam, after every time-of-flight intervalT
(5Ns /vg), with an amplitude of orderT2(x21)/z and with a
temporal width of orderl;T1/z.

D. At the C-N transition

Figure 12 shows howG(Ns ,t) at theC-N transition de-
cays in time for various system sizes. At smallt, it decays
linearly, rather like in theC phase, but then it seems to o
cillate with a period determined by the time-of-flight tim
scale T; G(Ns ,t) goes through zero at aboutt. 1

2 T and
shows a strong anticorrelation att.T ~the maximum lies just
before it!.

FIG. 11. The parked car correlatorG(Ns ,t) in theN phase; the
garage is no longer macroscopically occupied, such thatG does not
scale withNs anymore. The correlations light up, like a lighthou
beam, at every time-of-flight intervaltflight5T. The data are ob-
tained atro50.25 anda51.

FIG. 12. The parked car correlatorG(Ns ,t) at theC-N transi-
tion; it has a strong anticorrelation after one time-of-flight interv
T, even though for smallt it decays linearly just like in theC phase
~and with almost the same group velocity!. The data are obtained a
ro5a50.25.
03611
Figure 13 illustrates how the transmission of informati
through the garage commences at the phase transition.
pose we approach the transition point from theC phase fol-
lowing a line of constanta. In the C phase, these lines co
incide with lines of constant group velocity.~In theN phase,
vg is constant along lines of constantro .) So nothing
changes on the road until we hit the transition point, andG
decays linearly to zero and remains zero after one time
flight time scale. At the transition point,G transforms
abruptly into the oscillatory shape, with an anticorrelati
after one time of flight. After that, it reduces inside theN
phase to the lighthouse shape, in whichG(Ns,0) oscillates in
phase and does not scale withNs any more.

The anticorrelations at theC-N transition point are in-
triguing and need to be explained. Imagine a localized po
tive density fluctuation at the beginning of the road at tim
t0. In the MC phase, it simply sits there while broadening
l;t1/z;t2/3 and weakening in amplitude ast2(x21)/z

;t22/3. In theC phase, it broadens and weakens in the sa
manner, but travels like a solitary wave to the right wi
velocity vg5122r r and drops out of the road after on
time-of-flight unit T. In the N phase, it behaves very muc
the same, except that the positive density fluctuation cre
a deficit inside the garage since the number of cars in
garage is finite, such that fewer cars can be put on the roa
the immediate wake of the positive fluctuation. Therefore
the N phase, every positive fluctuation carries a compen
ing ~again localized! negative tail with it. Figure 14 illus-
trates the difference schematically, and our numerical sim
lations confirm this picture.

One could say that in theN phase positive and negativ
local excitations are bound in pairs, and that they unbind
theN-C transition. On approach of the transition from theN
side, the width of the negative tail grows, but with conserv
total area~equal to the area of the positive part of the ex
tation!, because the average number of cars in the gar
increases towards the transition~and diverges! and therefore
the reduced car output is being spread over more time. At

l

FIG. 13. Evolution of the parked car correlatorG(Ns ,t)
through the phase boundary at fixed system sizeNs5512 along a
line of constant group velocity:vg5122r r with r r50.25;s51 in
the C phase and at theC-N transition, whiles50 in theN phase.
8-9
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transition point itself, the negative tail has vanished, exc
for the finite-size scaling effect of order (Ns)

21/2.
Local excitations, thus, behave quite interestingly. Ho

ever, they do not explain the difference in the behavior oG
at the transition point and in theC phase. These solitar
waves do not deplete the garage sufficiently to trigger
bottom because at the transition point the number of par
cars still diverges asANs.

Only nonlocal excitations, which encompass the en
system, are able to empty out the garage. Consider an e
tation where the density of cars is globally and uniform
enhanced along the entire road,r i5r r1D. This requires
that the number of cars to be taken out of the garage sh
be proportional to the road lengthNs . In theC phase, those
will not deplete the garage because the number of par
cars is also proportional toNs . Such aD regiment of extra
cars marches with group velocityvg to the right, reaches the
end of the road, and thus returns to the garage at a
uniformly in time, row by row. Throughout this process, th
garage is not aware of the existence of the regiment since
did not hit its bottom and because the information conel
;t1/z on the road do not broaden fast enough compare

FIG. 14. Schematics of soliton-type local perturbations dif
sively spreading from the initial configurations~dashed lines! to one
time-of-flight interval later~solid lines!: ~a! in the C phase,~b! at
the C-N transition, and~c! in the N phase.
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the group velocity to maintain its memory at the garage e
This implies that the exact stationary state rebuilds itself
the wake of the regiment, and also that the enhanced r
density decays linearly in time and vanishes completely a
one time of flightT, just like ourG as a function of timet.

At the transition point, the garage only containsNp

;ANs cars, so that the same type of global uniform exci
tion can only have an amplitude of order (Ns)

21/2, and al-
ways depletes the garage. This regiment of cars travels to
right with velocity vg , just like in theC phase, but in its
wake the garage cannot rebuild the stationary state becau
is empty. A depleted road density is established in the w
of the enhanced excitation, and thus anticorrelations b
up, and after one time of flight the average density of cars
the road is below normal~and a surplus of cars resides in th
garage!. This explains qualitatively the oscillatory behavio
of G at the transition point and the anticorrelations atT.

E. At the MC-N transition

The correlations at the MC-N transition are less spectacu
lar than at theC-N transition. The group velocity is zero
inside the MC phase, and still remains zero at the MCN
transition. Only inside theN phase, does it start to shift con
tinuously away from zero. Figure 15 shows howG scales at
the MC-N transition. These numerical results are almost
same as those inside the MC phase in Fig. 9.

Recall the argument about the behavior ofG(t,Ns) inside
the MC phase~in section IX A!, and imagine how this was
modified at the MC-N transition. The factorNs in Eq. ~20!
represents the number of cars on the road~the number of
sites x0 that are occupied!. This should be modified to
roNs2aANs , since the number of parked cars scales
ANs . The other terms, the spreading in time of the corre
tion cones and the autocorrelations on the road, are lik
unchanged. Such differences are subtle and not surprisi
numerically invisible.

X. SUMMARY AND CONCLUSION

In this paper, we presented the scaling properties of
namic condensate phase transitions in terms of an 1D as
metric exclusion process with a parking garage. There
two types of condensate phases: the maximal current~MC!
phase, where the road controls the density of cars on
road, and the condensate~C! phase, where the garage~as a

-

FIG. 15. The parked car correlatorG(Ns ,t) at the MC-N tran-
sition; the shape is very similar to that inside the MC phase, see
9. The data are obtained atro51/2 anda51.
8-10



is
he
tw

a

it
m

m
t

ar
p

dy
li
ud
a
d

oad
a

tial
ing
?

are

nts
iled
er-
ac-
her

e-
tion

MACROSCOPIC CAR CONDENSATION IN A PARKING GARAGE PHYSICAL REVIEW E66, 036118 ~2002!
reservoir! controls the number of cars on the road. The ex
tence of a group velocity is crucial for understanding t
behaviors of correlations and the density profiles in these
phases and at the phase transitions.

At both condensate transitions, the number of parked c
scales asNp;Ns

yp with yp5 1
2 , while on approach of the

transition, the density of parked cars vanishes linearly w
the control parameters~the total density of cars in the syste
and the exit probability from the garage! rp;ueub, with b
51. Also, the transition points represent the onset of co
munication of information through the garage. This leads
interesting autocorrelations in the number of parked c
particularly at theC-N transition, due to the nonzero grou
velocity and associated time-of-flight effects.

Our parking garage model is a bare-bone version of
namic Bose condensation and of queuing phenomena,
traffic jams. The fundamental issue that needs further st
is whether the above scaling behavior, in particular the v
ues of the critical exponents, are universal or not. How
d
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e
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more realistic interactions between the cars on the r
change this? Do the simplifications in the traffic jams, like
stationary truck versus a moving one and ignoring the spa
structure inside the queue of cars behind it by collaps
them~piling them up! into a ‘‘garage,’’ affect the exponents

There is some evidence suggesting that the exponents
indeed robust, e.g., in the Janowsky and Lebowitz@11#
model, the same simple KPZ-type values of the expone
appear in the fluctuations of the queue, although a deta
study of the queuing transition itself needs still to be p
formed. In addition, introducing short-range car-car inter
tions @15,21# do not seem to change the exponents eit
@22#.
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