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Macroscopic car condensation in a parking garage
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An asymmetric exclusion process type process, where cars move forward along a closed road that starts and
terminates at a parking garage, displays dynamic phase transitions into two types of condensate phases where
the garage becomes macroscopically occupied. The total car degsiyd the exit probabilityr from the
garage are the two control parameters. At the transition, the number of parked,ddireerges in both cases,
with the length of the roadlg, as Np~NZp with y,=1/2. Towards the transition, the number of parked cars
vanishes adN,~e” with =1, e=|a—a*| or e=|p§—p,| being the distance from the transition. The
transition into the normal phase represents also the onset of transmission of information through the garage.
This gives rise to unusual parked car autocorrelations and car density profiles near the garage, which depend
strongly on the group velocity of the fluctuations along the road.
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I. INTRODUCTION ous as well as the basic question, i.e., whether the scaling
properties of such queuing transitions are universal. For ex-
The scaling properties of nonequilibrium-type phase tranample, how sensitive are the exponegtandx, in
sitions are a topic of intensive current resedrth4]. From
the theoretical side, focus has been mostly on model calcu- Pp~|a—ac|ﬁ for a<ac 1)
lations using stochastic dynamics with simple local rules and
local interactions. These models serve as prototypes for vargnd
ous physical processes, such as surface catdfygipopula- L
tion growth[6], surface growti2,7], electronic transport in pp~Ng ™ at a (2
wires [8], traffic flow [9], and avalanches in granular mate-
rials[10]. The simplicity of the models is justifiable when, as to the details of the queuing dynamics, particularly to the
we expect, the scale invariant collective fluctuations at largsimplifications we made. As a start, we need to establish and
length scales are universal and insensitive to most microdnderstand the scaling properties of the most simplest model
scopic details. in as much detail as possible. The scaling properties of the
Queuing phenomena, like traffic jams behind slow mov-parked car condensation transitions presented here are indeed
ing trucks on single-lane highways, are common to manyalready surprisingly rich. After this, we will be well posi-
nonequilibrium processes. One of the interesting phenomeriéoned to restore the omitted queuing details one-by-one, and
in such systems is the transition from a finite queue to arestablish how robust those scaling properties are.
infinitely long one, i.e., the transition from a queue that does This paper is organized as follows. The parking garage
not scale with the road lengtNg to one whose length is model is introduced in Sec. Il, and the phase diagram is
proportional toNg. Such transitions can be induced by presented in Sec. Ill. In Sec. IV, we explore the relation to
changing the total density of cars in the system or by varying<ardar-Parisi-ZhangKPZ) type surface growth. The group
the probability rate at which cars pass the tr{itk]. velocity is introduced in Sec. V, and its important role in
A simplification of the above is first to replace the slow setting the density profile in the various phases is reviewed
moving truck by a stationary object, and then to ignore theén Sec. VI. In Sec. VI, we do the same for the density-
excluded volume effects in the queue by allowing the carglensity correlations. Sections VIII and IX form the core of
behind this stationary impurity to pile on top of each other.this paper. We present our numerical Monte Carlo analysis
This bare-bone version of the phenomenon can then be réor the parked car density at the condensate-normal phase
phrased in terms of the parking garage model introduced itransitions in Sec. VIII, together with explanations of these
this paper. An asymmetric exclusion procés&P) on aroad results. Next, we do the same for the parked car fluctuations
starting and terminating at a garage with an infinite parkingn various phases and at the phase boundaries in Sec. IX.
capacity. The control parameters are the total number of car§jnally, in Sec. X, we summarize our results.
N, in the systemwhich compared to the road lenghty,

defines a total car densip,=N./N;) and the probability Il. PARKING GARAGE MODEL
with which cars exit the garagecompared to the hopping ) ) ) ) ) o
probability along the road, set equal to dn€he infinitely Consider a one-dimensional roadN¢{ sites with periodic

long queue is represented by a macroscopic occupation &oundary conditiongPBC). Each site on this road, <Ix
the garage. The density of parked cars= N,/Ng, is non-  <Ns—1, is either empty or occupied by only one cay,
zero when the number of cars at the garaggeis propor-  =0,1. The parking garage at st has no occupation upper
tional to N;. limit, Np=ny=0123.... Thetotal number of carsN.)

The analogy with equilibrium Bose condensation is obvi-in the systems is conserved. From the perspective of other

1063-651X/2002/63)/03611811)/$20.00 66 036118-1 ©2002 The American Physical Society



MEESOON HA AND MARCEL den NIJS PHYSICAL REVIEW 6, 036118 (2002

duced almost completely from earlier results for AEPs with-

12 \Q’\ out the garage, such as the AEP with closed periodic bound-
Condensate~ | = Moximal | - >— ary conditions(no garagg i.e., KPZ growth[12,13 and the
phase Cphase | 2.7 AEP with open boundary conditions hooked-up to reservoirs
R0 R (@12 312 on both end$14,15:|.
R $ 1//2\ In the two condensate phas€sand MC, the garage acts
oo / Normal phase | like a reservoir, and the model reduces to the open road
ﬁ” o0 o Foo version studied by Derridat al. [14] and other$15]. In their
j E ’ version, the road is in contact with car reservoirs at both
ERCEC o T_L) ends,x=1 andx=Ngz—1, such that a car jumps onic=1
(=) MLILE with probability o (if empty) and leaves fromx=Ns— 1 with
w=12) probability 8 (if occupied. In our modelg is always equal
ol

FIG. 1. Phase diagram with the total car dengityand the exit
probability « from the garage. At the phase transition lines into the
N phase, the parked car densijty vanishes, and the garage ceases
to be macroscopically occupi¢ghown schematically in the insgts

A dynamic second-order phase transition takes place be-
tween the MC phasévhere the road density is at a constant
value, p,=3) and theC phase(where the road density,
= varies with the inlet probabilitye and this result is
) ) ) already correct within mean field theof$4,15). The MC
physical processes, the cars can be reinterpreted just as Wgjhase appears because raising the density any further would
as, e.g., moleculegdriven down a circular tubg kinks in  oq,ce the flow efficiencydue to overcrowding This phe-
steps on crystal surfaces, electrons driven around a wire By, menon has been canonized recently into a “maximal cur-

an electric field, or domain walls in magnetic spin chains. rent principle” [16], which states that the bulk road density
The stochastic update rule, from tirhéo t+1 is sequen-  i5xes the value that maximizes the flow.

tial. One of the sites, £x<Ng, is selected at random with Reduce the total number of cars inside Beand MC

uniform probability p(x)zlle_. If that site is part of the phases, i.e., walk in phase diagram towards kh@hase
road, I=x<Ns—2, and occupied, the car moves forward t0 5ong a line of constant. This has no effect on the cars on
over one unit, presuming sitet 1 is empty; otherwise noth- {he road and their fluctuations because all removed cars are
ing happens. If the selected site is the one just in front of thgzken from the parked ones residing inside the garage. These
garage,Ns—1, and is occupied, then that car moves withgyplus cars are dynamically inert. This continues until the
certainty into the garage, irrespective of the occupation leveleservoir is depleted, the point at which the transition to the
of the garage. If the chosen site is the garageNs, the N phase takes place. The road density becomes equal to the
probability for a car to jump out of it onto site=1 is equal  total car densityp,=p,. From theC (input-limited) phase

to «, independent of the number of cars at the garage, Prdserspective, this happens ag=«, see Fig. 1, because
vided that there is at least one available and sitel is =, inside theC phasg14—16. From the MC(road-limited
empty. This exit pro.pability from the garage is smaller thanphase perspective, it occurs @j= 3% becausep, =1 inside

the hopping probability on the roadsn<1. MC. Therefore, the phase boundaries into Mghase are

The above process has two control parameters: the totgcated atp,=a andp,= 3.
density of carg, and the probabilityr with which cars can The next issue is how many types of normal phases exist
escape from the garage. \We define the following ql{a”titieﬁh the lower right side of the phase diagram. InNMuphase,
the total car density,=N¢/Ns, the parked car density,  the garage acts like a localized impuritg blocking-type
=N,/Ns, and the on-the-road density=p,—p,. Only p,  site), and it contains typically only a few cars. Suppose we
andp, fluctuate. put a cap N, on the occupation of the garageV,

The parking garage is the new aspect to this otherwise-g 1 ... N,. This cannot affect the properties of the
well-studied AEP. The latter is exactly soluble by the Bethemgdel in theN phase, except very close to the transition into
ansatz for periodic boundary conditiofes closed loop road the condensate phas@ghere the number of parked cas,
without garage[12], and the stationary state properties areang the fluctuations i, diverge. Janowsky and Lebowitz
exactly kn(_)wn for an open road with reser\_/oirs on both side 11] (JL) studied such a capped version of the AEP model, a
[14]. We will use and comment on these different setups ang|osed loop road with periodic boundary conditions, without
exact results in the next following sections. a garage, but with one special bond where the hopping prob-
ability is reduced from 1 tav. This is equivalent to setting
the occupation limit of the garage fd,,=1. Their phase
diagram has the same control parameters as ours. It has

Figure 1 shows our phase diagram. It contains thregarticle-hole symmetry with respect i@,=3, see Fig. 2.
phases. In two of them the garage is macroscopically occuFhe normal phase in the lower right hand corner is similar to
pied: the condensatéC) phase(where the garage controls our model. The second normal phase in the upper right cor-
the density of cars on the rogdand the maximal current ner is equivalent to it by particle-hole symmetry, and the
(MC) phase(where the road capacity controls the flowun intermediate area is a coexistence region, the jammed phase.
the normal(N) phase, the garage contains a finite number ofn the low-densityN phase, the cars are uniformly distrib-
parked cargtypically only a few. This structure can be de- uted, but ap,= a/(1+ «) a traffic-jam-type shock wave de-

Ill. THE PHASE DIAGRAM
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! K Normal hi gh-density phase _ From the _surface growth perspective, the open road set_up
with reservoirs represents an open ended 1D interface with
modified particle deposition probabilities and 8 at its end
points. In the MC phase, where the car density is locked to
po=13, the crystal surface maintains a net zero tilt. For
<% and/or <3, the reduced growth probabilities at the
edge create a nonzero globally tilted surface. Moreover,
Traffic Jam along the linea=B< 3, two tilts coexist. Crossing that line
behind the slow bond amounts to undergoing a first-order phase transition with dif-
ferent tilt angles. The lock-in transition from tiphase into
o 1 the MC phase represents a second-order dynamic facetting

FIG. 2. Phase diagram of the Janowsky-Lebowitz model: arfransition.
AEP with periodic boundary conditions and a slow bond. The cor- Our parking garage setup translates into a surface growth
responding density profiles are schematically shown in the insets.dynamics realization with periodic boundary conditions and
a localized defect. The garage could represent something like

velops between low- and high-densiitype phase regions. @ stacking defect, where the step height is unlimitedd
This jammed phase is reminiscent of the condensate phas@mehow energetically cost freeThe cliff height at the
(macroscopic occupation of the parking gafage our  stacking fault can be microscopithe N phasé¢ or macro-
model. A shock wave does not appear in our model becausgopic(the C and MC phasesThis depends on the modified
the garage absorbs the queue. It is also clear that if we woulgrowth probability « near the defecton top of the cliff,
interpolate between the JL model and our model by slowlysomewhat similar to a Schwoebel energy bayriand also
increasingN,,=1—, the queuing transition would be de- depends on the global net tilt anglie total car density In
layed and would be shifting smoothly, with obkC phase the MC (C) phase, the average slope of the surface, exclud-
boundary as the limiting case. JL focused on the finite-sizeing the cliff, is zero(nonzer9.
scaling(FSS properties of the fluctuations in the position of
the tail of the shock wavedl ~L?, and foundy=3 (except
for po=3% whgre a qancelllation oflthe leading t'img of flight- V. CORRELATIONS AND GROUP VELOCITY
type fluctuations gives rise tg=3) [11]. Monitoring the
location of the shock wave is analogous to observing the It is well known and easy to show that the stationary state
parked car density fluctuations in our model inside@end  of KPZ growth with PBC, the closed loop road without ob-
MC phases. JL did not address the scaling properties at thgtacles wherer=1 andn(Ng)=0,1, is completely random
queuing transition itself, but their transition is definitely sec-without any correlations whatsoever between finding a car at
ond order(the location of the shock wave moves continu- sitesi andj for anyi # | including nearest neighbor sites. In
ously with the total density away from the blockage ppint the surface representation, this means that up and down steps
are placed at randofii7] and that the width of the interface
W~ NY scales with the random walk exponept 3.
The stationary state remains uncorrelated in our model as
The AEP can be interpreted as a lattice representation ofell (as shown beloyvexcept near the garage. Those corre-
the Burgers equation with a discretized velocity field, both inlations are governed by the dynamic scaling exponent and
location and in its values)(x) =0,1. The latter is equivalent the group velocity with which fluctuations travel along the
to the so-called body-centered solid-on-solid growth moderoad.
[7,17), a lattice realization of KPZ-type surface growth. Each  In 1D KPZ-type surface growth, all characteristic times
occupied site represents a down step along the onescale ag~NZ with z=3/2. In car language, this means that
dimensional(1D) surface and every empty site an up step.local car density fluctuations with spatial widthroaden in
The surface heighte(x+ 3) are limited to even/odd values time asl ~t'2 The value of the dynamic exponenfollows
at even/odd lattice sitesh(x+3)—h(x—3)=1—2n(x). from the identityz+ y =2 implied by Galilean invariance of
The surface looks like the alternatively stacked bricks of ahe Burgers equatiofil2,13, together with the disordered
masonary wall, but rotated over 90 deg. Each car jump to the=3 nature of the stationary state. The exé@ethe ansaiz
right represents the deposition of a new vertical2lbrick.  solution of this specific model confirms this general result.
The average car density on the road represents the averageFluctuations travel with a group velocity,=1—2p, to
slope of the surface. At half density the surface is not tiltedthe right(towards the garagelong the road. From the KPZ
Periodic boundary conditions are the most common insurface growth perspective, the group velocity represents the
theoretical studies of surface growth, and this brick deposiaverage slope of the KPZ growing surface, and its fluctua-
tion version of KPZ growth is exactly soluble by the Bethetions grow perpendicular to the surface orientation. From the
ansat712]. It is a special line in the general phase diagramAEP formulation perspective, the value of is set by the
of the one-dimensional well-knowiXXZ spin4 quantum average stationary state currgntp,(1—p,) (easy to derive
spin chain Hamiltonian, and also in the so-called six-vertexsince the stationary state is Gauss$iand the definition of
model of 2D equilibrium critical phenomerjas]. the group velocity is

% ’_/A_’ Jammed phase 172

Normal low-density phase

0

IV. KPZ GROWTH
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e - T
vg=j,-i(p0)=(1-2p,). 3 P)=025+AXT

> O 0O X

This vy played an important role, e.g., in the AEP study by 3
Majumdar and Barm#19] of tagged-particle diffusion, and 107 ¢
in describing phase transitions between steady states in the
open road setuf20].

p(x)-0.25

VI. DENSITY PROFILES IN THE VARIOUS PHASES

The on-the-road car density profiles in tieand MC
phases are known exactly from the open boundary model
studies, in particular the one by Derrida al. [14]. These 10°
: : : : : : 10° 10 10
profiles play an important role in our later discussions and it
is useful to review how the group velocity enters in qualita-

tive explanation_s _of these exact resultsl. _ _ FIG. 3. Double logarithmic plots of the density profiles in tihe
In the road-limitedMC phase ata>3, the density tail  phase p,=0.25 anda=1), showing a X tail at the beginning of
has a power-law shape, the road(garage exit
p(X)=p;+AX"", (4)

locity is zero in the MC phase and therefore the cars at a
at both edgee= L (left),R(right), with x the distance from distancel from the edge of the road afpower-law corre-
the edge of the roatgarage entrance in our modeind p, lated with those that entered the garage at times earlier than
=1 the on-the-road car density. In contrast, in the input-At=1%. They have no knowledge about cars arriving at the
limited C phase atv<3, the car density is constani(x) garage more recently. This explains the power-law tail in the
=p,, at the beginning of the roa@arage exjt and has an density distribution.

exponential tail at the end of roddarage entrange In the C phase, the same correlation spreading takes place
s e within a moving frame of reference with nonzero group ve-
p(Ns—x)=p,+Ax 3%, (5 Jocity. Information reaches the edge of the rdadrage en-

. oo . trance at a ratevy (linear in time faster than it can spread
}/;lrtlht:]hgzoil-ltnﬁ[-‘rlo?tlj_ca)r] densipy, = and the correlation backwards as~t? (since 1#=2/3< 1). Memory has no
9 L@k 1 opportunity to develop near the edge of the road, and the

Power laws with exponent=3 arise naturally in this . ' : . .
problem because of its critical fluctuations. The bulk proper—denSIty profile adjusts itself at the road end as if the cars on

ties of the KPZ stationary state are invariant under a rescaF—he road are _completely uncorrelated. The expon(.ant_lal .ta|I
ing of all lengths as<’ =bx, all times ast’ =b?, and the reflects a suction-type effect; the excluded volume limitation

surface heights as' =b*h. The car density scales, therefore, on the car mobility does not act on the cars departing from

naively asp= dh/dx~b*~ 1. This means that power-law tails the road.

in the density distribution near the edge of the road, with Similarly, in the MC phase, power-law correlations with

exponenty—1=—1, like in Eq. (4), are to be expected. earlier cars that escaped from the garage and entered the road

On the other hand, the disordered nature of the stationar§/Ve rise to a power-law tail in the density profile at the
state suggests exponential profiles, like in B). Indeed, in ~ P€ginning of the roadnear the exit of the garagewhile in

the bulk, the stationary state density-density correlation functh® C phase, this information travels faster away from the
tion road start than it can spread backwards. So, new cars enter-

ing the road do so completely uncorrelated, resulting in no
a(r)={p(x+r)p(x))—(p(x+1)}¥p(x)) (6) road-start tail in the profile whatsoever. This confirms why
the MC phase is road limited and tl@zphase is input lim-
does not decay as an'* power law as may be suggested by ited. In the latter, the car supply at the garage controls the
the above scaling argument, but instead decays exponentialtiensity near the edge of the road and also everywhere else on
with a very short correlation length, that is zero in this spe-the road.
cific model since the cars on the road are totally uncorrelated In the N phase, we find numerically, from Monte Carlo
in the stationary state. simulations, an exponential tail at the road end and an 1/
To make sense of Eg&4) and(5), it is important to real-  tail at the road start as shown in Fig. 3. The group velocity is
ize that the density profile near the edge of the road incorpoalso nonzero in th&l phase, which explains the exponential
rates temporal correlations, and also to appreciate the role @it tail as follows. Just like in th€ phase, the garage is
the group velocity. invisible to the incoming of cars from the road; fluctuations
The power-law profile in the MC phase is the result of arrive at the garage fastét constant velocitythan they can
correlations with cars that reached the edge of the road arspread backwardéwith Al~tY?). The fact that in theN
moved into the garage at earlier times. Such correlationphase only a few cars reside inside the garage is invisible to
spread in time over a spatial distaricet'?. The group ve- the cars entering the garage.
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A 1/x tail at the beginning of the road is what one expects 107

R . Tz 3
from the deterministic part of the Burgers equation. The so- T Zw'g‘gﬁgs/g .3
lution of the deterministic Burgers equation, C-Npoint
Nphase o
Jv N dv v 7
gt ax Ve @) B »
S 102} :
S

with the velocityv pinned at a specific nonzero value at site
x=0, is readily seerte.g., in the Hopf transformed formu-
lation) to be of the generic form(x) ~1/(1+ax), i.e., hav-
ing the 1x power-law shape.

In the C phase the system selects the vafze0 for the

-3 )
constant, and in thdl phasea# 0. In both cases, the group 10 10° 10°
velocity v,>0 carries away KPZ fluctuations faster than T
they can spread, such that the KPZ noise term can be ignored
at the road startstationary frame of referengeThe only FIG. 4. Double logarithmic plots of the density-density correla-

noise that remains is that from the random process by whicHon functiong(r, ) in the moving frame of reference, i.e., with
cars are being taken out of the garage and put on the road. mVs” @d vg=(1~2p,). The C phase data are obtained a§
the C phase, the supply of cars is bottomlegg*0), such :h0'75 gndazo'_ZS’ thec;jN point data ap,=a=0.25, and th&\
thata=0 (the entire on the on-the-road bulk car density isP"2>° ata g1,=0.25 anda=1.

irglltiar(rj]i?g dtgig?;]aegegg”z’ ('jnoghser’\]lo?Z?/Seer\’,vtﬁ;;uf;]pelyrg;ga;sucifnary statg¢. The above discussion ignores finite-size ef-
thata+0 garag ' cts. For open road or garage type boundary conditions, the
' correlator explicitly depends on the initial positiap of the

car at timety and also on the road lengtt,
VII. DENSITY-DENSITY CORRELATIONS

g(r,7%9,Ng)=b?>X"Vg(b~1r,b~?r;b ™ xy,b " INy).

It is useful to discuss how the group velocity affects the (13

car-car correlation function,

_ Finite-size effects set in at times when the correlation
g(r:T)_<p(X+r)t+7p(x)t>_<p(X+r)t+7’><p(x)t>' (8) cones h|t the road edge‘S’T(Xo)z or TN(NS_XO)Z' At times
According to scaling theory, it obeys the form longer thart,~NZ, we therefore expect that the car-car cor-

relator decays exponentially, e.g., as

r

g(r,7)=b?x"Yg(b~'r,b~?7)= T2<X—1>/ZF(E) C)

7 ~ N2 DgmaliNg), (14)

1
0,7; ENS ,NS

g

In the limit g=r/7"*~0, the scaling functio(¢) must  ppq apove analysis applies to the MC phase, where the drift

approach a constant since the autocorrelation decays as(&ouo velocity is zero. In theC phase(and also theN

power law, phas¢, we need to switch to the moving frame of reference

(10) by replacingr—r+uv47. This has some peculiar conse-
quences. For example, the autocorrelation functyd,r)

with y=21. In the opposite limit, of largep, the scaling decays exponentially in timgeven at short timesThe cor-

function must decay exponentially becagge,0)=0 due to ~ relation conel is slanted in the direction of the flodthe

the random nature of the stationary stée, more generi- ~correlations move with the flowand| widens slower than

cally, it decays exponentially with some correlation ragige ~ in€ar in time, such that the=0 line in the world sheet lies

of the same order as the interaction range between.ddre  Outside the correlation cone. The KPZ-type correlations are

g(O,T) N 7_2()(71)/2,\/ 7_72/3

above scaling relation suggests the form somewhat hidden. In order to expose them, one needs to plot
them in some special manner, e.g(p47,7) (the autocorr-
F(¢)~ 2 De=¢/¢o (11)  elator in the moving frame of referengeas illustrated in
Fig. 4.

in the limit ¢=r/7*—0o, such that

L VIll. SCALING AT AND NEAR THE CONDENSATION
g(r,7)~ 120D 1o _ Zgr/ 12) TRANSITIONS
r

Let us turn now to the scaling properties of the two con-
with y=1/2 andl = ¢,7%. The lengthl in the exponential ~densate phase transitions from thand MC phases into the
defines the “correlation cone” that we already mentionedN phase. The stationary state value of the parked car density
above. Within the cone the correlations decay as a powes,=N,/N; acts as the order parameter. We expect it to obey
law, and outside it the cars are uncorrelataed in the sta- the FSS relation
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FIG. 5. The parked caforder parametgrexponents(a) y,
=0.505(5) andb) 8=1.00q1), defined asN,~ NZP andp,~(a
—a*)P, at p,=a=0.25 of theC-N phase boundary.

FIG. 7. Scaling functionb(£) defined in Eq.(17) at the same
transition points as in the previous two figure@) p,=a
=0.25 (C-N) and(b) p,=1/2, «=1 (MC-N). The numerical data
T 1 collapse very well forx,=y.=1/2, as suggested in E¢L7). The
pp(€,Ng ™) =b"ppy(b¥<e,bNg *) (19 scaling function®(£)—0 for ¢<0 and®(&)— & for £>0.

near the two condensation transition lines with a scaling fac- Figure 5 shows the numerical resultsygfand 8 at point

— . —_— * J—
:jc_)r b, anc: 6_(6:] a*) or €=(pg—po), a measure of the  _ 555 o theC-N phase boundary and Fig. 6at1 (and
|stan%e romht c trarr:sn(ljon. . f ked . 0.79 of the MCN phase boundary. Notice that the FSS cor-
In the N phase, the density of parked cars IS 2§09,  rgctions in the exponent, are much stronger at the M-
=0. When approached from ti@@and MC sidesp, goesto .- cition than at th€-N transition.

~elB =
fzero ahSpp |§| ; Whereﬂ—gp/yé.bThe kremo;]/al 0; carsh The validity of the scaling relations is further illustrated
rom the road Is accommodated by taking them from t_eoy plotting the scaling functiod® (¢) in the following form:
passive inert ones residing inside the garage. This implies

that p, must vanishes linearly at the transition, and tkat —1y _ N~ %p Ye
=Y. Our numerical simulations confirm thai,~|e|, as ppl€Ns ) =N, PO (NS%e), (a7
B=1 in Figs. 5 and 6.

The total number of parked carbi) scales as and the associated data collapse while moving through the

transition points at constapt, and constantr, respectively.
Np(e,NS_l):bypr(byfe,bN; b, (16)  The curves in Fig. 7 collapse very well.

The fluctuations and the FSS corrections to the number of
with exponenty,=1—x, according to Eq.(16) and N,  parked cars are a mirror of the density-density correlations
=ppNs. In the N phase, the density, remains zero, while and the density profile of cars on the road. They also reflect
the total number of parked cart\f) diverges towards the how the latter builds up as a function of the length of the
transition aszN|6|(1—xp)/yE_ We find numerically that this road. At the transition points, the bulk value of the on-the-
power law is linear as wellN,~|e|. Combined with the road densityp, =N, /N is exactly equal to the total number
linear scaling of the car density from ti@or MC side(im- ~ of cars in the system divided by the road lengih,

plying y,=x,), this yieldsypzyezé. The exponeny, de- = NC/_NS_, ;uch that there would be no need for any car to
termines the FSS behavior of the total number of parked carg¢main inside the garage. - _
at the transition point itselfN,~ N’ (and also that the den- We find numerically that at th€-N transition point, the

density profile retains the same structure as inside Ghe
phase; with no tail at the beginning of the ro@grage exit
and an exponential tail at the end of the rd@drage en-

sity of parked cars vanishes as~NP"%).

0.55

/ 1008 BINg=512 —— trancg. Such profiles cannot account for tblg:% FSS di-
05 (aIN=B2048: 01 —— vergence in the number of parked cars. The scaling behavior
=075 o

Np~ N‘S’p must, therefore, reflect directly the corrections to
@ 1 W FSS in the bulk density of cars on the road. The vatye
=1 naturally arises because at the transition PQiRt; p;
andp,= dh/dx scales ag. X" 1~L %, whereL corresponds
i L , to a given length of the roal;.
0 002 004 006 008 0.1 01 02 03 04 05 A more intuitive explanation follows again from the non-
N, e=be’p) zero group velocity at th€-N phase boundary. As men-
FIG. 6. The parked caforder parameterexponents(a y, f[ioned above in the discussion of the density distribution tail
=0.495(5) and(b) B=0.9973), at p,=1/2 anda=1 of the N theC phase, the events by which cars enter the road from
N-MC phase boundary. For the other two curvesa taken along ~ the garage are completely uncorrelated due to the slanting of
the MCN phase boundary a¢=1/2, the exponeny,, retains the the correlation conegthe correlations move with the flow
same value, but is subject to large/small corrections to finite-sizéowards the garage and spread slower than linearly, only as
scaling originating from 2/3 power-law density profile at the begin-1~t"#, such that communications with later events at the
ning of the roadgarage exjt beginning of the road are impossihl&o the entry events to
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0.75

likely linked to the KPZ dynamic exponemt=32. But it re-
mains unclear how to glue the following pieces together.

At the MC-N transition, the group velocity of the fluctua-
tions, vg=1—-2p,, is still zero (but only barely since p,
=1. This means that time of flight aspects, which dominate
the C andN phases, do not come into play. Near the garage,
the tail in the density profilep(x)=3+Ap(x), creates a
local nonzero group velocity 4(x)=—2Ap(x) pointing
back into the garagénstead of away from it as in thé and
N phasep

Recall from Sec. VI that the density profile in the MC
phase has the same type of power-law profijg(x) ~x"",

. . . . . . but with the “KPZ” (power-counting exponent valuev

0'5510 20 30 40 50 60 70 80 =3. In that case, fluctuations at the road start do not reach
the bulk of the road: the leading edge of the information cone
is stationary because the backward movement of its center of

FIG. 8. Effective(finite-size-scaling typevalue for the expo-  massx,~ —tY**" (implied by dx./dt~x; ") matches ex-
nent v of the density profiles at the beginning of the road:  actly the rate of its spreading,~t*2. So thev=13 density
=0.66(1) atp,=1/2 anda=1 (or 0.79. At the MCN phase profile fully screens the garage from view in the bulk of the
boundary, the density profiles decay as a 2/3 power law, instead ¢h5q. Exactly the same screening of the information takes
the 1/2 power law found inside the MC phase. place at the end of the rodgdarage entrangsince also there

. the MC phase density profile has exponent3 (but in an
thg road from the garage _behave like uncorrelated randorgpposite forward moving,, sense and with a negative den-
noise, and the fluctuations in the number of cars scale, ther

. orca ety profile amplitude

fore, as the square root of time. The. time in question is ¥I’Ee densitypprofile exponent=2 at the MCN transition
proportional toN because the fluc_tuauor(s_reated at the does not fully screen the garage any more from observers
garage exjtmove along the road with velocityy, and are located far away on the road. Total screening is not needed

wiped out after they'return to the garage. From this, it fOI'because KPZ fluctuations start to tunnel through the garage
lows that the fluctuations in the number of parked cars scale

asNs. Mo.reover,Np cannot be negative, which means that égv(\:/(;vlérr,]?;viqg daé/gjc%ic: F()g[rl](\),?ﬁclitng %Z;gg%eea;;golfs’
the fluctuations sample the bottom of the garage and that t ent v=2 from these considerations

transition from theC to N phase, therefore, takes place when 3 '

the garage contairid,~ /N cars.

In summary, the scaling at the-N phase boundary is
governed by the bulk fluctuations in the-on-the-road density, In this section, we explore the fluctuations in the parked
which is ruled by the nonzero group velocity of KPZ fluc- car density and also car-car correlations on the road. Of par-
tuations, and this leads directly to random noise, &g ticular interest is the onset of transmission of information
~Ng, corrections to FSS. through the garage at the phase transitions. In the two con-

The FSS corrections to scaling in expongpty,) atthe densate phases, the garage acts as a car reservoir and as a
MC-N phase boundary are much more complex. Ttnak) sink of fluctuations, while in the normal phase it contains
group velocity is zero, and power-law density profiles areonly a few cars and transmits fluctuations.
realized at both edges of the road. At the end of the road, the The temporal fluctuations in the total number of parked
density profile follows a critical exponent=3, the same cars, G(Ng,7), measures also the fluctuations in the total
power as that inside the MC phase discussed in Sec. Vhumber of cars on the road. It is therefore equal to the inte-
However, at the road stafthe exit of the garagethe power-  grated car-car correlatddefined in Sec. VI,
law exponent changes from= % inside the MC phase to

0.7

> 065

06 1

X

IX. PARKED CAR FLUCTUATIONS

P " - o Ng—1
=3 at the MCN transition. This is shown in Fig. 8 fos B — -
=1 andp,=%, where the effect is the strongest. G(NSIT)_X1%= [{p(X0,to)p(X1,t1)) — p(Xo) p(X1)]
The 2 power law does not change th&’? FSS behavior
i . Ng—1 Ng—xo—1
of the number of parked cars. It is responsible, however, for _
strong corrections to FSS, as clearly visible in Figa)6The =2 > d(r,mxg,Ny), (18)

2 - . . Xg=1 r=-xpt+1
v= 35 power-law profile contributes only a subdominant term

to p, because it decays faster than the twe 3 contribu-  with r=t,—t, andr =x,—X,. The summations run over all
tions (from the density profile at the end of the road and fromrpad sitesc, and distances that fit on the road. Direct inte-
the KPZ-like bulk road density fluctuationsWe have not gration of the scaling relation, E413), yields that(in the
achieved yet a good understanding of this novel vaudor  pC phasé G obeys the scaling form

the exponent of the density profile at the beginning of the

road. It obviously lies correctly in between the MC aNd G(Ng,7)=b?¥ G(b™*Ng,b~?7)=N2X F(7/N?).
values,} and 1, respectively. Moreover, its values 2, is (19
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FIG. 9. The parked car correlat&(Ng, 7) in the MC phase: for ol
small 7 (a) it decays linearly as a function ef?/N, and for large
7 (b) it exponentially as a function af/NZ, wherez=3/2. The data
are obtained ap,=0.75 anda=1. -0.04

0 0.5 1 1.5 2 2.5 3

. . /T
In the KPZ representatiolt; is the global slope-slope auto- k

correlator, and at=0, reduces to the conventional defini- FIG. 10. The parked car correlat@(Ng,7) in the C phase; it
tion of interface width(second moment of the height distri- decays linearly as a function efand becomes zero after one time
butior). We will now discuss hows behaves in the various of flight T=Ng/vg(=7qgn). Since it grows linearly with system

phases and at the phase transition points. sizeNs, we plotG/Ns. The data are obtained at=0.75 anda
=0.25.

A. Inside the MC phase

L . ) . Our numerical results in Fig.(B) are consistent with this as
The following intuitive discussion tells us how the scaling ;.

function 7 behaves in the MC phase. Eadfir,7) has a
correlation cone of size~ 2. The cars within this cone are
correlated with the one at sitg at timety as X~ Y2 The B. Inside the C phase

integration oveix, andr in Eq. (18) yields In the C phase, the fluctuations scale with the same expo-

G~NS><|XT2()(-1)/ZNNST(2)(—1)/Z’ (20) nents as in the MC phase, but the nonzero group velocity
vy=1-2p, changes completely the appearance of correla-
where the correlation conés- 7 are assumed to be small t@on function;, ”k?G(.NS'T)' The density—density.correla—
with respect to the road siZd;. The exponent is equal to tions sprea'd just like in the MC phase, bl,Jt only with re~spect
=1, such thaG~ N, and thatF approaches a constant in to the moving frame qf referer!ce and witlreplaced byr
the limit 7/N2—0. =r+uvy7. The corr(~a|at|on functiomgy(r,t) scales as a power
This estimate fails to take into account finite-size effectslaw g~ 7>~V atr =y 7 (i.e,,r=0) but exponentially at
Correlations are truncated near the two road edgkénfor-  nonzeror. The fluctuation cones,~t'?, are slanted and
mation is entering the garagerhe loss term is of the order move with the flow.
Figure 10 shows5(Ng,7) inside theC phase as a func-
[ vV 12 12(v1) 2 tion of time 7 for various road sizedls. It decays linearly
2] dxg (1=xg) P Ve~ |2 120D~ 7202 (21) il hitting zero atrggn=Ns/vg(=T), and then it remains
0 at zero. All fluctuations move with the group velocity to
the right and reach the garage at a constant rate. After one
time of flight, T, all correlations with the initial configuration
have disappeared. The rounding @G at T is of order At

This suggests thdb is of the form

1
_ _ ’ o ~T2 and is due to the broadening of the remaining corre-
G=Ngla—b—+ , (22 . .
Ns lation cones just before they are absorbed by the garage.
with constants andb, and suggests that the scaling function C. Inside the N phase

F(¢) is analytic at short times in the parametg= 7%/ N
instead of¢’ = 7/NZ. Our numerical results shown in Fig.
9(a) are consistent with this.

In the opposite limitg, ¢’ —co, where time is large com-
pared to the length of the road, all correlation cones ar
limited and equal td=Ng, and G behaves as in Eq14),
such that

In theN phase, the fluctuations in the total number of cars
on the roadG(Ng,0), are not proportional thlg but are only
of order one. The garage is not macroscopically occupied
any more and acts very much like an ordinary road site.
?:igure 11 shows the behavior @& (Ng,7) inside theN
phase. The total number of cars in the system is conserved,
such thatG reduces to

G~NxIxg

1 z
i - —a(7/Ng)
0.7 st'Ns> Ne =7, (29 G(Ns,7)=(Np(to+ PINy(to)) — N2, (24
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FIG. 11. The parked car correlat@{N;, 7) in the N phase; the
garage is no longer macroscopically occupied, suchGdbes not
scale withNg anymore. The correlations light up, like a lighthouse
beam, at every time-of-flight intervatyq=T. The data are ob-
tained atp,=0.25 anda=1.

and behaves similar to the autocorrelaggd,). The group
velocity is nonzero, and therefoi® decays exponentially
fast. However, because of PBG,comes back to live, like a
lighthouse light beam, after every time-of-flight interval
(=Ng/vg), with an amplitude of ordeT?*~ 1"z and with a
temporal width of ordet~ T2,

D. At the C-N transition

Figure 12 shows hows(Ng,7) at theC-N transition de-
cays in time for various system sizes. At smallit decays
linearly, rather like in theC phase, but then it seems to os-
cillate with a period determined by the time-of-flight time
scale T; G(Ng,7) goes through zero at abotit=3T and
shows a strong anticorrelationta¢ T (the maximum lies just
before ib.

0.08 -
128 '~
i -
0.06 ¢

0.04

G(Ng,T/Ng

0.02

1.5
T

FIG. 12. The parked car correlat@(N,7) at theC-N transi-
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_0.04 1 1 1 1 1
0 0.5 1 15 2 25 3
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FIG. 13. Evolution of the parked car correlat@(Ng,7)
through the phase boundary at fixed system 8ize 512 along a
line of constant group velocityiyg=1—2p, with p,=0.25;0=1 in
the C phase and at th€-N transition, whilee=0 in theN phase.

Figure 13 illustrates how the transmission of information
through the garage commences at the phase transition. Sup-
pose we approach the transition point from @@hase fol-
lowing a line of constantr. In the C phase, these lines co-
incide with lines of constant group velocitin the N phase,
vy is constant along lines of constapt.) So nothing
changes on the road until we hit the transition point, &d
decays linearly to zero and remains zero after one time-of-
flight time scale. At the transition pointG transforms
abruptly into the oscillatory shape, with an anticorrelation
after one time of flight. After that, it reduces inside tNe
phase to the lighthouse shape, in whig{N,0) oscillates in
phase and does not scale whly any more.

The anticorrelations at th€-N transition point are in-
triguing and need to be explained. Imagine a localized posi-
tive density fluctuation at the beginning of the road at time
to. In the MC phase, it simply sits there while broadening as
|~7Y%~ 728 and weakening in amplitude as?*~1)/?
~ 7728 In theC phase, it broadens and weakens in the same
manner, but travels like a solitary wave to the right with
velocity vg=1—2p, and drops out of the road after one
time-of-flight unit T. In the N phase, it behaves very much
the same, except that the positive density fluctuation creates
a deficit inside the garage since the number of cars in the
garage is finite, such that fewer cars can be put on the road in
the immediate wake of the positive fluctuation. Therefore, in
the N phase, every positive fluctuation carries a compensat-
ing (again localizel negative tail with it. Figure 14 illus-
trates the difference schematically, and our numerical simu-
lations confirm this picture.

One could say that in thBl phase positive and negative
local excitations are bound in pairs, and that they unbind at
the N-C transition. On approach of the transition from tde
side, the width of the negative tail grows, but with conserved

tion; it has a strong anticorrelation after one time-of-flight interval total area(equal to the area of the positive part of the exci-

T, even though for smalt it decays linearly just like in th€ phase
(and with almost the same group velogityhe data are obtained at
po=a=0.25.

tation), because the average number of cars in the garage
increases towards the transitiend divergesand therefore
the reduced car output is being spread over more time. At the
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FIG. 15. The parked car correlat®&(Ng,7) at the MCN tran-

b) Parking Garage sition; the shape is very similar to that inside the MC phase, see Fig.
An(x) 9. The data are obtained paf=1/2 anda=1.
the group velocity to maintain its memory at the garage exit.
CoT This implies that the exact stationary state rebuilds itself in
AN~ the wake of the regiment, and also that the enhanced road
0 T o < density decays linearly in time and vanishes completely after

' ! one time of flightT, just like ourG as a function of timer.

At the transition point, the garage only contaihg,
~Ng cars, so that the same type of global uniform excita-
tion can only have an amplitude of ordeXd) ~* and al-

(©) Parking Garage ways dgpletes the garage. This _regiment of cars trav_el; to the
An(x) right with velocity v, just Ilke in theC'phase, but in its .
wake the garage cannot rebuild the stationary state because it
is empty. A depleted road density is established in the wake
I | of the enhanced excitation, and thus anticorrelations build
| :/\ up, and after one time of flight the average density of cars on
% the road is below normabnd a surplus of cars resides in the
vy garage. This explains qualitatively the oscillatory behavior
of G at the transition point and the anticorrelationsTat

. . . ) E. At the MC-N transition
FIG. 14. Schematics of soliton-type local perturbations diffu-

sively spreading from the initial configuratiofsashed linesto one The correlations at the MG} transition are less spectacu-
time-of-flight interval later(solid lineg: (a) in the C phase,b) at  lar than at theC-N transition. The group velocity is zero
the C-N transition, andc) in the N phase. inside the MC phase, and still remains zero at the NIC-

- o ) ) ) transition. Only inside th&l phase, does it start to shift con-
transition point itself, the negative tail has vanished, excepfinuously away from zero. Figure 15 shows h@scales at
nite-si i -1 o ' .
for the finite-size scaling effect of ordeN¢) "2 the MCN transition. These numerical results are almost the
Local excitations, thus, behave quite interestingly. How-same as those inside the MC phase in Fig. 9.
ever, they d(_)_not ex_plaln the_ difference in the behawo_Gof Recall the argument about the behavioGifr,Ny) inside
at the transition point and in th€ pha_se_. These s_olltary_ the MC phasein section IX A), and imagine how this was
waves do not deplete the garage sufficiently to trigger itSnogified at the MON transition. The factoN in Eq. (20)
bottom because at the transition point the number of parkeﬂepresents the number of cars on the rétm number of
cars still diverges aS/E-_ _ _ sites X, that are occupied This should be modified to
Only nonlocal excitations, which encompass the entlrepoNS_a N., since the number of parked cars scales as
sygtem, are able to e”_‘PW out the_ garage. Con5|der_an exc\lms_ The other terms, the spreading in time of the correla-
tation where the density of cars is globally and uniformly o' cones and the autocorrelations on the road, are likely

enhanced along the entire rogel,=p,+A. This requires ,,changed. Such differences are subtle and not surprisingly
that the number of cars to be taken out of the garage Shou'rqumerically invisible.

be proportional to the road lengtl. In the C phase, those
will not deplete the garage because the number of parked
cars is also proportional thlg. Such aA regiment of extra
cars marches with group velocity, to the right, reaches the In this paper, we presented the scaling properties of dy-
end of the road, and thus returns to the garage at a ratgamic condensate phase transitions in terms of an 1D asym-
uniformly in time, row by row. Throughout this process, the metric exclusion process with a parking garage. There are
garage is not aware of the existence of the regiment since wevo types of condensate phases: the maximal curiidt)

did not hit its bottom and because the information cohes phase, where the road controls the density of cars on the
~ 7Y% on the road do not broaden fast enough compared teoad, and the condensaf€) phase, where the garages a

X. SUMMARY AND CONCLUSION
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reservoij controls the number of cars on the road. The exisimore realistic interactions between the cars on the road
tence of a group velocity is crucial for understanding thechange this? Do the simplifications in the traffic jams, like a
behaviors of correlations and the density profiles in these twatationary truck versus a moving one and ignoring the spatial
phases and at the phase transitions. structure inside the queue of cars behind it by collapsing
At both condensate transitions, the number of parked carthem (piling them up into a “garage,” affect the exponents?
scales asN,~ NZP with y,= 1, while on approach of the There is some evidence suggesting that the exponents are
transition, the density of parked cars vanishes linearly witdindeed robust, e.g., in the Janowsky and Lebowit]
the control parametefhe total density of cars in the system Model, the same simple KPZ-type values of the exponents
and the exit probability from the gara)gpp~|e|'3, with g appearin the quct'uatlons Qf the' gqueue, aIthough a detailed
=1. Also, the transition points represent the onset of comStudy of the queuing tranSIt!on itself needs still to pe per-
munication of information through the garage. This leads tdormed. In addition, introducing short-range car-car interac-
interesting autocorrelations in the number of parked cargions [15,21 do not seem to change the exponents either
particularly at theC-N transition, due to the nonzero group 22].
velocity and associated time-of-flight effects.
O}Jr parking garage _model is a bare—.bone version of dy- ACKNOWLEDGMENTS
namic Bose condensation and of queuing phenomena, like
traffic jams. The fundamental issue that needs further study We thank Joachim Krug for helpful discussions. This re-
is whether the above scaling behavior, in particular the valsearch was supported by the National Science Foundation
ues of the critical exponents, are universal or not. How daunder Grant No. DMR-9985806.

[1] T.M. Liggett, Interacting Particle SysteméSpringer-Verlag, (1999; in Traffic and Granular Flow'97 edited by M.
New York, 1985. Schrenckenberg and D. E. Wd|Bpringer-Verlag, Singapore,
[2] A.-L. Barabai and H.E. Stanleykractal Concepts in Surface 1998; H.-W. Lee, V. Popkov, and D. Kim, J. Phys.39, 8497
Growth (Cambridge University Press, Cambridge, England, (1997).
1995, [10] M. Bretz, J.B. Cunningham, P.L. Kurczynski, and F. Nori,
[3] Nonequilibrium Statistical Mechanics in One Dimensiea- Phys. Rev. Lett69, 2431(1992; G.A. Held, D.H. Solina II,
ited by V. Privman(Cambridge University Press, Cambridge, D.T. Keane, W.J. Hagg, P.M. Horn, and G. Grinsteind. 65,
England, 199Y 1120(1990; P. Bak, C. Tang, and K. Wiesenfelithjd. 59, 381
[4] J. Marro and R. DickmanNonequilibrium Phase Transitions (1987 .
in Lattice Models(Cambridge University Press, Cambridge, [11] (Sl.géa.]anowsky and J.L. Lebowitz, Phys. Rev.45, 618

England, 1999
[5] L. Frachebourg, P.L. Krapivsky, and S. Redner, Phys. Rev,
Lett. 75, 2891 (1995; I.M. Campbell, Catalysis as Surfaces

(Chapman and_HaII, Nevy York, 198&3'(:_' Bqnd,Heteroge- [14] B. Derrida, M.R. Evans, V. Hakim, and V. Pasquier, J. Phys. A
neous Catalysis: Principles and Application&Clarendon 26, 1493(1993: B. Derrida, E. Domany, and D. Mukamel, J.
Press, Oxford, 1987 Stat. Phys69, 667 (1992.

[6] V. Mendez and J. Camacho, Phys. R66536476(1993; J.D. [15] J. Krug, Phys. Rev. Let67, 1882 (199])_

Murray, Mathematical Biology (Springer-Verlag, Berlin, [16] V. Popkov and G.M. Scha, Europhys. Lett48, 257 (1999.

[12] L.-H. Gwa and H. Spohn, Phys. Rev. L&, 725 (1992.
[13] M. Kardar, G. Parisi, and Y.C. Zhang, Phys. Rev. LB6. 889
(1986.

1989. [17] D. Davidson and M. den Nijs, Phys. Rev58, 5029(1999; J.
[7] H. Park, M. Ha, and I.-M. Kim, Phys. Rev. %1, 1047(1995); Neergaard and M. den Nijs, Phys. Rev. L&, 730(1995.

J. Krug and H. Spohn, iKinetic Roughening of Growing Sur- [18] M. den Nijs, in Phase Transitions and Critical Phenomena

faces Far From Equilibrium edited by C. Godhe (Cam- edited by C. Domb and J. LebowitZAcademic, London,

bridge University Press, Cambridge, England, 1994 Plis- 1988, Vol. 12; H. van Beijeren and |. Nolden, iStructures

chke, Z. Raz, and D. Liu, Phys. Rev. B5, 3485(1987; P. and Dynamics of Surfacegdited by W. Schommers and P.

Meakin, P. Ramanlal, L.M. Sander, and R.C. Ball, Phys. Rev. von BlanckenhagefSpringer, Berlin, 1987 \ol. 2.

A 34, 5091(1986. [19] S.N. Majumdar and M. Barma, Phys. Rev4B, 5306(1991).
[8] R. Parthasarathy, X.-M. Lin, and H.M. Jaeger, Phys. Rev. Lett[20] A.B. Kolomeisky, G.M. Schtz, E.B. Kolomeisky, and J.P.

87, 186807(2001); C. Papadopoulos, A. Rakitin, J. Li, A.S. Straley, J. Phys. 81, 6911(1998.

Vedeneev, and J.M. Xubid. 85, 3476(2000; E. Emberly and  [21] J.S. Hager, J. Krug, V. Popkov, and G.M. SthiPhys. Rev. E

G. Kirczenow,ibid. 81, 5205(1998; F. Capasso, K. Moham- 63, 056110(2001); T. Antal and G.M. Schiz, ibid. 62, 83

med, and A.Y. Choibid. 57, 2303(1986. (2000.

[9] M.R. Evans, N. Rajewsky, and E.R. Speer, J. Stat. P3fysi5 [22] M. Ha and M. den Nijsunpublishe

036118-11



