New Physics: Sae Mulli,
Vol. 70, No. 7, July 2020, pp. 613~617

http://dx.doi.org/10.3938/NPSM.70.613

Driven Contact Process with Temporal Feedback

Meesoon HA*
Department of Physics Education, Chosun University, Gwangju 61452, Korea

(Received 30 April 2020 : revised 25 May 2020 : accepted 04 June 2020)

We investigate a directed percolation (DP)-based cyclically coupled model with branching bias,
namely, the driven contact process with temporal feedback (DCP-TF). In the DCP-TF, we control
not only the temporal feedback by using its memory strength and the power-law tail exponent
for the incubation period of the intermediate state but also the preferred direction of branching.
The CP-TF in a one-dimensional lattice exhibits continuously varying scaling behaviors, which is
attributed to the long-term memory caused by the power-law type feedback. This implies that the
CP-TF does not belong to the DP universality class. However, its deviation from the DP exponent
is not very big. To clarify this issue, we test the relevance of the external driving to the critical
behaviors of CP-TF. If it belongs to the DP universality class, the branching bias is irrelevant to
its critical exponents. We find that the branching bias does affect both the region of continuously
varying scaling and the value of critical decay exponent. Based on numerical results and intuitive
arguments in the DCP-TF, we discuss how the universality class of the CP-TF is related to the

universality class of the pair CP with diffusion.
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I. introduction

Among many mathematical models of epidemics, the
contact process (CP) is widely used as a prototype model
to study the critical behaviors of epidemic spreading and
absorbing phase transitions (APTs). Under the circum-
stances that either immunization or recovery (removal)
is absent in the system, the CP is the simplest model
to belong to the directed percolation (DP) universality
class, even in the one-dimensional (1D) lattice.

The central interest in the model study of epidemic
spreading is the structure of nonequilibrium stationary
states (NESS) and the dynamic pathways to those NESS.
It is because the system undergoes an APT from a phase
where dynamics is inactive (trapping in an absorbing
state) to another phase where dynamics is active as a

function of control parameters [1].
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There are two distinct well-established universality
classes of APTs. The DP universality class [2] has only
one or infinitely many absorbing states, whereas the di-
rected Ising (DI) [parity-conserving] universality class [3]
(and references therein) has two absorbing states with
the Zs symmetry. Because of the DP conjecture by
Janssen and Grassberger [4], it is an interesting challenge
to find new models that belong to another universality
class. Among them, the pair CP with diffusion (PCPD)
is the most debatable one [5-15].

In this paper, we study a 1D driven CP (DCP)-
based cyclically coupled epidemic model with the long-
term memory and the branching bias, namely the DCP
with temporal feedbacks (DCP-TF). The DCP-TF has
the power-law lifetime distribution of the intermediate-
exposed (E) state between susceptible (S) and infected
(I) states. This can be interpreted as the memory of the
incubation (quarantine). The CP-TF was first proposed
by H. Park in Chapter 5 of Ph.D. thesis [16], where
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continuously varying scaling behaviors were reported as
the memory strength and its power-law decay exponent
vary. Such behaviors are similar to those of the general-
ized pair CP with diffusion (GPCPD) [10], which implies
that both the GPCPD and the CP-TF do not belong to
either the DP or the DI universality class.

To clarify the universality class of the CP-TF, the
branching bias is employed as the external driving be-
cause it is well-known that the branching bias is irrel-
evant to the DP universality class [11] (and references
therein). If the branching bias is relevant to the criti-
cal behaviors of the CP-TF does not belong to the DP
universality class. Our numerical results show that the
presence of the branching bias changes both the con-
tinuously varying scaling regime and the critical decay
exponent value. Based on intuitive arguments, we claim
that the CP-TF with the long-term memory belongs to
the different universality class from the ordinary CP, not
the DP universality class.

This paper is organized as follows. We briefly review
the CP and describe the dynamic rule of the CP-TF with
the branching bias in Sec. II, where the long-term mem-
ory is also discussed as temporal feedbacks. In Sec, III,
the critical behaviors of the DCP-TF are numerically
compared with those of the CP-TF. We conclude this

paper with summary and some remarks in Sec. IV.

II. Model

Consider the ordinary CP in a 1D lattice of L sites,
which is a typical single absorbing state model. In the
CP, each site can be either empty (0 for the susceptible
state) or occupied by only one active particle (A for the
infected state). The initial condition is exactly the same
for three cases: the CP, the CP-TF, and the DCP-TF:
pa(0) = Na(0)/L = 1/2 and pp(0) = Np(0)/L = 0.
However, in the CP-TF and the DCP-TF, intermedi-
ate exposed states, denoted as B, are created as time
t elapses. The inactive particle B has the lifetime for
either the incubation of epidemic disease or the quaran-
tine from epidemic spreading, so that the dynamics of B
plays a role of the long-term memory in the system as
temporal feedbacks.

In Fig. 1, we illustrate how the dynamics of the CP-
TF is modified to that of the CP-TF with the branching

New Physics: Sae Mulli, Vol. 70, No. 7, July 2020

(a) 1-p p (b) Am<0
208 @

O
N
@60 C0®@ O @ O

Fig. 1. (Color online) (a) The branching (annihilating
or temporarily mutating) dynamics of A particle, repre-
sented as a blue solid circle, is illustrated: A4+0— A+A
(A — B) with probability 1 — p (p), where the branch-
ing bias is controlled with probability Dy, (1 — Dy) to
the right (left). (b) The feedback dynamics of B particle
after the incubation (quarantine) period, represented as
a yellow solid circle, is illustrated: B — A (B — 0) with
probability r (1 — r), where A7g is the remaining time
against its pre-assigned lifetime 75, AT = T8 — telapsed-

bias, where we present the most relevant changes in the
CP-TF. It is noted that the hard-core repulsion of A
particles is still preserved for the branching dynamics of
A particle to the nearest-neighboring sites. However,
B particle is bosonic, so it does not interact with any
particles. Due to the dynamics of B particle, the hard-
core repulsion of A particles is partially broken. As a
result, in the CP-TF and the DCP-TF, a site can be
occupied by multiple particles, mA and nB, as t elapses
in our model, where m and n are whole numbers.

For the rejection-free algorithm in Monte-Carlo (MC)
simulations, we provide the detailed description of the
DCP-TF dynamics with step-by-step comments.

1. Initial setup — Each site can be empty or occupied
by only one A at random, so that pa (0) = 1/2 and
pB(0) = 0. Since we are interested in the temporal
decay of the order parameter pa(t) by dynamic
simulations near the criticality of the APT, one
may think that the fully A-occupied system is the
best choice as the initial setup. However, due to the
hard-core repulsion of A particles for the branching
dynamics, such an initial condition lets the system

undergo the initial intrinsic and transient period.

2. Updating choice — To compare with other APTS,
we employ the random sequential updating, where
the time is continuously updated and the updating
site is chosen at random with probability 1/L. To
get rid of the rejection by empty sites, it is useful
to make the list of the particles as well as the sites
that have at least one particle, which is initially
at most the same as the half of the lattice size,
N,(0) = L/2, from N,(t) = Na(t) + Ng(t).
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3. Time Increment — For the rejection-free random
sequential updating, the MC simulation time is up-
dated at each dynamics by At = 1/N,(¢), instead
of 1/L.

4. Dynamics of A particle — A can either tempo-
rally mutate to B with probability p, or branch an-
other A at one of the nearest-neighbor sites with
probability (1 — p), provided that the target site
does not have A. The branching bias is controlled
with probability Dy, (1 — Dy) to the right (left).
The new B has the lifetime before reactivating for
the temporal feedback, which is assigned from the

power-law lifetime distribution, P(mg) = c1g (HH),

such that the survival distribution, Ps(75) = ¢s75 0

with P(7g) = —(“.%(;B). We set ¢ = 6.

[Temporal Mutation| B with p
[Branching] AA with 1 —p
A— ) . 1)
to the right with Dy
to the left  with 1 — Dy,
5. Dynamics of B particle — If B is reactive-

ready with Atg = 7B — felapsed < 0, the chosen
B can either mutate back to A after incubation of
disease with probability r (temporal feedbacks as
long-term memory), or eventually annihilate with
probability 1—r after quarantine from disease (just

temporal delay, compared to the ordinary CP).

. Incubation] A with r

B (it Arg <0) = {{Quarantini] 0 withl—7r @
In the DCP-TF, the density of A particles, pa(t) is
still the order parameter because the system is active
until when at least one A exists, just as the ordinary
CP. However, for the case of nonzero r, it is interesting
to measure the density of B particles, pg(t), and the
particle density, pa+p(t) = Np(t)/L, for the comparison
of pa(t), near the criticality of the APT. We note that
the DCP-TF with D, = 0.5 is the CP-TF, and the CP-
TF of » = 0 corresponds to the temporally delayed CP.
In the CP-TF where the annihilation of A is modified
by the temporal mutation to B, the mutated B plays
a role as the power-law decaying non-order field. It is
interesting to find when its feedback becomes relevant to

the system (see Fig. 2).
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Fig. 2. (Color online) Spatiotemporal patterns of the 1D
DCP-TF with (a) the fully-biased branching the right,
Dy, = 1.0, and (b) no bias, Dy, = 0.5, are presented for
L = 128 (horizontally) and T' = 2L (vertically) for each
panel, where we set r = 0.5 and 6 = {2.5,1.5,1.0} (from
left to right) at the corresponding critical threshold, p =
pe(r,0). The particles are colored as e for A, - for B or
multiple Bs, and e for multiple As.

Figure 2 shows the spatiotemporal patterns of the 1D
DCP-TF at the criticality with and without the branch-
ing bias, respectively (a) D, = 1 and (b) Dy, = 0.5,
where the relative biased diffusion of A is observed in
the presence of the branching bias and rapid decay of A
particles occurs as 6 gets smaller. This is similar to the
DPCPD [11], where the bias becomes relevant to change

the critical scaling behaviors.

ITI. Numerical Results

In our numerical results, we implement the power-
law lifetime (7) distribution, P(7), with the uniform
random number (z) distribution, R(z). By definition,
R(2')da’ = P(r')dr’ and [ P(r)dr = 1, we can find

the following simple relation between a random number
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Fig. 3. (Color online) For the case of § = 1.5 and r = 0.5
at L = 2!6 double logarithmic plots of pa(t)t* and

pa1p(t)tP are presented against t to indicate the crit-
ical threshold (p.) and the critical exponent (3/v|, bt in
short), where (a) Dy, = 0.5 (CP-TF) at p = 0.46435(~
pc), where both L = 216 (dashed) and 2'7 (solid) are

shown, and (b) Dy, = 1.0 (DCP-TF). Our numerical
data are averaged over at least 100 samples.

x of R(x) and a lifetime 7 of P(7):

/ R(2')da’ :/ P = 1= (1—2) Y0 (3)
1 1
where R(z) = 1 and P(1) = 7~ (*+Y. From P(7g), we

can get the average lifetime (7g) as follows:

oo . .
(t8) = /1 e P(T)dTR ~ {i:lte ig z 1 )
Therefore, § = 1 is a marginal value for the lifetime
decay exponent. In the next section, our numerical date
is presented to discuss the universality class of the CP-
TF as we control p,r, Dy, and 6.
In order to discuss the scaling behaviors of the order

parameter, pa(t), and the critical threshold, p. of the
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Fig. 4. (Color online) As the power-law decay exponent
of the long-term memory, 6, varies, the DCP-TF (D}, =
1, 0J) is compared with the CP-TF (D), = 0.5, x) for

L =10° and r = 0.5: (a) the critical threshold, p., and
(b) the critical exponent, 3/v.

APT [1], we employ the dynamic scaling ansatz , pa (t) ~
t=8/MI at p = p, when the system is large enough.

As shown in Fig. 3, the critical scaling behaviors in
the DCP-TF are different from those the CP-TF, in the
context of not only the critical threshold but also the
decay exponent. For the case of § = 1.5, the DCP-TF
becomes distinct from the DP universality, whereas the
CP-TF still follows the DP universality class.

Using the same analyses, we numerically obtain both
(a) pc and (b) B/v) as a function of § at r = 0.5, which
are plotted in Fig. 4 and summarized in Table 1 (only
for Dy, = 1.0). Due to the fact that the branching bias
becomes relevant, unlike the ordinary CP (the DP uni-
versality class), our results with » = 0.5 imply that the
CP-TF belongs to the different universality class that

has continuously varying exponent.

IV. Summary and discussion
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Table 1. The critical threshold and the critical exponent
of 1D DCP-TF at » = 0.5 and Dy, = 1.0 are presented
with those of the 1D CP-TF. For the comparison, we
also show the critical exponents of other classes.

Class 0 De B/vy

DCP-TF 2.5 0.45160(4)  0.159(1)

1.7 0.46483(2) 0.18(1)

1.5 0.47300(4)  0.23(1)

1.1 0.50105(4) 0.35(1)

1.0 0.51065(4)  0.37(1)

CP-TF ° 15 0.46436(2)  0.159(5)

1.2 0.47887(4)  0.172(5)

1.1 0.48654(4)  0.207(5)

1.0 0.49598(4)  0.237(5)

GPCPD 1.25(5)° 0.197(4)
DP (from [10]) 0.1596(4)
DI (from [10]) 0.286(2)

“From Table 5.1 of Chapter 5 in Ref. [16]
This estimate is at 7 = 0.5 and d = 0.1 in Ref. [10].

We studied epidemic spreading in the one-dimensional
(1D) lattice, in terms of the contact process (CP) with
the long-term memory. Owing to the introduction of the
intermediate exposed state in the CP with its lifetime, we
generated power-law type temporal feedbacks and con-
trolled the memory strength. For the discussion of the
universality class of the 1D CP with temporal feedbacks
(CP-TF), we tested the relevance of the branching bias.
In the 1D driven CP-TF (DCP-TF), the role of the long-
term memory caused by the non-ordered field, is similar
to single particles in the pair CP with diffusion (PCPD).

As a result, our study reopened the discussion about
the universality class of the PCPD. However, we cannot
rule out the possibility of the crossover to the directed
percolation (DP) universality class, discussed in the re-
cent studies of the PCPD [14,15].

Finally, we suggest that the mean-field behavior of the
CP-TF would be an interesting future work for the ex-
tended studies on network structures. Some extension
related to COVID-19 type epidemic spreading has been

under the investigation.
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