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We numerically investigate q-coloring (q-COL) problems in random networks in terms of a
stochastic-local-search (SLS) algorithm. Random q-COL problems involve finding solutions where
all nodes consist of different colors from their neighbors’ colors, among q colors. For a fixed number
of colors, say q = 3 or larger, various phase transitions have been reported as the average degree of
links (the number density of constraints), c = ⟨k⟩, increases. This is because the set of solutions un-
dergoes several types of phase transitions similar to those observed in the mean-field theory of spin
glasses at zero temperature. Eventually, a dynamic coloring threshold is found to exist, above which
no more solutions exist. Using the finite-size scaling (FSS) technique for nonequilibrium absorbing
phase transitions, we analyze critical behaviors in the dynamic phase transition of q-COL problems
by using the SLS algorithm, where we test both Erdös-Rényi and regular random networks. Finally,
we discuss the extended FSS in q-COL problems compared to random k-satisfiability ones.
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I. INTRODUCTION

Graph coloring is a basic problem in combinatorics,
which consists of a graph and q colors to be considered
coloring the vertices (nodes) without the neighbors that
have the same color [1–3]. Depending on the number
of colors and neighbors, graph coloring becomes one of
famous nondeterministic polynomial-solving time (NP)-
complete class problems. Although there is the most
celebrated four-colors theorem [4,5] for planar graphs, q-
COL problems for general graphs can be extremely hard
to solve, known to be NP-complete [6], which is believed
that no proper algorithm can decide whether an arbi-
trary instance of graphs is colorable or not within a poly-
nomial time with respect to the total number of nodes.
Since the NP-complete problem can be taken as a bench-
mark to evaluate the performance of various algorithms
in computer science, such as time tabling of practical ap-
plications, registering allocations of complies, assigning
frequencies in mobiles radios, and so on.
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In this paper, we numerically study the q-coloring (q-
COL) problems of random graphs, and focus on the
role of the degree fluctuations in scaling properties of
dynamic phase transitions with respect to both Erdös-
Rényi random (ER) and regular random (RR) networks.
In particular, we employ a heuristic algorithm, namely
stochastic-local-search (SLS), and the extended finite-
size scaling (FSS) theory of nonequilibrium absorbing
phase transitions (APTs), where it is quite conventional
to analyze two major physical quantities, the average
rescaled solving time for a given instance from the solved
(SOL) samples, ⟨tsol⟩, and the density of unsatisfied
nodes from the unsolved (UNSOL) samples, ρall, against
two control parameters, the average of degree per node,
c = ⟨k⟩, and the noise (temperature-like) parameter p.
These quantities are useful to identify critical behaviors
in random constraint satisfaction problems (CSPs) [7].

The objective of this paper is to propose the universal
scaling properties of dynamic phase transitions in ran-
dom CSPs and to discuss the interplay of the internal
disorder for the structure of neighbors and the external
noise for the SLS algorithm in such universality issues.
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Fig. 1. (Color online) Flowchart of the SLS pseudo-
algorithm of A-COL heuristics for random q-COL prob-
lems. The iteration loop terminates after the maximum
time Tmax even if a solution is not found. Note that
this is almost the same as the A-SAT for random K-
Satisfiability problems [7].

The paper is organized as follows: In Sec. II, we
present the q-COL dynamics and the SLS algorithm
with the average coloring (A-COL) heuristics, where two
physical quantities are proposed against two control pa-
rameters. Numerical simulation results are provided in
Sec. III with both ER and RR networks, where we test
the extended FSS theory of nonequilibrium APTs. Fi-
nally, the paper is concluded in Sec. IV with some re-
marks.

II. MODEL

Consider a large sparse random network (graph),
which consists of N nodes (vertices) and L links (edges).
With a given number of colors, say q(≥ 3), each node is
assigned as one of q colors. Since the coloring problem is
to find the configuration that each node has a different
color from its nearest neighboring nodes’ colors, one can
investigate the statistical physics for q-COL problems
[8–11] as a Pott [12] spin model with antiferromagnetic
interactions on random networks, where each node has
a spin variable si with i = 1, 2, ..., N and si = 1, 2, ..., q.
From equilibrium concepts, it is natural to define the
Hamiltonian as

H({s}) = 1

2

N∑
i,j=1

aijδ(si − sj), (1)

where aij = 1 if two nodes are connected; otherwise, 0,
and δ(s−s′) = 1 if s = s′; otherwise, 0. This implies that

no energy contribution for the connected pair having the
different colors. The ground-state energy is 0 if and only
if the network is q-colorable.

The q-COL problems can be also studied through a
SLS algorithm as presented in this paper. We set q = 3

and employ the SLS algorithm, the A-COL heuristics
where the color of the randomly chosen unsatisfied node
is changed with an effective temperature (noise) p. As
described in Fig. 1, the A-COL heuristics keeps updat-
ing until the Monte-Carlo (MC) simulation time step
tMC = Tmax. Instead of measuring directly the energy
from Eq. (1), we here analyze two physical quantities,

⟨tsol⟩ (average solving time), (2)

ρall =
⟨Mu⟩
N

(density of unsatisfied nodes), (3)

for the fixed number of colors, q = 3, as the average
degree per node c = ⟨k⟩ = L/2N and p increase.

The idea of the A-COL heuristics was first suggested
by Zdeborová and Krzakala [13] as the extension of Walk-
COL that is the slight different adaptation, closed to the
work of Walk-SAT by Selman and coworkers [14]. The
detailed analysis of Walk-SAT also discussed [7,15], in
terms of the A-SAT heuristics [16]. The approach of
SLS heuristics is unsophisticated, compared to complete
solvers, message passing algorithms (belief propagation
and survey propagation), and cavity formalisms at the
replica symmetric level [13,17,18]. However, it is simple
and easy, so it is popular to investigate dynamic phase
transitions in random CSPs. In the A-COL heuristics,
an arbitrary configuration moves onto a neighboring one
according simple rules (see Fig. 1) against the noise level.
How to identify and understand the typical hardness in
q-COL problems is particularly very similar to that of
epidemic models that exhibit nonequilibrium absorbing
phase transitions (APTs) [19].

So far, it is known that the following analogies exist
between MC simulations of dynamic processes and A-
COL heuristics: (i) Local search heuristic corresponds to
dynamic object in configuration space; (ii) An instance is
a sample, and a solution is the global minimum (ground-
state) energy; (iii) The difference between the numbers
of unsatisfied nodes among neighboring configurations is
the energy gradient; (iv) SLS algorithms correspond to
the MC simulations of nonequilibrium processes without
the detailed balance.
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Fig. 2. (Color online) The average rescaled solving time on ER networks are plotted against p and c, respectively, from
which one can indicate the optimal value of p, popt ≃ 0.06, and the threshold value of c, cth,ER ≃ 4.55. At p = popt,
τ ≡ ⟨tsol⟩/Tmax is the minimum. Up to c = cth, τ remains as the minimum in thermodynamic limit.

However, it is hardly discussed about the universal
scaling properties and FSS tests in q-COL problems. So
we need to speculate them in details. In particular, we
here focus on how the degree fluctuations of random
networks affect the scaling properties of dynamic phase
transitions in 3-COL problems. For random networks,
two possible ensembles exist: (i) the Poissonian degree
distribution P (k) = e−cck/k!, namely ER networks [20],
and (ii) the uniform degree distribution P (k) = δ(k− c),
namely RR networks.

III. NUMERICAL RESULTS

We perform the MC simulations of 3-COL problems
using the A-COL heuristics on both ER and RR networks
of N nodes, where two control parameters are considered,
the temperature-like noise parameter p and the average
degree per node c. The update of the A-COL heuristics
lasts up to tMC = Tmax.

First, we define the optimal noise value, popt, at which
the solving time is the fastest, and the threshold value of
cth is also the largest, at which the solving time ⟨tsol⟩ is
still smaller than Tmax. Fig. 2 shows the average rescaled
solving time on ER networks, which implies that popt ≃
0.06 and cth,ER ≃ 4.55 for various N = 4 × 103, 16 ×
103, 64× 103 and Tmax = 107.

To interpret the solvability of the A-COL heuristics,
the FSS theory of nonequilibrium APTs is employed
as follows: From the solvable (SOL, absorbing) phase
to the unsolvable (UNSOL, active) phase, the average
rescaled solving time, τ ≡ ⟨tsol⟩/Tmax, is obtained only
from solved samples, while, from the UNSOL phase

to the SOL phase, the density of unsatisfied nodes,
ρu(t,N) ≡ ⟨Mu(t,N)⟩u/N , is obtained from unsolved
samples. Here the MC time increment ∆t = 1/Mu(t),
where Mu(t) is the number of unsatisfied nodes at time
t. The essential part of APTs is how to identify that
a sample is dynamically active with two major physical
quantities near and at the criticality, the density of ac-
tive nodes and the survival probability of samples, which
correspond to the density of UNSAT nodes (ρall) and the
fraction of the UNSAT samples to the all samples (Psurv)
in q-COL problems, respectively.

Based on the extended FSS theory of APTs [7,19] in
random q-COL problems at the criticality, ϵ ≡ c−cth

cth
= 0,

dynamic scaling can be defined as follows:

Psurv =
Nu

N
= ϕ(t/N z̄), (4)

ρsurv(t,N) = t−δf(t/N z̄), (5)

where the dynamic exponent z̄ = ν||/ν̄ and the decay ex-
ponent δ = β/ν|| from ρsurv(ϵ > 0) ∼ ϵβ , the correlated
volume ξv ∼ ϵν̄ , and the correlated time ξt ∼ ϵ

−ν|| with
ν|| = 1 on networks. Moreover, N is the total number
of samples, Nu is the number of unsolved samples, and
tH(∼ N z̄) is the time when Psurv = 1/2 (see the detailed
relations of the critical exponents in [19]). In the sub-
critical regime (ϵ < 0, SOL/absorbing) where all samples
are solved, tH = o(1) ≪ 1 and ρsurv(t) ∼ exp(−At) as
N → ∞ while ρsurv(N) ∼ 1/N as t → ∞. In the super-
critical regime (ϵ > 0, UNSOL/active) where all samples
are survived (unsolved), tH cannot exist since τ = 1 and
ρsurv(t) = o(1) as N → ∞.

Fig. 3 and Fig. 4 show how the degree fluctuations of
the networks affect the critical threshold of the average



1026 New Physics: Sae Mulli, Vol. 67, No. 8, August 2017

Fig. 3. (Color online) For ER networks at p = 0.05 ≃ popt, the temporal behavior of the UNSAT density, ρall(t) ∼ t−δ,
is plotted as t increases, where the case of c = cth,ER = 4.56(1) exhibits δER ≃ 0.25 for N = 256× 103. In the middle
panel, the effective exponent δall(t) is plotted against 1/t, compared to various c = 4.40, ...., 4.70. At c = 4.56 ≃ cth,ER,
finite effects are tested for N = 256× 103, ..., 1× 103 up to Tmax = 107.

Fig. 4. (Color online) For RR networks at p = 0.06, the temporal behavior of the UNSAT density ρall(t) ∼ t−1/3

is presented as t increases at cth,RR = 5 with various N = 256 × 103, ..., 0.5 × 103 and its effective exponent δall(t)
is plotted against 1/t, compared to c = 4, 5, 6. At p = 1, ρall(t) are plotted for N = 256 × 103 (c = 3, 4, 5) and
1× 103 (c = 4).

Fig. 5. (Color online) For ER networks at p = 1.0, the temporal behavior of the UNSAT density ρall(t) ∼ t−1

is presented as t increases at cth,ER = 2.03 for N = 256 × 103 and its effective exponent δall(t) is plotted against
1/t, compared to c = 2.00, ..., 2.10 for N = 1024 × 103 . Using the FSS analysis of ρall, numerical data collapse
well at cth,ER,p=1 = 2.03 with δER,p=1 = 1, z̄ER,p=1 = 1/2, and α = 1/2 from ρsurv(t → ∞) ∼ Nα for N =
1024× 103, ..., 1× 103.

degree per node and dynamic scaling at p = popt for both
ER and RR networks, respectively. Our numerical data
at p = popt are obtained from Psurv = 1, so that ρsurv =

ρall. At p = popt, we find that the decay exponent of the
density of UNSAT nodes ρu on RR networks, δRR ≃ 1/3

is different from that on ER networks, δER ≃ 1/4 (see
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Fig. 3 and Fig. 4). While popt,RR is pretty similar to
popt,ER, cth,RR(= 5) > cth,ER(≃ 4.56). It is noted that
the value of c on RR networks allows the positive integer.

Finally, Fig. 5 shows the special limit of the A-COL
heuristics, namely Random Walk-COL with p = 1, where
at c = cth,ER ≃ 2.03, ρall ∼ t−δ with δ = δER,p=1 ≃ 1 and
tH ∼ N z̄ with z̄ = z̄ER,p=1 ≃ 1/2. This is quite distinct
from the case of RR networks with cth,RR = 4, δRR,p=1 ≃
1, z̄RR,p=1 = 0 (see the right panel of Fig. 4).

IV. SUMMARY WITH REMARKS

We explored dynamic phase transitions in random 3-
COL problems, where we employed the stochastic-local-
search algorithm on random networks and the extended
finite-size scaling analysis for nonequilibrium absorbing
phase transitions. For the noise parameter (temperature-
like, p) and the density of constraints (the average degree
per node of random networks, c), we investigated the
optimal value of popt and the critical threshold cth on
Erdös-Rényi (ER) and regular random networks. More-
over, we found that Random Walk-COL (p = 1) on ER
random networks shows the same universality class as
that of Random Walk-SAT for random 3-SAT problems
[7,15], where the FSS exponent should be checked with
more cautions.

Finally, our preliminary results shed the light on
the universality issues for scaling properties of dynamic
phase transitions in random q coloring problems. The
further discussion on the origin of phase transitions will
be provided as the future study in elsewhere for various
q values, compared with the results obtained from other
analytic approaches.
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