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We numerically investigate the mean-field (MF) behavior of the conserved lattice gas (CLG)
model with effective temperature, where two types of random network topologies are considered,
regular and random ones, and the effective temperature is controlled by using the thermal noise
parameter. In particular, we focus on dynamic scaling for the spatiotemporal properties near
the criticality of the CLG. Based on the MF theory and the finite-size scaling (FSS) analysis of
continuous phase transitions, we present the MF values of the FSS exponent and the thermodynamic
exponents. Finally, we conjecture a MF schematic phase diagram and discuss universality issues in
the generalization of the CLG, which are compared with those in earlier results.
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I. INTRODUCTION

Among dynamic phase transitions in nonequilibrium
statistical physics, the universality class of absorbing
phase transitions (APTs) has been intensively studied
and well established through last decades [1–4]. It is
because of wide applicability of rich phenomena to the
self-organized criticality and the broad impact to real
systems as well as sandpile model studies APTs can be
described by the active particle density that represents a
order parameter from nonzero in an active state to zero
in one, two, or many absorbing states.

In the absorbing state, dynamics of the system is dead
since the control parameter sets below the critical thresh-
old. To find the location of the critical threshold in APTs
and discuss universal scaling properties at and near the
criticality, Monte-Carlo simulations and related analytic
techniques are often employed with the extended finite-
size scaling (FSS) theory, which plays a crucial role in
the analysis of critical phenomena in not only equilib-
rium processes but also nonequilibrium ones.
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Among stochastic lattice models that exhibit APTs,
the conserved lattice-gas (CLG) model is the simplest
model that belongs to a new universality class, distinct
from the directed percolation (DP) universality class,
where the total density of particles becomes a control
parameter. The ordinary CLG [5–13] is expected for a
second-order (continuous) APT from an active state to
one or many absorbing states, whose scaling properties
in low-dimensional cases belong to a non-DP universality
class due to a conserved field.

In the one-dimensional (1D) CLG [5–9], the dynamics
allows only two symmetric absorbing states at exactly
the critical density ρc = 1/2, but it turns out that the
dynamic scaling properties depend on initial conditions
(ICs). It was reported that such scaling behaviors are
exactly the same as those of A+B → 0, in terms of the
exact mapping relation [7]. Moreover, it is observed that
no diverging fluctuations of the order parameter in the
1D CLG, and the origin of scaling properties in the 1D
CLG is not a APT but a crossover between two different
scaling behaviors caused by ICs of A + B → 0, random
IC versus ordered IC [9].
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Table 1. Effect of thermal noise on CLG dynamics.

p ≡ e−1/T p = 0 0 < p < 1 p = 1

T ∈ [0,∞] (T = 0) (any finite T ) (T = ∞)

pa ≡ pa = 0 pa = 1 pa = 1

min{1, p∆Nb} for ∆Nb > 0 for ∆Nb ≤ 0 for any ∆Nb

For the two-dimensional (2D) CLG [10–12], a non-
DP APT occurs with infinitely many absorbing states
at ρc = 0.34494 [11], updated to ρc = 0.347103 [12],
(ρc = 0.28875 for parallel updating scheme [10]). The
mean-field (MF) scaling behavior of the CLG was also
first studied with random nearest-neighboring hopping
of active particles [13], where the MF critical exponent
βMF of the density of active particles ρa is derived with
simple approximations, ρa ∼ (ρ − ρc)

β . In particular,
the MF critical density ρc is estimated as a function of
the number of random neighbors, z = 2d, varies in d-
dimensional lattices: (1 − ρc)

z = zρc [13], ρc decreases
as z increases, and the analytic result of ρc is slightly
larger than its numerical result.

In this paper, we revisit the MF behavior of the CLG
on network topologies with effective temperature for ran-
dom neighbor hopping of active particles, and focus on
the role of degree fluctuations and thermal noise in MF
scaling properties of the CLG. The paper is organized
as follows: In Sec. II, we briefly describe the dynamics
of the generalized CLG (GCLG), the definitions of the
noise parameter and physical quantities to be measured
for the analysis of APTs. Numerical simulation results
are presented in Sec. III with both regular random (RR)
and Erdös-Rényi random (ER) networks, and the ex-
tended FSS theory is applied. Finally, we conclude the
paper in Sec. IV with some remarks.

II. MODEL

Tbe CLG is generalized with effective temperature.
We consider it on two different types of random networks
with quenched linking disorder, RR and ER ones, where
the total number of nodes is N , the average degree is
⟨k⟩ = z, and degree fluctuations are σ2

k. For the RR case,
degree fluctuations are free, i.e., the degree distribution
P (k) = zδ(k − z) with σ2

k = 0, whereas for the ER case,
degree fluctuations exist: P (k) = zke−z/k! with σ2

k ̸= 0.

Fig. 1. (Color online) Dynamics of the GCLG with
p = e−1/T on a random network: A active node is high-
lighted by the red/dashed-line circle, whose particle can
move onto its nearest-neighboring empty node with the
acceptance probability pa = min{1, p∆Nb}, where each
target node has the different value of ∆Nb (-1 for 1, 0
for 2, +2 for 3) (see Table 1).

In the setup of the GCLG on a random network, each
node can be occupied by at most one particle, so that
the occupation number of a node i, ni = 0, 1. The total
density of particles (ρ) is defined as

ρ ≡
N∑
i=1

ni(t)/N, (1)

which is fixed at any time t due to the conservation of
particles, and plays a role of the control parameter. In
the CLG dynamics, the occupied node becomes active
once its any nearest-neighboring node is occupied as well,
where the particle at the active node, namely the active
particle, can move onto the nearest-neighboring empty
node (see Fig. 1).

Depending on the thermal noise parameter, p = e−1/T ,
the random hopping of the active particle is controlled,
which mimics the role of temperature. Thus, the case
of p = 1 (T = ∞) corresponds to the ordinary CLG,
where the active particle moves onto a randomly cho-
sen empty node, irrespective of the change of the num-
ber of active bonds before and after the move, ∆Nb ≡
Nb(tf ) − Nb(ti). As illustrated in Fig. 1 for the GCLG
with 0 < p < 1 with three different target nodes, the
random choice of neighboring empty nodes is exactly the
same as the p = 1 case. However, the acceptance of the
move in Metropolis-Hastings algorithms is determined
by pa = min{1, p∆Nb}. With the acceptance (transition)
probability pa mentioned above, active particles have the
tendency to reduce the number of active bonds as the
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Table 2. MF results of ρc versus MC ones for p = 1.

ρc z = 2 4 9
MFa 0.267949 0.138017 0.062286
MCb 0.2224 0.1244 0.13020(RR), 0.12705(ER)

a [13] for analytic results of Euclidean dimensions.
b [13] for z = 2 (d = 1), and 4 (d = 2); ours for z = 9 (network)

thermal noise parameter p decreases (T gets lowered).
At T = 0 (p = 0), it was reported that the 2D GCLG
forms at ρ = 0.5 the checker-board like pattern without
active bonds (active particles) [14]. For finite T , the 2D
GLCG exhibits some glassy behaviors.

To analyze the APT threshold and scaling properties
in the GCLG, we focus on two major physical quantities:
the active particle density ρa and the survival probability
Ps, where ρa is the number of the occupied node with at
least one occupied nearest neighbor divided by N , and
Ps is the fraction of the samples with nonzero ρa.

III. NUMERICAL RESULTS

We perform numerical simulations for the GCLG with
various p values, where we set the average degree z = 9

for both RR and ER networks. In the earlier study of MF
conjecture by Lübeck and Hucht [13], the analytic result
of the critical density can be calculated as a function of
z (see Table 2). However, it represents not for infinite
dimensional case, namely network topologies but for d-
dimensional lattices with long-range links.

Scaling properties of the GCLG with p are obtained
from ρa and Ps as a function of t and N . Employing the
static simulation technique [1] near and at the criticality
of the APT, the extended FSS forms are:

[ρa(t,N)]s = ρa(t,N)/Ps(t,N) = t−δf(t/N z̄), (2)

Ps(t,N) = g(t/N z̄), (3)

where f(x) = xδ for x ≫ 1; constant for x ≪ 1 with δ =

β/ν∥ and z̄ = ν∥/ν̄. As a result, [ρa]∗s ≡ [ρ(t → ∞, N)]s

and τ1/2 = t∗ at Ps(t
∗) = 1/2 satisfy

[ρa]
∗
s ∼ N−α and τ1/2 ∼ N z̄, (4)

where α = δz̄ = β/ν̄.
Our results show that degree fluctuations do affect

the critical density and dynamic scaling. As expected,

Fig. 2. (Color online) For p = 1 (T = ∞), effective
exponent data are plotted to locate ρc and δ, where ρa ∼
t−δeff in finite systems for various ρ: (a) ρc|RR = 0.13020
and δ|RR = 1.0, and (b) ρc|ER = 0.12705 and δ|ER <
1. Here we obtain data for N = 107 with at least 102

samplings.

ρc|ER < ρc|RR, the scaling behaviors for the ER case are
less clearer than those for the RR case.

Fig. 2 represents the effective decay exponent plots of
ρa for p = 1 as ρ varies, where the RR case clearly shows
the MF result, but the ER case seems to have huge finite-
size effects with logarithmic corrections to scaling. In
Fig. 3, we plot both the dynamic exponent z̄ and the
static exponent α at ρ = ρc against N , where the RR
case shows the clean MF results, but the ER case seems
to have logarithmic corrections to scaling. Logarithmic
corrections have been observed in many cases [15,16].

In Figs. 4 and 5, numerical data for p = 1 are well col-
lapsed based on Eqs. (2)-(4) and the MF results of crit-
ical exponents with and without logarithmic corrections
to scalings. For the other values of p, we also perform
MC simulations and obtain the similar results to those
of p = 1. As the thermal noise parameter p decreases,
the quenched disorder effect gets stronger to lead more
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Fig. 3. (Color online) For p = 1, (a) the static expo-
nent (α) from [ρa]

∗
s and (b) the dynamic exponent (z̄)

from τ1/2 are plotted at the criticality as a function of
N on both RR (open symbols) and ER (solid symbols),
compared to the MF exponent values (lines).

Table 3. The critical density and critical exponents are
summarized in the GCLG with p for various topologies.
For network cases, ⟨k⟩ = 9.

p ρc z̄ = ν∥/ν̄ δ = β/ν∥ α = β/ν̄

RR 1 0.13020 0.5 1.0 0.5
0.5a 0.1705 0.5 1.0 0.5

ERa 1 0.12075 0.5a 1.0a 0.5
0.5 0.1837 0.5a 1.0a 0.5

1Db 1 0.5 2.0 0.25 1.0
2Dc 1 0.347 103 1.53 0.41 0.792

0.5d 0.475 1.1 0.41 0.37
0 0.5 1.55 1.282 2.00

MFe 1 0.062286 1/2 1 1/2

a Logarithmic corrections to scalings exist.
b [6–9] for initial condition dependencies and crossover scaling.
c [10–12] for p = 1; [14] for p = 0.
d The detailed analysis will be discussed elsewhere.
e [13], where the random neighboring hopping of active particles

is considered in d-dimensional lattices with long-range links, z = 9.

logarithmic corrections to scaling. Our results are sum-
marized with the results on other topologies in Table 3.

Fig. 4. (Color online) For p = 1, the scaling func-
tion of the survival probability is presented at ρ = ρc,
g(t/N z̄) = Ps(t,N), based on Fig. 3: (a) RR and (b)
ER, where the inset is plotted without logarithmic cor-
rections to scaling for z̄ = 0.6.

IV. SUMMARY WITH REMARKS

We have investigated the role of effective temperature
in the conserved lattice gas (CLG) model on two types
of random network topologies, namely regular random
networks (RR) and Erdös-Rényi random ones (ER). For
T = ∞ (p = 1), we found that the critical behavior of
the CLG on both RR and ER networks belongs to the
mean-field (MF) directed percolation (DP) universality
class as expected. However, ER degree fluctuations lead
to logarithmic corrections to scaling in dynamic scaling.

When T is finite (0 < p < 1), the universality class of
critical behaviors is still under investigation. Our pre-
liminary results seem to be deviated from that for the
MF DP universality class, where the ER case is much
more sensitive than the RR case. However, the extended
finite-size scaling (FSS) analysis shows that logarithmic
corrections to scaling might resolve the discrepancy at
least at p = 0.5.
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Fig. 5. (Color online) For p = 1, the extended FSS forms of [ρa]s are tested with data collapse based on the
corresponding scaling functions: (a)-(c) for the RR case and (d)-(f) for the ER case, where [ρa(t,N)]s, f(t/N z̄) =
[ρa(t,N)]st

δ, and F (t/N z̄) = [ρa]s(t,N)Nα from left to right.

Moreover, we have found in scaling properties at low
temperature (small p), finite-size effects and quenched
disorder effects from network topologies play a crucial
role in determining the critical density ρc(p) as p de-
creases in the thermodynamic limit . Our further study
on this topic will be published elsewhere with the origin
of the glassy behavior in the two-dimensional CLG with
p and its phase diagram.
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