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Spatial Correlations and Extended Self-similarity Properties in Sandpiles
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We study scaling behaviors in the metastable states of sandpiles, which exhibit self-organized

criticality (SOC). In order to discuss universal spatial correlations and extended self-similarity

(ESS) properties, we consider the (1+1)-dimensional non-Abelian stochastic directed sandpile model

(SDSM) [D. Hughes and M. Paczuski, Phys. Rev. Lett. 88, 054302 (2002)]. The non-Abelian

SDSM is well known to belong to the same universality class as the Abelian SDSM with respect to

the scaling behaviors of avalanches. However, the two models yield totally different structures

of metastable states with SOC. Such metastable-state structures are analyzed in terms of the

inter-grain distribution functions and the two-point correlation functions by using Monte Carlo

simulations. Finally, we show that large-scale networks of grains can be described by using the

time-dependent characteristic size of the gap between clusters and find that the ESS properties of

the correlations are analogous to those found in fluid turbulence when the avalanche propagation

is mapped to 1D interface growth.
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I. INTRODUCTION

Underlying mechanisms and symmetries in complex

systems yield spatial and temporal patterns, which may

contain some crucial information for universality classes.

Lots of examples are ubiquitous in nature. Among them,

sandpiles also exhibit the self-organized critical (SOC)

metastable patterns. Since Bak, Tang, and Wiesen-

feld first introduced the undirected deterministic sand-

pile model in two dimesions [1], SOC propertites have

been studied [2, 3], in particular to universality classes

related to various dynamic rules and symmetries.

The basic procedure in sandpiles models consists of the

addition of grains, the instant redistribution (toppling)

of slowy added grains whenever the site becomes unsta-

ble, and the dissipation of toppled grains at boundaries.

The main question in sandpiles is how to understand

SOC properties and scaling relations. Hence it would be
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meaningful to focus on the simplest case, such as (1+1)-
dimensional directed sandpile models [4,5], which explain
the relevance of Abelian symmetry and stochasticity.

Unlike Abelian directed sandpiles, non-Abelian ones
present large-scale spatially correlated structures. This
was first discussed by Hughes and Paczuski [6], in terms
of a simple variant of the Abelian stochastic directed
sandpile model (SDSM) [7–9] with a change in the rule
of the broken Abelian symmetry for updating unstable
sites. Note that sandpile models with Abelian symmetry
is irrelevant to the order of topplings.

For (1+1)-dimensional SDSMs, two facts have been
known: (i) Both Abelian and non-Abelian cases show
the same power-law distributions of avalanche-relates
quantities. (ii) Subcritical SOC patterns of non-Abelian
metastable states show large-scale structures, consisting
of networks of grains. This fact is quite different from
those of Abelian case, where such spatial correlations are
not presented as shown in Fig. 1.

In this paper, we explore non-Abelian structure of
metastable states. Particularly, we discuss the origin of
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Fig. 1. (Color online) Metastable state patterns in
(1+1)-dimensional SDSMs with shaded avalanche scars.

large-scale spatial correlations. Moreover, we test ex-
tended self-similarity properties in sandpiles. This pa-
per is organized as follows: In Sec. II, we describe the
simplest sandpile model, and briefly reproduce SOC scal-
ing properties. Metastable pattern issues are discussed
as well as SOC physical properties in Sec. III, which is
numerically checked in Sec.IV. Finally, we conclude the
paper in Sec. V with some remarks.

II. MODEL

While (1+1)-dimensional typical sanpile models are il-
lustrared in Fig. 2, we here consider a 45◦-rotated two-
dimensional square lattice of (L× T ), of which horizon-
tal axis is indiced as x⊥ = x (space) and vertical axis as
x‖ = t (time). As a result, one can describe each site
as (x, t), at which the amount of grains is z(x, t). All
sites are initially empty and there is the uniform max-
ium capacity per site, zc. Once z(x, t) reaches zc, all
grains at the site topples each neighbors based on model
dynamics:

1. Randomly choose a site at t = 0, and add a grain,
z(x, 0) → z(x, 0) + 1. Keep adding a grain at a
random site at t = 0 until any z(x, 0) reaches zc.

2. If any x satisfies z(x, 0) = zc, keep toppling as
z(x±1, 1) → z(x±1, 1)+1 until z(x, 0) = 0. Keep
the similar procedure along to the t direction as t

increases by 1. Keep toppling grains until either
all sites become stable or the toppled grain reaches
at t = T .

Fig. 2. (Color online) Description of toppling and
avalanche in 2D sandiple models: (a) undirected vs. (b)
directed.

Table 1. The results in (1+1)-dimensional non-Abelian
SDSM [6] are reproduced with metastable SOC states.
We obtained exponents for L = L⊥ = 200 and T = L|| =
2000, based on linear regression fitting.

Quantity x s a b m t w

Exponent τx 1.67(8) 1.74(6) 1.9(1) 1.48(5) 1.80(5) 3.0(1)

[6] 1.43(2) 1.75(1)

3. If the toppled grain reaches at bottom (t = T ), it
leaves from the system, which is the dissipation.
If all sites becomes stable, Stop topplings and go
back to the addition of a grain at top (t = 0).

III. PHYSICAL QUANTITIES

1. Avalanche Distributions for SOC

Now that model dynamics is well described with
three steps, we pose the following question: What are

major quantities to check SOC propertites and

metastable patterns in sandpiles?

The multi-avalanche distribution, PL,T (s, a, b, m, t, w),
is measured for each variables, where s is the total num-
ber of toppled sites (this is the same as the number of
topplings unless multiple toppings occur), a is the area
of each avalanche activity (i.e., the total number of sites
involved in the activity, including those that didn’t top-
ple), b is the total number of untoppled sites, which were
involved in the activity, but didn’t topple, so b = a− s.

For comparison to the results in Ref. 6, we also mea-
sure m, the total number of grains involved in the
avalanche activity, and t, the duration time of the activ-
ity. To optimize the transverse length L, parallel to the
direction of avalanche propagation, the maximum width,
w, of each avalanches is monitored.
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Fig. 3. (Color online) Cumulative gap distributions of
metastatble states, chacteristic gap scaling, and data col-
lapse for tm = {2, 4, 8, ..., 1024}.

2. Subcritical Patterns of Metastable States

In analyzing the structure of (1+1)-dimensional SDSM

metastable states, the following quantities are measured

as varying L and T . Note that the bracket is the spatial

average, i.e., 〈A(x, t)〉 ≡ 1
L

∑L−1
x=0 A(x, t).

• The average density of sites occupied with grains

at time t and fluctuations:

ρ(t) ≡ 〈z(x, t)〉
[∆ρ(t)]2 ≡ 〈z(x, t)2〉 − 〈z(x, t)〉2

• Accumulated height up to time t and fluctuations:

h(x, t) ≡ 1
t

∑t−1
t′=0 z(x, t′)

W 2(t) ≡ 〈h(x, t)2〉 − 〈h(x, t)〉2

• Connected two-point correlation functions:

Cz(r, t) ≡ 〈z(x, t)z(x + r, t)〉 − 〈z(x, t)〉〈z(x + r, t)〉
Ch(r, t) ≡ 〈h(x, t)h(x+ r, t)〉− 〈h(x, t)〉〈h(x+ r, t)〉
Here Cz(0, t) = [∆ρ

T
(t)]2 and Ch(0, t) = W 2(t),

respectively.

• The q-th correlation functions:

G
(q)
z (r, t) ≡ 〈|z(x, t)− z(x + r, t)|q〉

G
(q)
h (r, t) ≡ 〈|h(x, t)− h(x + r, t)|q〉

• Cumulative gap distribution Dgap at time t:

Dgap(δ, t) =
∫∞

δ
Pgap(δ, t)

Fig. 4. (Color online) Scaling behaviors in fluctuations
of z and h in the upper panel, and two-point height cor-
relation functions Ch in the lower panel.

IV. NUMERICAL RESULTS

Fig. 3 shows that grains are uniformly distributed with
a characteristic size of gap between clusters at t = tm,
which grows as t0.46

m . Due to the fact that ρ(tm) ∼ t−αr
m

with αr = 0.45(2) and ρ(tm) ' 1/(1 + ∆(tm)), we ex-
pect roughly ∆(tm) ∼ tαr

m , which is consistent with our
numerical results.

Density fluctuations and height fluctuations are shown
in the upper plots of Fig. 4. Both fluctuations decay in
time as t−0.50

m (density) and t−0.80
m (height), respectively.

Since connected two-point grain correlation functions,
Cz(r, tm), are too noisy to be analyzed, we only present
Ch(r, tm) in the lower plots of Fig. 4. Anti-correlation
dip location r∗ scales as tc with c = 0.30(5). As plotting
semi-log scales, data collapse very well.

In Figs. 5, 6 and 7, we check spatial correlations
and extended self-similarity properties [10–12] with the
q-th moments of correlation functions up to q = 6.
Although the height-height correlation function G

(q=2)
h

doesn’t show any clear power-law behavior in r, it ex-
hibits dynamic scaling as G

(q)
h (t) ∼ t−dq

m fq(r/tc), where
fq(x) = [f1(x)]q.
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Fig. 5. (Color online) Scaling functions of Gz and Gh,
where q = 2.

Fig. 6. (Color online) Scaling functions of G
(q=3)
h .

V. SUMMARY AND REMARKS

In summary, we have investigated spatial correla-
tions and extended self-similarity (ESS) properties of
metastable-state SOC patterns for (1+1)-dimensional
non-Abelian stochastic directed sandpiles, which can be
applicable to (2+1)-dimensional ones. Such patterns can
be called as large-scale “scar” networks, which can be
quantitively compared to recent observations of space
plasma. Moreover, self-organized critical behaviors and
universality classes are relevant to stochasticity. Since
ESS test indicate whether either multifractal nature or
anomalous scaling exist, one can apply it to find some
essential scaling properties in real systems.
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