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Dynamic Scaling Analysis of Critical Behaviors in Nonequilibrium Processes
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We present a method for analyzing the critical behaviors systematically in nonequilibrium pro-

cesses by using dynamic scaling, where we extend the well-known finite-size scaling (FSS) theory

for the time evolution of major physical quantities that can indicate either a phase transition or

some scaling property. Particularly, we discuss two cases: one is the one-dimensional (1D) thin film

growth by vapor deposition polymerization (VDP), and the other is the synchronization of globally-

coupled oscillators. Using a dynamic scaling analysis, we show that the universality issue of critical

behaviors in nonequilibrium processes can be investigated even though the system is neither in the

steady-state limit nor in the thermodynamic limit. Finally, in the context of this extended FSS

analysis, we compare the VDP growth with the modified 1D Kardar Parisi-Zhang-type growth and

classify the characteristics of synchronization transitions with various setups.
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I. INTRODUCTION

Scaling properties are ubiquitous in nature with real
systems far from equilibrium. As tuning the control pa-
rameter of the system, it may undergo a nonequilibrium
phase transition from one phase to the other one. More-
over, it is well known that the system exhibits collective
behaviors near and at the criticality, where the corre-
lation length becomes diverging and covers all over the
system. From theoretical point of view, it is very in-
teresting and important how to classify various physical
properties of such phase transitions in practice. In order
to figure out the thermodynamic limiting behavior of the
order parameter in the steady state, one can employ the
finite-size-scaling (FSS) theory from equilibrium one.

However, in the absence of analytically exact solutions
for physical processes, numerical tests are inevitable,
which are unavoidably limited to finite systems and com-
puting facilities. Such an issue has long been already
recognized in the context of phase transitions even in
equilibrium that the limitation can be exploited [1] to
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yield insight into the transition nature and the FSS ef-
fect. This concept has been already extended to inves-
tigate dynamic phase transitions in nonequilibrium sys-
tems [2,3]. When a continuous transition contains some
crossover behaviors because of nontrivial finite-size cor-
rection to scaling, such a careful FSS analysis is particu-
larly valuable since it is governed by the FSS exponent.

Although the FSS analysis is a quite powerful tool to
resolve continuous phase transitions and the universality,
some technical difficulty remains to obtain enough data
in reasonable sizes. It is because numerical simulations
take quite long CPU time until the system reaches its
steady state. The bigger system the more CPU time al-
gebraically. Due to this, one might analyze incomplete
data in small systems that result in some wrong con-
clusion. To avoid such a misleading analysis, a variety
of side techniques are available, such as the higher mo-
ment analysis of the order parameter. However, most
of them still require the steady-state limit. Thus, it is
necessary to find a systematic analysis for temporal be-
haviors as well as the relaxation of collective behaviors
near the saturation at the criticality. This corresponds
to the extension of FSS with dynamic scaling [2,3].
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In this paper, we show the dynamic scaling form in the
time evolution of major physical quantities for kinetic
roughening and synchronization, respectively. Particu-
larly, we discuss surface fluctuations and height-height
correlation functions in the one-dimensional (1D) thin
film growth of vapor deposition polymerization (VDP)
[4,5], and the phase order parameter and its higher or-
der moments in Kuramoto-type coupled oscillators [6,7].

This paper is organized after introduction as follows:
In Sec.II, we briefly review the FSS theory and show how
to expend it with the time evolution of major physical
quantities near and at the criticality, which is numeri-
cally checked in Sec.III. Finally, we conclude the paper
in Sec. IV with some remarks.

II. EXTENSION OF FINITE-SIZE
SCALING AND UNIVERSALITY ISSUE

1. Kinetic Roughening of 1D VDP Growth

Consider a 1D growing surface at the criticality, which
can be described by h(i, t) at site i at time t with the ini-
tially flat surface: h(i, 0) = 0. To discuss kinetic rough-
ening of the surface, we define surface fluctuations as
follows:

W 2(L, t) ≡ 1
L

L∑
i=1

[h(i, t)− h̄(t)]2 = b2αW 2(b−1L, b−zt),

(1)
where L is the system size, h̄(t) = 1

L

∑L
i=1 h(i, t) is the

average height at time t, and b is the length-scale factor.
There are two independent critical exponents in surface
fluctuations: α is the roughness exponent and z is the dy-
namic exponent, which determine the universality class
of kinetic roughening.

Equation (1) can be rewritten as the following scaling
forms, which focus on two different scaling regimes,

W 2(L, t) = t2α/zf(L/t1/z),

= L2αF (t/Lz). (2)

These scaling forms are valid if dynamic scaling exists
in the system with universal scaling functions, f(X) and
F (x), where X, x are the corresponding scaled variables,
X = L/t1/z and x = t/Lz. Using Eq. (2), one can test
data collapsing to verify the dynamic scaling theory.

However, in some cases, surface fluctuations are not
good enough to analyze kinetic roughening due to
anomalous scaling that makes global roughness differ
from local one. Under such circumstances, the second-
order moment of height-height correlation function at the
same time is employed to investigate the local roughness:

C2(r, t : L) ≡ 1
L− r

L−r∑
i=1

[h(i + r, t)− h(i, t)]2

= b2α`C2(b−1r, b−z`t : L), (3)

where α` is the local roughness exponent and z` is the lo-
cal dynamic exponent. Equation (3) can be also rewrit-
ten as if Eq. (2) with corresponding scaling functions,
g(x) and G(τ):

C2(r, t : L) = t2α`/z`g(r/t1/z`),

= r2α`G(t/Lz`). (4)

Due to the role of active ends in polymerization and those
shadowing effect [4,5], the 1D VDP growth exhibits α >

α` and z < z`, where the difference gets larger as the
ratio between the diffusion rate to the deposition flux
increases. The detailed numerical test will be discussed
in the next section.

2. Phase Synchronization of Coupled Oscillators

Consider the original Kuramoto-type globally coupled
oscillators with quenched natural frequencies that follows
the unimodal distribution [6,7]:

φ̇j(t) = ωj +
K

N

N∑
m=1

sin(φm(t)− φj(t)), (5)

where φj(t) is the phase of the j-th oscillator at time t

(j, m = 1, ..., N for total number of N oscillators), and
ωj is its natural frequency, obtained from a normalized
distribution g(ω). Here, we choose g(ω) = 1√

2π
exp(−ω2

2 )
as the unimodal function. It is noted that the functional
shape of g(ω) plays a crucial role in transition nature [8].

For various N -oscillator network topologies,

φ̇j(t) = ωj + K
N∑
m=1

Ajm sin(φm(t)− φj(t)),

where Ajm is the adjacency matrix (N×N) and results in
Ajm = 1 if two oscillators are connected; 0 otherwise. As
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the coupling strength K increases, phase synchronization

occurs at Kc = 2
πg(0) , which can be quantified by a global

complex-valued order parameter:

r(t)eiψ(t) ≡ 1
N

N∑
j=1

eiφj(t). (6)

Assuming that coupled oscillators exhibit self-similar dy-

namics at the criticality, dynamic scaling of synchroniza-

tion can be tested. We here check two initial setups: the

fully synchronized state (φj(0) = 0; r(0) = 1) versus

the fully desynchronized state (φj(0) ∈ [0, 2π]; r(0) ∼
1/
√

N) [12]. For a given value of K, r evolves either

exponentially or algebraically up to its relaxation time

tsat that is also subject to the system size. In the vicin-

ity of Kc, where ε(≡ K−Kc

Kc
) is small, both the correla-

tion volume ξv and time τ becomes very large (compared

to the subcritical regime K < Kc and the supercritical

regime K > Kc) and algebraically decay as ξv ∼ ε−ν̄ and

τ ∼ εν|| , respectively. However, ξv → N in finite systems

at Kc. As a result, τ ∼ N z̄ with z̄ = ν||/ν̄. Based on

the FSS theory and the thermodynamic limiting results

(N → ∞): tsat ∼ ε−ν|| and rsat ∼ εβ , the FSS form can

be extended near and at Kc as follows:

r(t,N, ε) = b−αrr(b−z̄t, b−1N, b1/ν̄ε), (7)

where αr = β/ν̄. In the steady-state limit (t → ∞),

Eq. (7) is exactly the same as the earlier FSS form [9–

11].

As a result, at the criticality (ε = 0), Eq. (7) can be

rewritten as the dynamic scaling form:

r(t,N) = t−αr/z̄f(t/N z̄)

⇒ t−αr/z̄ for t � N z̄;N−αr for t � N z̄, (8)

where f(x) is constant for x � 1 in the true scaling

regime after the transient regime (t < t× when the initial

condition effect exists), and f(x) ∼ xαr/z̄ for x � 1

in the saturation regime (t � N z̄ when N -dependency

only exists). However, we note that the scaling form of

Eq. (8) is valid only for an initial configuration starting at

the fully synchronized state without no additional finite

effect. If one chooses an initial configuration starting at

the fully desynchronized state, Eq. (8) is modified due

Table 1. Critical behaviors of the order parameter are
summarized near and at the criticality using Eq. (7).

(i) t→∞ (ii) N →∞
r(N, ε) = N−β/ν̄F (εN1/ν̄) r∞(t, ε) = t−β/ν||G(εν|| t)

ε < 0 r−(N, ε) ∼ N−1/2εβ−ν̄/2 r∞− (t, ε) ∼ exp(−bt)

ε = 0 rsat(N) ∼ N−β/ν̄ r∞(t) ∼ t−β/ν||

ε > 0 r+(N, ε) ∼ εβ r∞+ (t, ε)→ [1−A exp(−at)]

to N -dependent trivial offset and the trivial temporal
scaling as the following form:

r↑(t, N) = N−1/2tθF (t/N z̄)

⇒ N−1/2tθ for t× � t � N z̄;N−αr for t � N z̄, (9)

where F (x) is constant for x∗(≡ t×/N z̄) � x � 1 in
the true scaling regime, and F (x) ∼ x(αr−θ)/z̄ for x �
1 in the saturation regime, where the order parameter
exhibits very long transient trivial scaling due to random
initial phases as r↑(t) ∼ N−1/2t1/2. Such a behavior lasts
up to t � t× until the initial condition effect is washed
out and the system exhibits its own true scaling.

To resolve the universality issue, one needs to find the
location of t× accurately as well as its scaling behav-
ior. This is definitely not a easy task and sometimes ex-
tremely tricky if the window of two consecutive scaling
regimes is very narrow and one scaling interferes with the
other one. Using dynamical scaling, we discuss this issue
with the dynamic exponent in the true scaling regime.

Before moving onto numerical tests with the detailed
discussion about the universality class of synchroniza-
tion, we provide a summarized table for the extended
FSS form of synchronization (see Table 1).

III. NUMERICAL RESULTS

1. The 1D VDP model

We check dynamic scaling of kinetic roughening as we
numerically revisit the 1D VDP model, which consists of
monomer deposition with cosine flux, surface diffusion
with the relative ratio G to flux, nucleation, propaga-
tion, and coalescence process (see [4, 5] for the detail
descriptions of model dynamics).

Figure 1 represents dynamic scaling of 1D VDP growth
with surface fluctuations and the q-th order moment
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Fig. 1. (Color online) Dynamic scaling of 1D VDP growth: surface fluctuations (W/Lαglobal versus t/Lzglobal) at G = 10
and q-th order moment height-height correlation function in the steady-state limit, where the left panel is the VDP
growth and the right one is the BD growth with the power-law decaying noise.

Fig. 2. (Color online) Based on dynamic scaling for the random sampling of {ωj} [see Eq. (10)], numerical data
collapse very well: From top (left) to bottom (right), 〈r〉Nβ/ν̄ , χ2N

−γ/ν̄ , 〈r2〉N2β/ν̄ , BC, and U4 are plotted against
tN−z̄ for N = 12800, 51200, ...., 204800, Nsample = 2.5× 103.

height-height correction functions that is compared to

that in 1D ballistic deposition (BD) growth with power-

law noise [13] in the steady-state limit.

2. Globally coupled Kuramoto-type oscillators

Dynamic scaling of synchronization is checked as we

numerically revisit the Kuramoto model. We here focus

on the phase synchronization transition with its critical

exponents in the context of the moment analysis of r as

follows:

〈r〉Nαr = R(tN−z),

χ2(≡ Nσ2)N−γ/ν̄ = X(tN−z),

〈r2(N, t)〉N2αr = R2(tN−z),

BC
(
≡ 〈(r̃/σ)3〉2 + 1

〈(r̃/σ)4〉
)

= B(tN−z),

U4

(
≡ 1− 〈r̃4〉

3〈r̃2〉2
)

= U(tN−z), (10)

where r̃ = r − 〈r〉 and σ = 〈r̃2〉. It is noted that 〈· · · 〉 is
the ensemble average.

Our findings of critical exponents are summarized in
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Fig. 3. (Color online) Based on dynamic scaling for the regular sampling of natural frequencies, where two scaling
regimes exists, numerical data collapsed very well. The upper set is for the initial part and the lower set is for the
last part: From left(top) to right(bottom), 〈r〉Nβ/ν̄ , χ2N

−γ/ν̄ , 〈r2〉N2β/ν̄ , BC, and U4 are plotted against tN−z̄ for
N = 12800, 51200, ...., 204800, Nsample = 102.

Table 2 and numerical tests are presented with the set
of scaling plots in terms of Eq. (10). In Fig. 2, we test
dynamic scaling for the random sampling of natural fre-
quencies. In Fig. 3, we test dynamic scaling for the regu-
lar sampling of natural frequencies in two different scal-
ing regimes, respectively.

IV. SUMMARY WITH REMARKS

In summary, we have systematically explored dynamic
scaling of 1D VDP growth and phase synchronization in

Table 2. Possible universality classes of synchronization
are summarized for globally coupled oscillators, where
θ(t) = 1/2 for t < tp1(∼ N z̄1) with z̄1 = 2/5 and -1/2
for tp1 < t < tp2(∼ N z̄2) with z̄2 = 4/5.

static dynamic

g(ω) (β/ν̄, 1/ν̄) (β/ν||, θ, z̄)

random (1/5, 2/5) (1/2, 3/4, 2/5)

regular (2/5, 4/5) (1/2, θ(t), z(t))

the Kuramoto model for various physical quantities, and

investigated scaling relations between our results and the

earlier FSS ones. The merit of our work with dynamic
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scaling analysis is to provide another comprehensive view
of scaling properties in the context of the temporal be-
havior of the major physical quantities before the system
reaches the steady state. This offers a guideline how to
discuss and analyze critical behaviors in finite systems
without the steady-state limiting results, e.g., the recent
work of the Kuramoto oscillators [14]. It is believed that
dynamic scaling gives us essential information on ana-
lyzing scaling properties in many real systems that are
often quite small in size, just as dynamic scaling of sur-
face growth and absorbing phase transitions.
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