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Stochastic Local Search in Random Constraint Satisfaction Problems
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We present a method for studying the threshold behavior in random constraint satisfaction prob-

lems (CSPs) by using a stochastic local search (SLS), namely, a heuristic search. In particular,

we employ the finite-size scaling concept of nonequilibrium absorbing phase transitions and ad-

dress both the nature and the threshold of the solvable-unsolvable transition in terms of random

K-satisfiability (K-SAT) problems, where K is the number of Boolean variables per logic clause.

Based on the role of the noise parameter in the SLS, we find that the number of unsatisfied clauses

(E) and the solving time (tsol) can reveal some valuable information about either the hidden struc-

ture of the solution space or the algorithmic complexity. As compared to two-value averaging

over different samples, we show that survival-sample-averaged quantities in the steady-state limit

are good and clear indicators of both the nature and the threshold of the phase transition in the

thermodynamic limit.
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I. INTRODUCTION

Among constraint satisfiability problems (CSPs),

the K-satisfiability (K-SAT) problem has been well-

known in computer science as one of the famous non-

deterministic polynomial (NP)-complete class problem.

Recently, statistical physics has entered this field with

its ability to handle the complicated energy landscape

and frustration from the quenched disorder, which are

analogous to the glassy or spin-glass systems [1–6]. The

central question of the K-SAT problem is finding out

of a configuration of N Boolean variables satisfying

an instance F , which is a Boolean expression: F =[
C1 AND C2 AND · · · AND CM

]
, where each clause

Ci is given by Ci = (yi1 OR yi2 · · · OR yiK) and each

yij is randomly picked from the set {x1, x2, ..., xN} of N

Boolean variables themselves or their negation.

The Boolean expression characterized by the number

of clauses M and the number of variables per clause K in

this fashion is called the conjunctive normal form (CNF),
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where the density of constraint α ≡ M/N play a role as a
control parameter that determines the problem to be sat-
isfiable (SAT) or unsatisfiable (UNSAT) [2]. In numerics,
the maximum running time Tmax is another control pa-
rameter. As α increases, it gets harder to find the SAT
configuration of variables and finally the solution does
not exist for too large values of α. The critical value of
α, denoted as αc, is very similar to the critical point of
the phase transitions in statistical mechanics.

Since the number of possible configurations for N

Boolean variables is 2N , it is not plausible to search the
entire configuration space with the brute force. Solving
techniques developed so far classified as two kinds, which
are deterministic [2,8,9] and stochastic [10–13] ones.

Stochastic-local-search (SLS) algorithms basically flip
a trial variable and check the status of the expression
after flippling, e.g., the number of UNSAT clauses, to
determine whether the flipping is accepted or not. If we
consider the number of UNSAT clauses as some kind of
energy, the local search heuristics are reminded of Monte
Carlo simulations [14,15], familiar to physicists studying
phase transitions. In fact, the focused Metropolis search
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Fig. 1. (Color online) Flowchart of the SLS algorithm,
ASAT for random K-SAT problems.

(FMS) algorithm [11] employs the exactly same mecha-

nism with the standard Metropolis algorithm with the

number of unsatisfied clauses as energy.

In this paper, we briefly discuss how to analyze SLS

heuristics, which is simple and fruitful for beginners as

discussed in our earlier work [16], where we presented

how to characterize random K-SAT problems, in terms

of the standard theory of phase transitions, especially

finite-size effects.

As an example, we take the average SAT (ASAT) [12]

incorporating a noise parameter p, which is a simplified

version of FMS, and show various aspects of random

CSPs, in the context of the solvability (satisfiability) of

random K-SAT with energy (the number of remaining

UNSAT clauses) and the solving time after the test time

limit of the algorithm denoted as Tmax. Our numerical

analysis is applied to distinguish the different transition

nature, which depends on the value of K [6].

This paper is organized after introduction as follows:

In Sec.a, we briefly review the ASAT algorithm and

measure relevant physical quantities near the threshold

against two different sampling methods. Based on the

finite-size scaling concept of nonequilibrium absorbing

phase transitions, we give some naive picture for the solv-

ability of random K-SAT problems against α and p, as

well as the optimal value of p where the threshold αc

of the solvability and the transition nature are meaning-

ful. Finally, possible applications in random CSPs are

discussed in Sec. b with graphical snapshots in the net-

work (factor-graph) representation and open questions.

Fig. 2. (Color online) As α varies, energy histograms
are shown for K = 2 (N = 16000 at p = 0.5) with
100 samples in the left panel; for K = 3 (N = 1000 at
p = 0.21) with 500 samples in the right panel.

II. NUMERICAL RESULTS

Figure 1 is the pseudo code of the SLS algorithm, for
random K-SAT problems, where some rule can be a trial
movement of a variable in an UNSAT clause is accepted if
it reduces the energy E (the number of UNSAT clauses)
or with probability p (the noise parameter), if it increases
the energy. It is known that the optimal value of p (popt),
the value poised between too less noise to prevent the
system from escaping from the local energy minima and
too much fluctuations, is 0.21 for K = 3 reported in
[12], with which the ASAT algorithm finds a solution
the fastest and up to the largest value of α. In order to
make this clear, we measure time to solve random K-SAT
problems in the unit of flips/N , as in the previous works.
The energy E, defined as the number of UNSAT clauses
at the end of each simulation, is normalized by dividing
it with the total number of clauses M and considered as
“energy density.”

For the different transition nature reported earlier [6],
we show how to distinguish it with energy histograms.
Figure 2 represents the different characteristics in energy
histograms for K = 2 (smoothly moving distributions as
α increases) and K = 3 (abrupt change of distributions
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Fig. 3. (Color online) Simulation results of ASAT for
random K-SAT problems at popt(K): tsol (the number
of flips/N) and energy density (E/M) are plotted as (a)
and (b) for K = 2 at p = 0.5; (c) and (d) for K = 3
at p = 0.21. Symbols and error bars indicate the me-
dian and quartiles for (a) and (c), averages and standard
deviations for (b) and (d), where 100 samples are taken.

Fig. 4. (Color online) The solving time tsol against α
for various N : (a) and (b) for K = 2 are averaged over
survival/active (unsolved, UNSOL) samples; (c) and (d)
for K = 3 are averaged over dead (solved, SOL) samples.
We set Tmax = 105 and take 1000 samples.

as α increases or phase coexistence), respectively. This
implies that the transition for K = 2 is continuous, but
discontinuous for K = 3, just as discussed in Ref. [6]. If
one extends this issue to (K + P )-SAT problems, where
the fraction P of the clauses has K variables and the rest
of clauses has K +1 variables (on average, (K +P ) vari-
ables per clause), the distinction of transition natures is
located at K∗ ' 2.41 [6]. We confirm that energy his-
tograms for the case of K = 2.2 show the similar behavior
to the case K = 2 (continuous), and those for the case

Fig. 5. (Color online) Energy E against α for various
N : (a) for K = 2 and (b) for K = 3, where open (solid)
symbols are averaged over all (survival/active/UNSOL)
samples. All other setups are exactly the same as Fig. 4.
In the inset of (b), we plot two different locations of phase
boundary threshold, denoted as αc1 and αc2.

K = 2.6 looks similar to the case K = 3 (discontinuous),
as expected.

Figure 3 shows numerical results for random K-SAT
problems at popt(K): popt(3) ' 0.21 [12] and popt(2.6) '
0.30 obtained from our numerics. Due to the fact that
there is no dependence of p for K < K∗, we take the arbi-
trary middle value popt(K < K∗) = 0.50. Interestingly,
the time to solve random K-SAT problems abruptly
changes for K = 2 and smoothly changes for K = 3,
in contrast to the intuitive and previously presented re-
sults of energy for K < K∗ (continuous) and for K > K∗

(discontinuous). Therefore, we find that the scaling be-
havior of energy and time should be carefully treated, in
the context of the finite-size scaling (FSS) analysis.

Based on the FSS analysis, the results of Fig. 4 for
〈tsol〉SOL can indicate threshold from the SOL phase
to the UNSOL one, whereas the results of Fig. 5 for
〈E〉UNSOL can do so from the UNSOL phase to the SOL
one as a continuous transition. The detailed FSS analysis
can be found in [16]. In the theory of critical phenomena,
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Fig. 6. (Color online) FSS of 〈E〉all: for K = 2 at p = 0.5,
(a) linear scales and (b) double-logarithmic scales with
(αc = 1.00, ν̄ = 2.75); for K = 2.2 at p = 0.5, (c) as (a)
and (d) as (b) with (αc = 1.25, ν̄ = 2.60). Each data
point in both cases is averaged over 100 samples.

the correlation volume diverges near the critical point as
ξV ∼ ε−ν̄ , where ε is the reduced control parameter and ν̄

is called the FSS exponent. In the context of random K-
SAT problems, ε ≡ (α − αc)/αc, and the proper scaling
variable x is given by x ≡ εN1/ν̄ ∝ (α− αc)N1/ν̄ .

Figure 6 shows the FSS collapse of E using the FSS
exponent ν̄. The quality of data collapse is excellent
for K = 2 and K = 2.2, and the values are compatible
with those the reported previously with some different
approach [6], while the quality of data collapse is not
quite good for K = 2.6 and 3 (data not shown) if all
sample averaged data are collapsed just as the case of
K < K∗. However, the value of ν̄ tends to decreases
as K increases, which is also the same as the earlier re-
sults [6]. So we suspect that the discontinuous nature of
transitions for K & K∗ is related to the relatively poor
quality of FSS collapse due to the nontrivial sampling
issue and the finite-size correction to scaling.

The sampling issue in random K-SAT problems using
SLS heuristics is important. The solution of the prob-
lem can be represented as the ground state energy that
is identically zero, while the number of solutions, repre-
sented as entropy, increases as α decreases [5]. In terms
of the absorbing phase transition (APT) in nonequilib-
rium processes, a ground state corresponds to an absorb-
ing state, i.e., UNSOL instances can be interpreted as the
“survival (active) samples” in APTs. Therefore, it is very
useful to distinctively deal with instances with nonzero
energy values (at the end of the simulation/search due to

Fig. 7. (Color online) Schematic phase diagram of ASAT
for K = 3 with numerical data points: The p = 1 is the
same as RandomWalkSAT [10]. At p = 0, because of
the trapping even at minimal height of energy barrier, it
is extremely difficult to determine any transitions. The
threshold point α∗c represents the SOL-UNSOL transi-
tion at popt = 0.21. Two vertical lines indicate the SAT-
UNSAT transition αs ' 4.267 [17] and the clustering
(dynamic) transition of solutions αd ' 3.86 [18], respec-
tively. Note that α∗c is located between αd and αs in the
“hard” SAT region (left); the complexity of the threshold
at p = popt (right).

the maximum time of search) and to consider averaging

only over UNSOL instances as the standard notion of the

survival sampling average in APTs. In case of K & K∗

where the phase coexistence occurs near αc, such dis-

tinction plays a crucial role in the FSS analysis for the

threshold behavior. The characteristic jump of the en-

ergy value for K = 3 is indeed observed as shown in

Fig. 5, when the survival sample average is used, which

reveals the discontinuous transition along with energy

histograms in Fig. 2. Note that in Fig. 3 where the

values are averaged over all samples, the jump is hidden.

Previously, E is defined as the number of leftover UN-

SAT clauses at the end of each simulation. However, the

number of UNSAT clauses during the simulation can also

reveal the structure of solution spaces or the properties

of specific algorithm used. Thus, we need to monitor the

change of energy, ∆E(t) during ASAT simulations, and

analyze the temporal scaling behavior of E. As discussed

in [16], the instances for K < K∗ actually are separated

quickly into SOL and UNSOL ones, while the separation

comes much later for the instances for K & K∗. More-

over, in some cases, E(t) does not “saturate” until Tmax .

As a result, the saturated value of E(t) may depend of

the choice of Tmax, but we confirm that the different

character of histograms for K = 2 and K = 3, shown in

Fig. 2, is still valid against the value of Tmax.
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III. SUMMARY AND REMARK

In summary, we have demonstrated how to analyze
random K-SAT problems using SLS heuristics in terms
of a similar numerical framework to that used to investi-
gate nonequilibrium processes. Although these problems
have been intensively studied in physics community due
to the characteristic frustration and complicated energy
landscape, it is a bit surprising that finite-size effects
have not been systematically investigated is in the lan-
guage of critical phenomena, except for a few cases where
the FSS exponent ν̄ is considered [2,5,6]. With popt(K)
of ASAT, we have focused on the transition occurred
with the variation of α = M/N , and confirmed the dif-
ferent transition nature below and above K = K∗ ' 2.41
based on the FSS of energy with the proper sampling. As
sketched in Fig. 7, it is still an open question for the pos-
sibility of two different transitions for K & K∗ and the
validity of the FSS exponent. We also note that recent
series of researches [19, 20] reveal that the complicated
nature of the transition for K ≥ 3 comes from the “mix-
ture” of instances showing continuous and discontinuous
transitions. Dividing instances into such different do-
mains can be another good strategy for future works.
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